slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
@article{Syahputra_Mazdadi_Budiman_Farmadi_Saputro_Rozaq_Sutaji_2025, place={Purwokerto}, title={Accurate Skin Tone Classification for Foundation Shade Matching using GLCM Features-K-Nearest Neighbor Algorithm}, volume={6}, url={https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/4723}, DOI={10.52436/1.jutif.2025.6.5.4723}, abstractNote={<p>Foundation shade matching remains a significant challenge in the beauty industry, particularly in Indonesia where consumers exhibit three distinct skin tone categories: ivory white, amber yellow, and tan. Manual foundation selection often results in mismatched shades, leading to customer dissatisfaction. This study presents a novel automated skin tone classification system combining Gray Level Co-Occurrence Matrix (GLCM) feature extraction with the K-Nearest Neighbor (KNN) algorithm. The GLCM method extracts four key texture features (contrast, homogeneity, energy, and entropy) from facial images, while KNN performs classification. A comprehensive dataset of 963 facial images was used, with 770 training and 193 test samples collected under controlled lighting conditions. After testing K values from 1 to 15, the optimal K=1 achieved 75.65% accuracy. Compared to baseline color histogram methods (60% accuracy), our GLCM-KNN approach demonstrates 15.65% improvement in classification performance. This research contributes to computer vision applications in beauty technology, enabling the development of mobile applications for virtual foundation try-on and personalized product recommendations. The findings have significant implications for the cosmetics industry, particularly for automated cosmetic shade matching systems and enhanced customer experience in online beauty retail. Further research is recommended to explore deep learning approaches and expand dataset diversity to improve accuracy.</p>}, number={5}, journal={Jurnal Teknik Informatika (Jutif)}, author={Syahputra, Muhammad Reza and Mazdadi, Muhammad Itqan and Budiman, Irwan and Farmadi, Andi and Saputro, Setyo Wahyu and Rozaq, Hasri Akbar Awal and Sutaji, Deni}, year={2025}, month={Oct.}, pages={3558–3571} }