slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
@article{Abidin_Afuan_Toscany_Nurhadi_2025, place={Purwokerto}, title={A Comprehensive Benchmarking Pipeline for Transformer-Based Sentiment Analysis using Cross-Validated Metrics }, volume={6}, url={https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/4894}, DOI={10.52436/1.jutif.2025.6.4.4894}, abstractNote={<p>Transformer-based models have significantly advanced sentiment analysis in natural language processing. However, many existing studies still lack robust, cross-validated evaluations and comprehensive performance reporting. This study proposes an integrated benchmarking pipeline for sentiment classification on the IMDb dataset using BERT, RoBERTa, and DistilBERT. The methodology includes systematic preprocessing, stratified 5-fold cross-validation, and aggregate evaluation through confusion matrices, ROC and precision-recall (PR) curves, and multi-metric classification reports. Experimental results demonstrate that all models achieve high accuracy, precision, recall, and F1-score, with RoBERTa leading overall (94.1% mean accuracy and F1), followed by BERT (92.8%) and DistilBERT (92.1%). All models exceed 0.97 in ROC-AUC and PR-AUC, confirming strong discriminative capability. Compared to prior approaches, this pipeline enhances result robustness, interpretability, and reproducibility. The provided results and open-source code offer a reliable reference for future research and practical deployment. This study is limited to the IMDb dataset in English, suggesting future work on multilingual, cross-domain, and explainable AI integration.</p>}, number={4}, journal={Jurnal Teknik Informatika (Jutif)}, author={Abidin, Dodo Zaenal and Afuan, Lasmedi and Toscany, Afrizal Nehemia and Nurhadi, Nurhadi}, year={2025}, month={Aug.}, pages={1797–1810} }