slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Annisa, Tiko Nur AU - Jasmir , Jasmir AU - Nurhadi , Nurhadi PY - 2025/08/18 Y2 - 2025/11/14 TI - Comparison of ANOVA and Chi-Square Feature Selection Methods to Improve Machine Learning Performance in Anemia Classification JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 4 SE - Articles DO - 10.52436/1.jutif.2025.6.4.5017 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/5017 SP - 1925-1940 AB - <p>Anemia is a prevalent hematological condition marked by decreased hemoglobin concentration in the blood, which can lead to serious health complications if undetected. Although machine learning has shown potential in supporting early diagnosis, its effectiveness is often hindered by irrelevant or excessive features. This study investigates the impact of ANOVA and Chi-Square feature selection methods in improving the effectiveness of three distinct machine learning models algorithms, Naive Bayes, K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) for anemia classification. Using a Kaggle dataset consisting of 15,300 instances and 25 features, the evaluation of each model was conducted with reference to its accuracy, precision, recall, and F1-score, both before and after applying feature selection. Experimental results show a substantial improvement in classification performance after feature selection, with the SVM + ANOVA combination achieving the highest accuracy of 94.61%. In contrast, models without feature selection performed below 90%, highlighting the need for appropriate feature reduction techniques. This study contributes a comparative analysis framework for medical data classification, emphasizing the role of statistical feature selection in optimizing model accuracy. Its novelty lies in demonstrating consistent performance improvement across algorithms using real-world anemia data and providing evidence that ANOVA and Chi-Square can significantly enhance model generalization in medical diagnostic contexts.</p> ER -