slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
@article{Sonita_Anggriani_Vatresia_Putri_Darnita_Zahra_Aprilia_Aziz_2025, place={Purwokerto}, title={Herbal Plant Classification Using EfficientNetV2B0 Model and CRISP-DM Approach}, volume={6}, url={https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/5141}, DOI={10.52436/1.jutif.2025.6.4.5141}, abstractNote={<p>Herbal remedies have long been utilized by Indonesian communities as part of traditional medicine. However, identification of these natural resources is often challenging due to the morphological similarities among various species, which demand expert knowledge to differentiate. This study aims to implement the EfficientNetV2B0 model architecture for classifying medicinal leaves through an Android-based application designed to support recognition tasks. The dataset was composed of augmented images of plant foliage. The model was trained using the TensorFlow framework and evaluated to measure classification performance. Results demonstrate that EfficientNetV2B0 achieves excellent accuracy, with validation scores exceeding 97%, outperforming several other deep learning models. The resulting application allows the general public to identify local medicinal species more easily. This study contributes to the field of computer vision by providing an accurate and efficient classification framework, particularly beneficial for health-related informatics in biodiversity-rich regions.</p>}, number={4}, journal={Jurnal Teknik Informatika (Jutif)}, author={Sonita, Anisya and Anggriani, Kurnia and Vatresia, Arie and Putri, Tiara Eka and Darnita , Yulia and Zahra, Syakira Az and Aprilia, Vilda and Aziz, Dzakwan Ammar}, year={2025}, month={Aug.}, pages={2253–2262} }