slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
@article{Syofyan_Fitria_Munawir_2025, place={Purwokerto}, title={Spice Type Recognition Based on Shape and Color Features Using K-Nearest Neighbor and Fuzzy Methods}, volume={6}, url={https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/4456}, DOI={10.52436/1.jutif.2025.6.4.4456}, abstractNote={<p>Spices are natural ingredients that play an important role in everyday life, especially in traditional medicine. With a variety of shapes and colors, spices are often difficult to distinguish from one another. This research aims to classify spice types based on shape and color features using K-Nearest Neighbor (K-NN) and Fuzzy methods. This research will limit the recognition of spice types to 10 specific types of spices, namely ginger, turmeric, star anise, coriander, pepper, nutmeg, galangal, cinnamon, cloves, and candlenut. Spice type recognition will be done based on shape, color and texture features extracted using 300 training data images. The application of the K-NN method and Fuzzy logic allows flexible processing of color features (HSV). Fuzzy logic classifies spice color characteristics by generating a color score (color_score), which is then used to better interpret and distinguish spice colors for the classification process between test data and training data by the K-NN method. The test results show that from a total of 100 test data, the system successfully classifies spices with an accuracy rate of 77%.</p>}, number={4}, journal={Jurnal Teknik Informatika (Jutif)}, author={Syofyan, Sonia and Fitria, Liza and Munawir, Munawir}, year={2025}, month={Aug.}, pages={2297–2316} }