slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
TY - JOUR AU - Wardana, Muhammad Difha AU - Budiman, Irwan AU - Indriani, Fatma AU - Nugrahadi, Dodon Turianto AU - Saputro, Setyo Wahyu AU - Rozaq, Hasri Akbar Awal AU - Yıldız, Oktay PY - 2025/10/21 Y2 - 2025/11/14 TI - Implementation of Ant Colony Optimization in Obesity Level Classification Using Random Forest JF - Jurnal Teknik Informatika (Jutif) JA - J. Tek. Inform. (JUTIF) VL - 6 IS - 5 SE - Articles DO - 10.52436/1.jutif.2025.6.5.4696 UR - https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/4696 SP - 3543-3557 AB - <p>Obesity is a pressing global health issue characterized by excessive body fat accumulation and associated risks of chronic diseases. This study investigates the integration of Ant Colony Optimization (ACO) for feature selection in obesity-level classification using Random Forests. Results demonstrate that feature selection significantly improves classification accuracy, rising from 94.49% to 96.17% when using ten features selected by ACO. Despite limitations, such as challenges in tuning parameters like alpha (α), beta (β), and evaporation rate in ACO techniques, the study provides valuable insights into developing a more efficient obesity classification system. The proposed approach outperforms other algorithms, including KNN (78.98%), CNN (82.00%), Decision Tree (94.00%), and MLP (95.06%), emphasizing the importance of feature selection methods like ACO in enhancing model performance. This research addresses a critical gap in intelligent healthcare systems by providing the first comprehensive study of ACO-based feature selection specifically for obesity classification, contributing significantly to medical informatics and computer science. The findings have immediate practical implications for developing automated diagnostic tools that can assist healthcare professionals in early obesity detection and intervention, potentially reducing healthcare costs through improved diagnostic efficiency and supporting digital health transformation in clinical settings. Furthermore, the study highlights the broader applicability of ACO in various classification tasks, suggesting that similar techniques could be used to address other complex health issues, ultimately improving diagnostic accuracy and patient outcomes.</p> ER -