slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Brilliant, Muhammad Zidan AU - Widiyaningtyas, Triyanna AU - Caesarendra, Wahyu PY - 2025/08/18 Y2 - 2025/11/15 TI - Comparison of Time Series Algorithms Using SARIMA and Prophet in Predicting Short-Term Bitcoin Prices JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 4 SE - Articles DO - 10.52436/1.jutif.2025.6.4.4773 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/4773 SP - 1971-1984 AB - <p>Digital finance, particularly Bitcoin, has become a global phenomenon with high volatility, posing great challenges for traders in predicting short-term prices. This study compares the performance of the SARIMA and Prophet algorithms in predicting short-term Bitcoin prices using daily closing price data from October 1, 2014, to October 1, 2024. The study utilizes two different data timeframes, a 10-year dataset (2014-2024) and the last 5 years (2019-2024) for comparative analysis. The SEMMA methodology is used to analyze and compare the two algorithms, which consist of the stages Sample, Explore, Modify, Model, and Assess. The experimental results show that SARIMA provides more stable and consistent results with an MAPE value of 1.24% and RMSE of 896.15 in Scenario 1 and an MAPE value of 1.27% and RMSE of 920.24 in Scenario 2. In contrast, Prophet shows different performance in each scenario. In Scenario 1, Prophet shows optimal results but not so good with an average MAPE of 1.74% and an RMSE value of 1214.86. On the other hand, Prophet showed good performance in Scenario 2 with a lower average MAPE of 0.71% and a smaller RMSE of 489.94, indicating Prophet's ability to handle newer and more dynamic datasets. Both models show their respective advantages; SARIMA is better for long and stable historical data, while Prophet is more effective for shorter and dynamic data. This research provides practical insights for traders and investors in choosing the right prediction model, with results for further study in predicting crypto asset prices.</p> ER -