slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot88 rtp slot gacor slot online slot gacor maxwin slot bet 200 slot gacor slot maxwin SLOT THAILAND Slot Gacor Maxwin slot maxwin slot gacor slot Thailand slot gacor maxwin rekomendasi slot gacor jpterus66 slot maxwin slot gacor malam ini slot gacor SLOT ONLINE slot bet 200 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot maxwin Situs Slot Gacor slot gacor malam ini slot maxwin Situs Slot Gacor 888slot slot777 slot terbaru slot88 slot gacor malam ini slot online slot maxwin link slot gacor
@article{Nofie Prasetiyo_Baihaqi_Lestari_Cahyana_2024, place={Purwokerto}, title={CLASSIFICATION OF RICE PLANTS AFFECTED BY RATS USING THE SUPPORT VECTOR MACHINE (SVM) ALGORITHM}, volume={5}, url={https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/1949}, DOI={10.52436/1.jutif.2024.5.2.1949}, abstractNote={<p><em>In the era of Indonesia’s agrarian economy which is supported by the agricultural sector, rice plants play an important role in meeting food needs. However, pest attacks, especially field mice, can cause significant losses in rice production. To overcome this, this research proposes the use of the Support Vector Machine (SVM) algorithm with the Particle Swarm Optimization method in predicting rat pest attacks on rice plants. This research involves the process of collecting data from drone photos to identify affected agricultural land. The preprocessing stage involves changing colors from RGB to GRAY and zoom augmentation. Feature extraction is carried out using Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP). Testing was carried out involving the SVM/SVC model and performance evaluation was carried out using accuracy, precision and recall metrics. The preprocessing test results showed an increase in performance with training accuracy of 68.33%. However, the actual prediction on the original image results in a low accuracy of around 25%. However, image testing after involving the entire process, including preprocessing and model prediction, shows a higher level of accuracy, reaching around 90%.</em></p>}, number={2}, journal={Jurnal Teknik Informatika (Jutif)}, author={Nofie Prasetiyo and Baihaqi, Kiki Ahmad and Lestari, Santi Arum Puspita and Cahyana, Yana}, year={2024}, month={Apr.}, pages={637–643} }