slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
@article{Tejawati_Septiarini_Rismawati_Puspitasari_2023, place={Purwokerto}, title={COMPARISON OF K-NEAREST NEIGHBOR AND NAIVE BAYES METHODS FOR CLASSIFICATION OF NEWS CONTENT}, volume={4}, url={https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/676}, DOI={10.52436/1.jutif.2023.4.2.676}, abstractNote={<p><em>With the development of technology, news reading via the internet or digital tends to increase. In addition, there are about 300 to 400 news articles in one month and many categories of news articles in a web portal. It makes the editor’s performance more and more because an editor must be able to edit articles from various channels and at the same time have to categorize articles one by one manually into several specified categories. This study aims to compare the K-Nearest Neighbor (KNN) and Naive Bayes methods to classify news content in order to obtain the best method. The data used in this study are news articles from the web portal kaltimtoday.co from January 202</em><em>2</em><em> to March 202</em><em>2</em><em>. Therefore 576 data are obtained. The results showed that the application of the KNN and Naive Bayes methods could be used to classify news content. The KNN method is able to produce a higher accuracy value than Naïve Bayes, reaching 86% and 51% with test data of 100 news articles.</em></p>}, number={2}, journal={Jurnal Teknik Informatika (Jutif)}, author={Tejawati, Andi and Septiarini, Anindita and Rismawati, Rondongalo and Puspitasari, Novianti}, year={2023}, month={Mar.}, pages={401–412} }