slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Pambudi, Satrio AU - Setiaji, Pratomo AU - Triyanto, Wiwit Agus PY - 2025/08/18 Y2 - 2025/11/15 TI - Sentiment Analysis of Fizzo Novel Application Using Support Vector Machine and Naïve Bayes Algorithm with SEMMA Framework JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 4 SE - Articles DO - 10.52436/1.jutif.2025.6.4.4875 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/4875 SP - 1861-1880 AB - <p>The increasing popularity of digital reading platforms in Indonesia, such as Fizzo Novel, has generated many user reviews that can be analyzed to understand their satisfaction. This study analyzes user sentiment toward Fizzo Novel using the SEMMA (Sample, Explore, Modify, Model, Assess) framework, and compares the performance of the Support Vector Machine (SVM) and Naïve Bayes algorithms. A total of 139,759 reviews were collected from the Google Play Store through web scraping. The data was then processed through normalization, tokenization, lexicon-based sentiment labeling, and feature extraction using TF-IDF. To address class imbalance, the SMOTE technique was applied. The results showed that SVM achieved the highest accuracy, exceeding 96%, with a consistent F1-score across all sentiment classes. In contrast, Naïve Bayes recorded lower accuracy (75.82% before SMOTE and 73.63% after SMOTE), along with a decline in performance for the neutral class. SVM proved more reliable in handling large and imbalanced text data. Practically, the results of this study can help application developers such as Fizzo Novel in automatically understanding user opinions. With an accurate sentiment classification model, developers can monitor reviews in real-time, identify issues such as excessive advertising or an unpopular chapter division system, and design feature improvements based on real user needs. This research also provides a foundation for algorithm selection in future large-scale sentiment analysis projects and recommends SVM as the more appropriate choice in this context.</p> ER -