slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Abdillah, M. Zakki AU - Nawangnugraeni, Devi Astri PY - 2025/10/22 Y2 - 2025/11/15 TI - Design and Implementation of Kernel-Based Quantum Classification Algorithms for Data Analysis in Software Engineering using Quantum Support Vector Machine (QSVM) JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 5 SE - Articles DO - 10.52436/1.jutif.2025.6.5.5030 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/5030 SP - 3719-3728 AB - <p><em>With the increasing complexity of projects and the volume of data in Software Engineering (SE), the need for efficient and accurate data analysis techniques has become crucial. Classification algorithms play a vital role in various SE tasks, such as bug detection, software quality prediction, and requirements classification. Quantum computing offers a new paradigm with the potential to overcome classical computational limitations for certain types of problems. This research proposes the design and implementation of a kernel-based quantum classification algorithm (also known as Quantum Support Vector Machine - QSVM) tailored for data analysis in the SE domain. We will discuss the fundamental principles behind quantum feature mapping and quantum kernel matrices, and demonstrate its implementation using quantum computing libraries. As a case study, the designed algorithm will be tested on a software bug detection dataset, comparing its performance with classical kernel-based classification algorithms like Support Vector Machine (SVM). The result of the comparison show that QSVM is superior in terms of accuracy, precision, recall, and F1-score compared to SVM. </em></p> ER -