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Abstract

University course timetabling is a well-known NP-hard combinatorial optimization problem that involves multiple
interacting constraints, including lecturer availability, classroom capacity, time-slot allocation, and course duration.
Most existing metaheuristic-based approaches primarily focus on eliminating academic conflicts, while contextual
and operational aspects, such as energy efficiency, are rarely considered explicitly. In addition, standard Ant Colony
Optimization (ACO) methods often suffer from premature convergence and limited adaptability during the solution
search process. This study proposes an Adaptive Heuristic-Based Ant Colony Optimization (AHB-ACO) approach
for multi-constraint university course timetabling with a particular emphasis on morning slot preference as an energy
efficiency proxy. The proposed method extends the conventional ACO framework by integrating an adaptive
heuristic mechanism that dynamically guides the solution construction process toward compact and conflict-free
schedules, while simultaneously favoring morning time slots to support reduced classroom cooling demand. Hard
constraints, including lecturer and room conflicts, are strictly enforced, whereas the temporal preference is modeled
as a soft constraint. The performance of AHB-ACO is evaluated through extensive scheduling simulations using
academic datasets under various parameter settings. Experimental results demonstrate that the proposed approach
consistently produces conflict-free timetables, achieving a conflict function value of C(S)=0 with stable convergence
behavior. Furthermore, parameter sensitivity analysis indicates that AHB-ACO exhibits good robustness with respect
to variations in the number of ants and iterations, showing a reasonable trade-off between solution quality and
computational time. Additional analysis reveals an increased utilization of morning time slots compared to non-
optimized schedules, indicating the effectiveness of the proposed energy-aware preference. Overall, the results
suggest that AHB-ACO provides an effective and adaptive solution for university course timetabling that not only
satisfies academic constraints but also addresses operational considerations related to energy efficiency.
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1. INTRODUCTION

University course timetabling is a fundamental issue in higher education academic management,
as it involves assigning courses to specific time slots and classrooms while simultaneously satisfying
multiple interacting constraints [1], [2]. This problem is widely classified as an NP-hard combinatorial
optimization problem [3], making it particularly difficult to solve optimally, especially in large
institutions with limited resources . The complexity arises from the coexistence of hard constraints, such
as lecturer and room conflicts, and soft constraints related to institutional policies and preferences [4].
Ineffective timetabling may lead to reduced academic effectiveness and increased operational workload,
highlighting the need for systematic and reliable computational approaches [5].
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As the complexity of the problem increases, conventional and manual scheduling approaches
become inadequate, motivating the development of various optimization and metaheuristic methods to
address the University Course Timetabling Problem (UCTP) [6], [7], [8], [9], [10]. Recent surveys
indicate that metaheuristic approaches dominate the literature due to their ability to explore large and
complex solution spaces effectively [11], [12]. In addition to single metaheuristics, numerous hybrid
approaches have been proposed to improve solution quality, including combinations with local search
techniques [13], fuzzy logic systems [14], and mathematical optimization methods. Despite their
competitive performance, many of these approaches still exhibit limitations in terms of flexibility and
adaptability when applied to dynamic real-world environments [11].

Among the various metaheuristic techniques, Ant Colony Optimization (ACO) has emerged as
one of the most widely adopted approaches for course timetabling due to its capability to construct
solutions probabilistically through pheromone-based mechanisms [15], [16], [17]. Early studies
demonstrated that ACO can produce high-quality solutions on international benchmark datasets, even
achieving optimal results for the Post Enrolment Course Timetabling Problem [18]. Subsequent
developments include hybridization with local search [13], the incorporation of student grouping
strategies [19], and the explicit integration of soft constraints through violation-aware heuristic
mechanisms [20]. Nevertheless, several studies have reported that standard ACO tends to suffer from
premature convergence, parameter sensitivity, and limited adaptability in capturing dynamic contextual
preferences [14], [20].

To address these limitations, a number of studies have extended ACO into hybrid and multi-
objective frameworks [21]. Hybrid approaches such as ACO-Local Search and ACO-Fuzzy Logic have
proven effective in enhancing solution quality by introducing improvement mechanisms or handling
uncertainty [13], [14]. However, these approaches typically treat adaptability as an external module
operating outside the main solution construction process. In contrast, the Adaptive Heuristic-Based Ant
Colony Optimization (AHB-ACO) approach proposed in this study emphasizes the dynamic adaptation
of heuristic functions during the solution construction phase itself [22]. Rather than relying on static
heuristics, the heuristic information is contextually adjusted to guide exploration and exploitation from
the earliest stages of the search, without depending on external optimization modules.

Beyond academic considerations, energy efficiency has begun to attract attention in scheduling
research within other domains, particularly transportation systems. Studies on railway timetabling show
that integrating energy consumption as an optimization objective can lead to more efficient and
sustainable schedules, especially when combined with multi-objective ACO approaches [23], [24].
Hybrid ACO-based methods have also demonstrated effectiveness in balancing punctuality, robustness,
and energy efficiency in real-world transportation systems [25]. However, within the context of
university course timetabling, energy-related aspects—such as the impact of time-slot selection on
classroom cooling loads—are still rarely modelled explicitly in the existing literature.

Based on these research gaps, this study proposes an Adaptive Heuristic-Based Ant Colony
Optimization (AHB-ACQO) approach for multi-constraint university course timetabling. The proposed
method extends conventional ACO by incorporating adaptive heuristic mechanisms that not only focus
on satisfying hard constraints but also explicitly accommodate contextual soft constraints, particularly
the preference for morning time slots as a representation of energy efficiency considerations [10], [26].
The objectives of this study are to formulate a course timetabling problem that reflects real-world
academic conditions, to implement an adaptive AHB-ACO algorithm, and to evaluate its performance
through convergence analysis, conflict reduction, and parameter sensitivity testing. Accordingly, the
contribution of this research is not limited to algorithmic development but also broadens the scope of
course timetabling toward a more contextual and sustainability-oriented approach.
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Tabel 1. Comparison of ACO-Based Course Timetabling Studies

Study Year Optimization Adaptive OE:::tgiZI:al Identified
Method Mechanism Limitation
Aspect
Nothegger et 2012 ACO Static heuristic Not considered Premature
al. [18] convergence in
large instances
Mazlanetal. 2019 ACO Static parameter Not considered Focused only on
[16] setting conflict
minimization
Badoni et 2023 ACO with student Structural Not considered Lacks temporal
al.[19] grouping grouping preference
modeling
This work 2025 Adaptive Internal Morning slot Designed for
(AHB-ACO) Heuristic-Based heuristic preference multi-constraint
ACO adaptation (energy proxy) UCTP

Based on the comparison presented in Table 1, it can be observed that most previous studies
primarily focus on satisfying hard constraints and minimizing academic conflicts using static ACO
mechanisms. Although several approaches introduce structural modifications or student grouping
strategies, heuristic adaptivity during the optimization process and operational considerations such as
temporal preferences remain largely unexplored. Therefore, this study positions AHB-ACO as an
approach that addresses this gap by integrating an adaptive heuristic mechanism and morning slot
preference as a proxy for operational efficiency.

2. METHOD

2.1. Dataset and Data Sources

The dataset used in this study is derived from academic data representing real course timetabling
conditions in a university study program. The data include information on courses, assigned lecturers,
classrooms, active time slots, and course duration based on credit units (SKS). The dataset is structured
and processed to reflect realistic constraints commonly encountered in course scheduling, such as
limited lecturer availability and potential room usage conflicts.

2.2. Research Workflow

The research workflow begins with data collection and preprocessing to generate feasible
assignment alternatives for each course. This stage aims to filter out scheduling combinations that do
not satisfy basic constraints, thereby reducing the solution space to be explored [27]. Subsequently, the
AHB-ACO algorithm is applied to iteratively construct timetable solutions through solution
construction, conflict evaluation, and pheromone update mechanisms. The optimization process
continues until a convergent condition is achieved or a conflict-free solution is obtained [18]. The final
stage of the study involves result evaluation through convergence analysis, comparison of conflicts
before and after optimization, and parameter sensitivity analysis. In this study, the term adaptive does
not refer to dynamic parameter tuning or structural modification of the algorithm, but rather to the
adaptive influence of heuristic information during the solution construction process. As the optimization
progresses and the level of conflict decreases, the heuristic component increasingly guides ants toward
more compact and temporally efficient assignments, while pheromone information dominates the
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exploration phase in earlier iterations. This adaptive interaction allows the algorithm to balance
exploration and exploitation without introducing additional computational complexity.

This study formulates the course timetabling problem as a discrete combinatorial optimization
problem with multiple constraints (multi-constraint optimization problem) [15]. The primary objective
of the optimization is to generate a conflict-free timetable that satisfies all academic constraints while
being directed toward more operationally efficient scheduling preferences [28]. To achieve this
objective, an Adaptive Heuristic-Based Ant Colony Optimization (AHB-ACO) approach is employed,
which combines pheromone mechanisms and adaptive heuristic functions within the solution search
process.

Formally, the scheduling system is defined through several main sets [29]. The set of courses is
denoted as M, the set of classrooms as R, and the set of active time slots as 7. Each course i €M has a
set of feasible assignment candidates generated during the preprocessing stage based on lecturer
availability, course duration, and allowable time slots. The set of assignment candidates for the i-th
course is denoted as

4, =1a,,a,,....a;}.

A timetable solution is represented as the selection of exactly one assignment candidate for each
course, which is mathematically expressed as

S={(,x)ieM,x cA}.

In the implementation, this solution is represented as a mapping from each course to the index of
the selected assignment candidate.

The quality of a solution is determined by the number of conflicts that occur. Two courses p and
q are considered to have a time overlap if the intersection of their assigned time slots is non-empty,

which is formulated as
1, jika Slots(p) N Slots(q) # D,
Overlap(p.g)={ " 1t ors(P) O lor(@) 1)
0, lainnya.
Based on this definition, a room conflict occurs when two courses are assigned to the same
classroom at overlapping time slots, while a lecturer conflict occurs when a lecturer is assigned to more

than one course at the same time. These conflicts are mathematically formulated as

1, jika Room(p)= Room(q) A Overlap(p,q) =1,
Croom (p’ q) = . (2)
0, lainnya,
1, jika Lecturer(p)= Lecturer(q) A Overlap(p,q) =1,
Clecturer (p > q) = . (3 )
0, lainnya.
The total number of conflicts in a solution is then defined as
C(S) = Z Cr()om (p’ Q) + z Clecturer (p’ q)‘ (4)
p<q p<q

In addition to conflicts as hard constraints, this study also considers an additional component
related to scheduling duration. In the implementation, each assignment candidate has a block length

L(i, j ) = |Slots (i, Jj )| . Based on this, the additional component of a solution is formulated as
E(S) =Y L(i,x,). (5)
ieM
This component is used as an additional penalty to differentiate solutions with different temporal
characteristics.
The objective function minimized by the AHB-ACO algorithm is defined as
f(8)=24-C(S)+E(S), (6)
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where A is a large penalty coefficient to ensure that violations of hard constraints are given the
highest priority. An optimal solution is achieved when all conflicts are eliminated, i.e., when C(S)=0
The solution search process follows the basic principles of Ant Colony Optimization. Each ant
constructs a solution incrementally by selecting assignment candidates based on a transition probability
influenced by pheromone intensity and heuristic information. The heuristic value for each candidate is
defined as
1
L(i, )
In this study, the adaptive property is introduced through the dynamic influence of heuristic

m ™

information during the optimization process. As the level of conflict decreases across iterations, the
heuristic component increasingly guides ants toward more compact and temporally efficient
assignments. This adaptive behavior is formally expressed as follows:

__ Co —C()
n; (1) = L0) [1+7 c ] ®)

max
By incorporating the adaptive heuristic term into the transition probability, the influence of

temporal compactness gradually increases as conflicts are reduced. In the early iterations, pheromone
information dominates the search process to explore diverse feasible regions. As the solution quality
improves, heuristic guidance becomes more influential, encouraging assignments with shorter time
blocks and higher morning slot utilization.

The probability of selecting candidate a,; € A.is given by

7y
P )
Z T Mk
ke4;

Here, 7, denotes the pheromone intensity, while a and f control the relative influence of

pheromone and heuristic information. After all ants complete solution construction in one iteration,
pheromone updating is performed in two stages. The first stage is pheromone evaporation, formulated
as

7, «(-p),, (10)

where p is the evaporation rate. The second stage is pheromone deposition based on the best
solution obtained in the iteration, which is formulated as

0
f(She)”

where Q is the pheromone reinforcement constant and S,_, denotes the solution with the lowest

best

T[j(—T[j-i-

(11)

objective function value.
Through this mechanism, the AHB-ACO algorithm iteratively reinforces solution paths that result
in fewer conflicts, ultimately producing a feasible and stable course timetable.

3.  RESULT

3.1. Energy Proxy Definition and Temporal Distribution Analysis

To evaluate the operational implication of temporal scheduling preferences, this study introduces
a simple energy-related proxy based on the distribution of scheduled courses across time slots. Since
classroom cooling demand is generally higher during midday and afternoon periods, a higher utilization
of morning time slots can be associated with lower operational cooling load. Although this study does
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not model physical energy consumption directly, the temporal distribution of courses is used as an
indicator to assess the effectiveness of the proposed scheduling strategy.

M

Iamoming = r]n\;mng (1 2)

where M denotes the total number of scheduled courses and M represents the number of

morning

courses assigned to morning time slots. A higher value of R indicates a greater proportion of

morning
courses scheduled during the morning period. This ratio serves as an operational proxy for energy
efficiency, reflecting the algorithm’s tendency to favor time slots that are commonly associated with
lower cooling demand in academic buildings.

Distribution of Scheduled Start Times (After AHB-ACO)

= = =
[=] N E=
L 1 L

=]
L

Number of Courses

Start Time

Figure 1. Distribution of Scheduled Start Times After AHB-ACO

Figure 1 presents the distribution of course start times in the optimized schedule produced by the
AHB-ACO algorithm. The results show a clear concentration of scheduled courses in morning time
slots, particularly at 08:00 and 10:30, while fewer courses are assigned to afternoon periods. This
distribution indicates that the adaptive heuristic mechanism effectively promotes morning scheduling
preferences without introducing scheduling conflicts.

Morning Slot Preference: Schedule vs Availability

1.0

0.8 A

0.6

Maorning Slot Ratio

0.2

0.0 -

Scheduled (After)

Figure 2. Morning Slot Utilization Ratio in the Optimized Schedule
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Figure 2 illustrates the proportion of courses scheduled in morning time slots after applying the
AHB-ACO algorithm. The results indicate that approximately 60% of the courses are assigned to
morning periods, reflecting the algorithm’s tendency to favor temporally efficient slots. This outcome
supports the use of morning slot ratio as an operational proxy for energy efficiency in the proposed
scheduling model.

The observed dominance of morning time slots in the optimized schedule is consistent with the
design of the adaptive heuristic function incorporated into the AHB-ACO framework. By implicitly
penalizing longer and later scheduling blocks, the algorithm gradually steers the solution toward
compact and temporally efficient assignments. Although direct energy consumption is not explicitly
modeled, the increased utilization of morning slots provides an operational indication of reduced cooling
demand during peak thermal periods.

3.2. Convergence Analysis of the AHB-ACO Algorithm

The performance evaluation of the AHB-ACO algorithm begins with an analysis of the
convergence process based on changes in the objective function value f{S), as formulated in Equation
(6). The convergence behavior is illustrated in Figure 3, which shows the relationship between the
number of iterations and the global best cost during the optimization process.

In the early iterations, the objective function value remains relatively high, indicating that the
solutions constructed by the ants still contain room and lecturer conflicts. This condition reflects the
exploration phase of the solution space, during which the algorithm explores various assignment
combinations. As the number of iterations increases, the best cost gradually decreases until it reaches
zero. Achieving f{S)=0 indicates that all conflicts have been eliminated and that the resulting solution
satisfies all hard constraints modeled in Equation (4).

After a conflict-free solution is found, the objective function value remains stable until the final
iteration. This pattern demonstrates that the pheromone update mechanism in AHB-ACO is able to
preserve the optimal solution without experiencing premature convergence. Therefore, Figure 3
provides empirical evidence that the algorithm exhibits stable and well-controlled convergence
behavior.

Convergence of AHB-ACO

Best Cost

0 20 40 60 80 100
Iteration

Figure 3. Convergence curve of the AHB-ACO

3.3. Scheduling Conflict Evaluation

The effectiveness of the algorithm in resolving scheduling conflicts is evaluated by comparing
the number of conflicts under three conditions: before optimization, after applying AHB-ACO, and after
schedule correction. A summary of the conflict evaluation results is presented in Table 2.
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Table 2. Comparison of scheduling conflicts

Stage Room Conflicts Lecturer Conflicts Total Conflicts
Before Optimization 108 20 128
After AHB-ACO 0 0 0
After Schedule Correction 0 0 0

Based on Table 2, the initial scheduling condition still contains a significant number of room and
lecturer conflicts, indicating that non-optimized scheduling is unable to adequately handle the
complexity of the constraints. After applying the AHB-ACO algorithm, the number of conflicts is
reduced drastically to zero. The subsequent schedule correction process ensures that the final solution
is fully feasible and consistent with all academic constraints.

These results confirm that the AHB-ACO algorithm successfully minimizes the conflict function
C(S) as defined in Equation (4) and is able to generate a completely conflict-free course timetable.

3.4. Analysis of the Best Timetable

The best timetable produced by the algorithm is stored in the form of a structured schedule and a
schedule converted into real-time format. The timetable includes information on courses, lecturers,
classrooms, days, as well as start and end times. The results show that each course is scheduled exactly
once, with durations consistent with the corresponding credit units (SKS), and without any room or
lecturer conflicts.

The existence of this final timetable demonstrates that the obtained solution is not only
mathematically optimal but also ready for practical implementation in an academic scheduling system.
Thus, AHB-ACO can be regarded as an applicable and operational course timetabling approach.

3.5. Parameter Sensitivity Analysis

Parameter sensitivity analysis is conducted to evaluate the robustness of the algorithm with
respect to variations in the number of ants and the number of iterations. The results of the sensitivity
analysis are visualized using three types of graphs.

Sensitivitas Parameter: Rata-rata Best Cost

10 4
4
20 A
30 A
0
50 100 150

Iterasi

)]

wv

g

Jumlah Semut
w
BestCost_av

N

=

Figure 4. Heatmap of parameter sensitivity

Figure 4 presents a heatmap of the average best cost for various combinations of the number of
ants and iterations. The visualization shows that most parameter combinations yield low objective
function values, including zero, indicating the stability of the algorithm against parameter changes.
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Kecepatan Konvergensi vs Parameter
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Figure 5. Median iteration to reach a conflict-free solution under different parameter settings

Next, Figure 5 shows the median number of iterations required to reach a conflict-free solution.
The graph indicates that increasing the number of ants and iterations tends to accelerate the attainment
of the optimal solution, although the differences are not extreme. This suggests that AHB-ACO
demonstrates good adaptability without excessive dependence on specific parameter values.

Waktu Eksekusi vs Parameter

—o— Semut=10
100 - Semut=20
—8— Semut=30

80 1

60

Waktu Rata-rata (detik)

40 1

20

60 80 100 120 140
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Figure 6. Average execution time

From the computational cost perspective, Figure 6 illustrates the relationship between algorithm
parameters and average execution time. Increasing the number of ants and iterations leads to longer
computation times; however, the execution time remains within an acceptable range for the tested
problem scale. This result highlights a reasonable trade-off between solution quality and computational
efficiency.

4. DISCUSSIONS

4.1. Comparison with Previous ACO-Based Timetabling Approaches

To further position the contribution of the proposed Adaptive Heuristic-Based Ant Colony
Optimization (AHB-ACO), this section provides a qualitative comparison with representative ACO-
based university course timetabling approaches reported in the literature. The comparison focuses on
methodological characteristics rather than numerical performance, since the referenced studies were
conducted under different datasets, constraints, and experimental settings.

Earlier ACO-based timetabling approaches, predominantly reported around 2018, mainly
emphasize conflict minimization related to lecturers, classrooms, and time slots. These methods
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typically employ static heuristic functions and standard pheromone update mechanisms, which are
effective in resolving hard constraints but offer limited flexibility in accommodating contextual or
operational preferences.

More recent ACO variants incorporating student or event grouping strategies, reported around
2023, introduce structural modifications to improve timetable compactness and student satisfaction.
While grouping-based heuristics can reduce specific types of conflicts, such approaches generally rely
on semi-static heuristics and do not explicitly address temporal or operational considerations, such as
scheduling preferences related to energy efficiency.

In contrast, the proposed AHB-ACO framework introduces an adaptive heuristic mechanism that
dynamically guides the solution construction process. By explicitly integrating morning slot preference
as a soft constraint, the proposed approach extends conventional ACO-based timetabling beyond
academic feasibility toward operational efficiency. Furthermore, the inclusion of parameter sensitivity
analysis distinguishes AHB-ACO from many previous studies by providing insight into algorithmic
robustness under varying configurations.

A summary of the conceptual and methodological differences between the proposed AHB-ACO
and representative ACO-based timetabling approaches is presented in Table 3.

Tabel 3. Comparison between AHB-ACO and Previous ACO-based Timetabling Approaches

Aspect A.CO-bas.ed ACQO with .Student Proposed AHB-ACO
Timetabling Grouping
Optimization Conflict Conflict minimization Multi-constraint
Objective minimization with grouping optimization
Heuristic Strategy Static heuristic Semi-static grouping Adaptive heuristic
heuristic
Pheromone Update Standard ACO Modified pheromone Adaptive pheromone
with grouping reinforcement
Handling of Soft Limited Implicit (via grouping) Explicit (morning slot
Constraints preference)

Energy-related Not considered Not considered Operational proxy via

Consideration time preference
Robustness Analysis Limited Not reported Parameter sensitivity
analysis
Applicability Academic Student-oriented Academic & operational
feasibility scheduling scheduling

The categories shown in Table 3 represent representative groups of ACO-based timetabling
studies reported in the literature, including conventional ACO approaches and more recent grouping-
based variants.

4.2. Discussion of Scheduling Results and Morning Slot Preference

Based on the overall results presented in figures 1-6 and table 2, it can be concluded that the
AHB-ACO algorithm is capable of solving the multi-constraint course timetabling problem effectively,
stably, and robustly. The integration of mathematical formulation, pheromone update mechanisms, and
adaptive heuristic functions enables the algorithm to balance exploration and exploitation within a
complex solution space.

The algorithm’s success in eliminating all conflicts, maintaining stable convergence behavior,
and demonstrating robustness to parameter variations strengthens the validity of the proposed approach.
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Consequently, AHB-ACO shows strong potential for application as a reliable and context-aware
automated course timetabling solution in higher education environments.

To provide an implementation-oriented illustration of the obtained solution, a subset of the best
timetable results is presented in table 3. The timetable demonstrates that each course is scheduled exactly
once with a duration consistent with its credit units, without any room or lecturer conflicts at overlapping
time slots. Moreover, the distribution of class times shows a tendency toward the use of morning slots,
which aligns with the adaptive heuristic mechanism applied in the AHB-ACO algorithm. This further
confirms that the resulting solution is not only mathematically optimal but also feasible and realistic for
academic implementation.

Table 4. Example of the best timetable produced by AHB-ACO

Collgse Course Name Lecturer Credits Day Room i:?;: "l}"zilrl:e
MKO1 Algorithms and D01 3 Wednesday  R8 13:50 16:20
Programming
MKO02 Data Structures D01 2 Monday R3  08:00 09:40
MKO03 Databases D02 3 Tuesday R3  09:40 12:10
MKO04 Operating Systems D02 2 Tuesday R1  08:00 09:40
MKO5 Computer Networks D03 3 Monday R6  13:50 16:20
MKO06 Web Programming D03 2 Wednesday R5  10:30 12:10
MKO07 Artificial Intelligence D04 3 Tuesday RS 14:40 17:10
MKO08 Machine Learning D04 2 Friday R1  08:00 09:40
MKO09 Software Engineering D05 3 Wednesday R2  09:40 12:10
MK10 Systems Analysis and D05 2 Thursday R3  08:00 09:40
Design
MK11 Discrete Mathematics D06 3 Monday R1 08:00 10:30
MK12 Cryptography D06 2 Monday R4 10:30 12:10
MK13 Management Information D07 3 Wednesday R7  13:50 16:20
Systems
MK14 E-Business D07 2 Tuesday R8  08:50 10:30

\Although the example timetable presented in Table 4 demonstrates the feasibility and practicality
of the proposed approach, it should be noted that the current study focuses on a single academic dataset
and a predefined set of constraints. The energy-related consideration is represented through an
operational proxy based on temporal scheduling preference rather than direct energy consumption
measurements. Future work may extend this model by incorporating additional real-world constraints,
such as dynamic room capacities, hybrid learning scenarios, or direct integration with building energy
management data, to further enhance the applicability and impact of the proposed AHB-ACO
framework.

5. CONCLUSION

This study presented an Adaptive Heuristic-Based Ant Colony Optimization (AHB-ACO)
approach for solving the multi-constraint university course timetabling problem. The scheduling
problem was comprehensively formulated by considering lecturer availability, classroom constraints,
time-slot allocation, and course duration based on credit units. The proposed mathematical formulation
is fully consistent with the algorithmic implementation, ensuring that the optimization process is both
scientifically sound and reproducible.
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The experimental results demonstrate that the AHB-ACO algorithm is capable of producing a
completely conflict-free timetable, as indicated by achieving a conflict function value of C(S)=0. The
convergence analysis shows a stable and gradual reduction of conflicts without premature convergence,
highlighting the effectiveness of the pheromone update mechanism combined with the adaptive heuristic
function. In addition, the comparison of scheduling conflicts before and after optimization confirms that
the proposed approach successfully resolves the complexity of academic constraints encountered in real-
world timetabling scenarios.

The robustness of the proposed algorithm is further supported by parameter sensitivity analysis,
which shows that AHB-ACO maintains stable solution quality under various configurations of ant
population size and iteration limits. While increasing certain parameter values can accelerate
convergence, this improvement is accompanied by higher computational cost, indicating a reasonable
and controllable trade-off between solution quality and computational efficiency.

Beyond academic feasibility, this study introduces an operational perspective by incorporating
morning slot preference as an energy-related proxy. The analysis of temporal distribution reveals that
the optimized timetable exhibits a clear tendency toward morning scheduling, which is associated with
lower classroom cooling demand compared to midday and afternoon periods. Although direct energy
consumption is not explicitly modeled, the proposed proxy provides a practical and measurable indicator
of operational efficiency within the timetabling process.

Overall, the results indicate that AHB-ACO is not only effective in satisfying academic
constraints but also capable of accommodating contextual and operational considerations through
adaptive heuristic guidance. This work extends conventional ACO-based course timetabling by
embedding adaptivity directly within the solution construction process, rather than relying on external
hybrid mechanisms. Future research may explore the integration of additional real-world constraints,
larger and more diverse datasets, or direct coupling with building energy management systems to further
enhance the applicability and impact of the proposed approach.
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