slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Anggai, Sajarwo AU - Zain, Rafi Mahmud AU - Tukiyat, Tukiyat AU - Waskita, Arya Adhyaksa PY - 2025/08/18 Y2 - 2025/11/15 TI - Enhancing BERTopic with Neural Network Clustering for Thematic Analysis of U.S. Presidential Speeches JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 4 SE - Articles DO - 10.52436/1.jutif.2025.6.4.5090 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/5090 SP - 1957-1970 AB - <p>Understanding the underlying themes in presidential speeches is critical for analyzing political discourse and determining public policy direction.  However, topic modeling in this context presents difficulties, particularly when clustering semantically rich topics from high-dimensional embeddings.  This study seeks to improve topic modeling performance by incorporating a Neural Network Clustering (NNC) approach into the BERTopic pipeline.  We analyze 2,747 speeches delivered by U.S President Joe Biden (2021-2025) and compare three clustering techniques: HDBSCAN, KMeans, and the proposed Autoencoder-based NNC.  The evaluation metrics (UMass, NPMI, Topic Diversity) show that NNC produces the most coherent and diverse topic clusters (UMass = -0.4548, NPMI = 0.0234, Diversity = 0.3950, ).  These findings show that NNC can overcome the limitations of density and centroid-based clustering in high-dimensional semantic spaces. The study contributes to the field of Natural Language Processing by demonstrating how neural-based clustering can improve topic modeling, particularly for complex, real-world political corpora.</p> ER -