slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
@article{Anggreini_Yuliana_Ramdan_Al-Dayyeni_2025, place={Purwokerto}, title={Improving Diabetes Prediction Performance Using Random Forest Classifier with Hyperparameter Tuning}, volume={6}, url={https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/4755}, DOI={10.52436/1.jutif.2025.6.4.4755}, abstractNote={<p>Diabetes mellitus is a chronic metabolic disorder that poses a serious challenge to global healthcare systems due to its increasing prevalence and the high costs associated with treatment. Although machine learning has been widely adopted to support early diagnosis, many predictive models still underperform due to limited preprocessing strategies and inefficient hyperparameter settings. This study proposes a comprehensive machine learning pipeline to enhance diabetes prediction accuracy by utilizing a Random Forest classifier optimized through systematic hyperparameter tuning. The novelty of this method lies in its integrated approach, which includes thorough preprocessing such as removing duplicate records, handling inconsistent unique values, addressing missing data, and applying the SMOTE technique to overcome class imbalance. Additionally, hyperparameter tuning is conducted using GridSearchCV combined with 5-fold cross-validation, and only the most influential features are selected to improve model interpretability and efficiency. The proposed model achieved an accuracy of 95 percent, with a recall of 0.88 and an F1-score of 0.85, indicating its robustness in identifying diabetic cases more effectively than previous studies using standard machine learning algorithms. This model contributes to the development of a reliable and scalable early detection system for diabetes, applicable in clinical decision support environments. Further refinement can be achieved by testing on larger and more diverse datasets or by implementing more efficient tuning techniques such as Bayesian optimization.</p>}, number={4}, journal={Jurnal Teknik Informatika (Jutif)}, author={Anggreini, Novita Lestari and Yuliana, Ade and Ramdan, Dadan Saepul and Al-Dayyeni, Wissam}, year={2025}, month={Aug.}, pages={1847–1860} }