slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Suakanto, Sinung AU - See, Tan Lian AU - Shaffiei, Zatul Alwani AU - Firdaus, Taufiq Maulana AU - Lubis, Muharman AU - Bayuwindra, Anggera PY - 2025/08/19 Y2 - 2025/11/15 TI - Prediction of Turbidity Removal Time in Electrocoagulation Wastewater Using Random Forest, XGBoost, and Others: A Data-Driven Information System Approach JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 4 SE - Articles DO - 10.52436/1.jutif.2025.6.4.4847 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/4847 SP - 2223-2238 AB - <p>Electrocoagulation is an effective and environmentally friendly technology for treating wastewater by removing contaminants such as turbidity, heavy metals, and organic compounds. Accurately predicting turbidity removal time is essential for optimizing treatment performance and operational efficiency. However, this is challenging due to complex, nonlinear relationships between multiple parameters including current, voltage, electrode configuration, conductivity, and turbidity removal rate. This study aims to develop a predictive framework by comparing six supervised regression models, namely Linear Regression, Polynomial Regression, Random Forest, Support Vector Regression (SVR), XGBoost, and Long Short-Term Memory (LSTM), using key electrocoagulation parameters. After extensive data preprocessing, a dataset of 281 samples was used for training and validation. Among them, Random Forest achieved the best performance (R² = 0.876, RMSE = 601.15). A data-driven information system is proposed to integrate these predictive capabilities for real-time monitoring and control. By improving turbidity prediction accuracy, the system enables the sustainable utilization of water as a valuable asset, even in its wastewater form. The approach enhances decision-making by providing intelligent feedback for process optimization. This research contributes to the advancement of intelligent, sustainable wastewater treatment systems by integrating machine learning prediction models with practical process control applications in informatics.</p> ER -