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Abstract

Cybersecurity is a critical priority in the ever-evolving digital era, particularly with the emergence of increasingly
sophisticated and difficult to detect malware. Traditional detection techniques, such as static and dynamic analysis,
are often limited in their ability to recognize novel and concealed malware that poses a threat to security systems.
Consequently, this study investigates the potential of Transformer models for network traffic classification to detect
anomalies associated with malware activity. The proposed approach emphasizes retrospective analysis, wherein the
model is evaluated across various platforms and datasets encompassing different virus variants. By incorporating
diverse types of malwares into the training data, the model is better equipped to identify a range of attack patterns.
The Transformer model employed in this study was trained over 30 epochs. The evaluation results demonstrated
excellent performance, achieving a training accuracy of 99.16% and a test accuracy of 99.32%. The very low average
loss value of 0.01 indicates that the model effectively reduces classification errors. These findings underscore the
potential of Transformer models as an efficient method for malware detection, offering greater accuracy and speed
compared to traditional approaches. The results further reveal that the Transformer exhibits strong capabilities in
handling sequential data, which is highly relevant to the dynamic nature of network traffic. For future research, it is
recommended to explore the scalability of this method in larger network environments and assess its effectiveness in
real-time detection scenarios. Expanding its application could establish the Transformer model as a more reliable and
efficient solution for identifying evolving malware threats, thereby enhancing overall network security. This approach
presents a robust framework for protecting systems and data against increasingly complex cyber threats.
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1. INTRODUCTION

Cybersecurity has become one of the most critical challenges in the digital era, where the
continuous expansion of interconnected systems significantly increases the surface of potential
cyberattacks [1]. Among various threats, malware remains particularly prominent due to its ability to
compromise systems, exfiltrate sensitive information, and disrupt essential services [2], [3]. The
increasing sophistication of malware, including the use of obfuscation and polymorphic techniques,
poses considerable challenges to detection mechanisms that rely on traditional approaches, particularly
when facing new, hidden, and constantly changing malware threats [4].

Conventional methods, such as signature-based and heuristic-based detection, are efficient for
known threats but fail to recognize zero-day or obfuscated malware variants [3], [5], [6]. Similarly,
dynamic analysis, which observes malware behavior in sandboxed environments, provides deeper
insight but is resource-intensive and can be circumvented through anti-analysis strategies [7]. Hybrid
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techniques have attempted to combine the advantages of static and dynamic analysis; however, these
methods face scalability and adaptability issues when applied in heterogeneous environments [8], [9].

To overcome these limitations, the use of deep learning has been extensively explored in malware
detection. These approaches leverage statistical learning and representation learning to extract complex
patterns from malware binaries, system calls, and network traffic [10], [11], [12]. Although CNN and
RNN architectures have achieved promising results, they struggle to capture long-term dependencies
and often generalize poorly across datasets with high heterogeneity [13], [14]. Deep learning offers
superior feature extraction, scalability, and detection accuracy.

In recent years, transformer-based architectures have emerged as a promising alternative,
demonstrating superior capability in modelling sequential and contextual data through self-attention
mechanisms [15], [16]. Their ability to capture both local and global dependencies has been effectively
applied to tasks such as semantic-based API sequence detection and binary malware classification [17],
[18]. Despite these advancements, existing Transformer-based studies remain limited by narrow
evaluation settings, often focusing on single-platform or real-time detection scenarios, which restricts
their applicability in retrospective, multiplatform contexts [17], [19].

Motivated by these limitations, this research introduces a Transformer-based model for malware
anomaly detection in network traffic classification. In contrast to prior work emphasizing real-time
analysis, the proposed approach conducts retrospective evaluations using multiplatform datasets,
enabling a more robust assessment of model generalization. The contributions of this study are
summarized as follows: (a). Development of a Transformer-based framework specifically designed for
malware anomaly detection in heterogeneous network traffic. (b). Comprehensive evaluation of the
model on multiplatform datasets to ensure improved robustness and generalization. (c). Empirical
demonstration of superior performance achieving accuracy with low loss compared to state-of-the-art
deep learning methods.

Through these contributions, this research provides a more reliable model for malware detection
and contributes to strengthening network security in increasingly complex digital ecosystems.

2.  RELATED WORK

Malware detection techniques have gradually evolved from traditional approaches to advanced
Al-driven methods [20]. Early static analysis relied heavily on predefined signatures and opcode
patterns for classification [21]. While computationally efficient, these approaches often fail when
confronted with polymorphic malware or sophisticated obfuscation strategies that can disguise
malicious intent [22]. Dynamic analysis, which executes programs within sandbox environments to
observe runtime behavior, provides deeper insights into malicious activities but remains resource-
intensive, time-consuming, and vulnerable to carefully designed evasion techniques [2]. Hybrid methods
were subsequently introduced to combine static and dynamic features, offering partial improvements;
however, challenges of scalability, adaptability, and robustness in heterogeneous and real-world
environments continue to persist [23], thereby reinforcing the necessity of more intelligent, automated,
and generalizable solutions.

Machine learning introduced new opportunities by leveraging statistical modelling and pattern
recognition techniques for anomaly detection [24]. Classical models such as support vector machines,
decision trees, and random forests have been successfully applied to malware classification tasks [25].
Despite their advantages, these models depend heavily on handcrafted features and domain-specific
engineering, thereby limiting scalability and adaptability across diverse datasets and attack scenarios. To
address these shortcomings, deep learning models such as CNNs and RNNs emerged as more powerful
alternatives. CNN-based architectures demonstrated strong performance in malware traffic classification
[26], while CNN-LSTM hybrids effectively captured sequential behavior and temporal dependencies in
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malicious activities [27]. Nevertheless, such architectures frequently exhibit difficulties in generalization,
particularly when exposed to complex, heterogeneous, and evolving traffic environments [14], which
justifies the transition toward more advanced architectures like Transformers that can capture both local
and global dependencies for improved robustness and accuracy.

More recently, transformer-based architectures have been widely adopted in cybersecurity
because they can capture both local and global dependencies using self-attention. For example,
SeMalBERT applied semantic representations of API sequences and achieved 98.81% accuracy [17],
while hybrid CNN-Transformer models reached 97.43% for binary malware image classification [28].
Although these results are promising, most studies still rely on limited datasets or single-platform
experiments, which makes it difficult to apply them in real-world scenarios. Therefore, challenges
remain in retrospective and multiplatform analysis, where network traffic is more diverse, malware
behaviors evolve rapidly, and obfuscation techniques are common. This situation highlights the need
for stronger and more generalizable Transformer-based solutions that can deliver consistent detection
performance across different environments.

3.  RESULT

This research uses the transformer approach to perform network traffic classification in detecting
malware activity. The selection of transformer is based on its superior ability to capture temporal and
spatial relationships from network data, which is crucial for detecting suspicious patterns that may not
be detected by other detection methods. Transformer method is also effective in handling sequential
data such as network traffic, which is particularly relevant in this context [11].

With its ability to process lengthy and complex data sequences, transformer can capture hidden
patterns over extended periods, which is very useful in detecting malware with repetitive and hidden
behavior. In addition, with its self-attention capability, transformer can give more weight to certain parts
of the data that are considered important, improving detection accuracy and minimizing classification
errors. This approach significantly contributes to developing more advanced malware detection systems
that can identify previously difficult to detect threats using traditional methods. This approach aims to
significantly contribute to the development of more advanced malware detection systems that can
identify threats previously difficult to detect using traditional methods. The flow of methods carried out
in this research is represented in Figure 1.
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Figure 1. Research Methodology

The first stage is preprocessing. The network traffic dataset is taken from a multiplatform that
provides network traffic data from various protocols. This process includes various stages of pre-
processing, where the data is cleaned from noise and normalized to improve quality. At this stage,
feature extraction is also done to facilitate data processing at a later stage. The second is followed by a
Transformer Implementation to detect patterns in sequential network traffic data. Transformer is
commonly used in text classification but is adapted for network data. The model is trained using the
processed dataset to recognize anomalous patterns that indicate malware activity [12].
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Thirdly, model modification and parameter optimization of the Transformer architecture using
fine-tuning and hyperparameter tuning approaches, especially in the hidden layers, are performed to
adapt the model to non-text data such as network traffic. In addition, optimization is performed using
grid search techniques to find the best parameters, such as learning rate, batch size, and number of
epochs. An attention mechanism is used to priorities relevant data in the detection process [9]. Fourth,
a model evaluation is conducted to see the level of accuracy. The purpose of this evaluation is to
determine the extent to which the model can classify the data correctly based on the dataset used.
Accuracy evaluation aims not only to assess the performance of the model, but also to detect potential
overfitting or underfitting, which is a condition where the model is too specific or less able to capture
the real data pattern. In addition, by measuring accuracy, it is possible to compare the model's
performance against other models or methods and determine whether further adjustments to the
hyperparameters or model architecture are needed to improve the quality of predictions. Fifth,
visualization and feature analysis using the confusion matrix and line plot curve were conducted to show
the performance of the model in detecting malware. In addition, feature analysis was conducted to
identify the most significant features in detecting malware activity.

All steps in this research were conducted systematically and sequentially to ensure optimal results.
Each step was carefully designed to improve the accuracy of Malware activity identification.
Optimization of the model through performance evaluation using metrics such as accuracy and average
loss as well as the confusion matrix helps to improve the overall detection performance. It is expected
that this research will produce a detection system that is not only accurate but also reliable in various
scenarios and in-depth feature analysis to ensure that the built model can produce consistent and high-
quality results.

4. DISCUSSIONS

This section presents and discusses the experimental results obtained from the proposed
Transformer-based approach for malware anomaly detection in network traffic classification. The
discussion is structured into several parts to provide a clear and comprehensive understanding of the
findings. First, the dataset characteristics and preprocessing steps are described to establish the
foundation of the study. Next, the model training and optimization process is explained, followed by the
evaluation of performance using accuracy, loss, and confusion matrix analysis. To ensure a more
rigorous assessment, additional metrics such as precision, recall, F1-score, false positive rate (FPR),
false negative rate (FNR), and AUC-ROC are included. Furthermore, ROC curve analysis is conducted
to illustrate the discriminatory power of the model. The results are then compared with state-of-the-art
methods, and key implications are discussed to highlight the practical significance of the research.

4.1 Dataset and Preprocessing

The experimental evaluation employed the USTC-TFC2016 dataset, which provides network
traffic data representing both benign and malicious activities. The dataset consists of more than 5.9
million rows, including 2.87 million benign and 3.06 million malicious traffic samples, covering diverse
applications such as Gmail, Skype, FTP, and various malware families. Each record contains attributes
including time, source, destination, protocol, packet length, and descriptive information. To ensure high-
quality input, preprocessing was applied, including noise removal, UTF-8 encoding, and normalization.
Protocol-based filtering was performed to exclude irrelevant traffic such as ARP and DHCP packets,
focusing only on meaningful communication patterns. The dataset was split into 70% training and 30%
testing sets, ensuring representativeness for both classes. Tokenization was applied using a pre-trained
Transformer tokenizer, and categorical features were encoded into numerical formats for model
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compatibility. Information regarding the platform or type of application recorded in this dataset is
presented in Table 1.

This preprocessing stage also includes encoding using UTF-8 format to ensure the file can be read
properly. The application of UTF-8 encoding plays an important role in maintaining the accuracy of
reading the characters contained in the file, especially if the file contains special characters or complex
text formats. The use of appropriate encoding is necessary to prevent data misinterpretation, so that the
analysis process can take place optimally with more accurate and valid results.

Table 1. Dataset USTC-TFC2016

Benign Malicious
App Type Size (MB) App Type Size (MB)
Facetime 2.40 Tinba 2.55
Skype 4.22 Zeus 13.40
BitTorrent 7.33 Shifu 57.90
Gmail 9.05 Neris 90.1
Outlook 11.10 Cridex 94.7
WorldOfWarcraft 14.9 Nsisay 281
MySQL 22.3 Geodo 28.8
FTP 60.2 Miuref 16.3
SMB 1206 Virut 109
Weibo 1618 Htbot 83.6

This is followed by feature extraction, which retains rows that have relevant ‘Protocol’ column
values, and removes entries related to the ‘ARP’ and ‘DHCP’ protocols. This step aims to filter out
unnecessary data so that the analysis is more focused on the appropriate network traffic. Each row in
this dataset contains information in the form of numerical and categorical features that describe the
characteristics of network communication. Structurally, this dataset has 6 main attributes or columns
that serve as input features and labels, as shown in Table 2.

Table 2. Columns of Dataset

Column Non-Null Count Data Type
Time 1477536 non-nulls float64
Source 1477531 non-nulls object
Destination 1477531 non-nulls object
Protocol 1477536 non-nulls object
Length 1477536 non-nulls int64
Info 1477491 non-nulls object

4.2 Model Training and Optimization

The Transformer model was fine-tuned for 30 epochs using the Adam optimizer with a learning
rate of 2e-5. Hyperparameter tuning was conducted via grid search to determine optimal settings for
batch size, hidden layers, and attention heads. The training process leveraged self-attention mechanisms
to emphasize critical dependencies within network flows, allowing the model to capture anomalous
behaviors across long sequences of traffic. During training, the model consistently demonstrated strong
convergence, with average loss values decreasing to 0.01, indicating minimal error between predicted
and actual labels. The stability of the loss function across epochs suggests the model avoided issues of
overfitting or underfitting, which often hinder deep learning approaches in imbalanced datasets.

This implementation process of the transformer model is presented in the following pseudocode
in Table III.
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Table 3. Pseudocode Preprocessing and Data Loader
Algorithm 1: Preprocessing and Data Loader

Input:
A collection of raw text samples: TextData
Corresponding categorical labels: Labels
Output:
Train and test data loaders for input tokens, attention masks, and encoded labels
1: Load a pre-trained Transformer tokenizer (base-uncased)
2: Tokenize TextData using the tokenizer with the following parameters:
- Enable padding and truncation for sequence length
- Return tokenized outputs as tensors
3: Extract tokenized inputs:
- InputIDs « tokenized input sequences
- AttentionMasks «— associated attention masks
4: Encode Labels into numerical format using a label encoding scheme
5: Split InputIDs, AttentionMasks, and Encoded Labels into training and testing
subsets:
- Use a 70% training and 30% testing ratio
6: Convert all subsets (inputs, masks, labels) into tensor-compatible formats
7: Construct Datal.oaders for both training and testing data:
- Set batch size to 16
- Enable shuffling for training Datal.oader to ensure randomization
Return:
TrainDataLoader, TestDataLoader

The Transformer implementation process is based-uncased which does not distinguish between
capital and non-capital letters and has been pretrained with a large language corpus. In this process, the
input text is tokenized using Tokenizer, which breaks the text into tokens and converts the labels into
numerical values. This tokenization process is performed with the batch encode plus method which
includes padding and truncation to adjust the input length to fit the Transformer specification. The input
data is then divided into train and test sets with a presentation ratio of 70% versus 30% and then
converted into a tensor to facilitate training using PyTorch.

4.3 Model Evaluation

The performance of the proposed model was assessed using accuracy, precision, recall, F1-score,
and confusion matrix analysis. The accuracy test process aims to measure the model's ability to predict
the correct label based on the test data (test set). In this research, the model is trained to classify the
input text by predicting the appropriate label. After training, the model is tested on unseen data (test set)
to measure its performance. The accuracy measurement process is done by calculating the ratio between
the number of correct predictions and the total number of test data. Each prediction from the model is
compared to the actual label, and the percentage of correct predictions is calculated as accuracy.
Accuracy is one of the most used evaluation metrics to measure the performance of classification
models.

The accuracy formula is represented in equations (1) and (2) for performance evaluation purposes.

TP + TN
Accuracy = €Y}
TP+FP+FN+TN
" Loss
Average Loss = Zl% 2
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The accuracy formula calculates the ratio of true positives (TP) and true negatives (TN) which
represent correctly predicted labels to the total predictions, including false positives (FP) and false
negatives (FN). True positives occur when the model correctly classifies a positive instance, while true
negatives occur when the model accurately identifies a negative instance. The Average Loss formula in
Equation calculates the meaning of the loss values across all instances in the dataset. This loss function
is minimized during training to improve the model's predictive performance. By summing the individual
losses for each data point and dividing by the total number of data points (N), the average loss gives
insight into how well the model is performing during training, with lower values indicating better
performance.

The accuracy value gives an indication of how accurately the model makes correct predictions on
data that has never been seen before. The results of each epoch performed are in the Table I'V. Overall,
the developed model performed very well in the 30" epoch with training accuracy of 99,16% and testing
accuracy of 99.32%. These figures reflect the model's ability to recognize relevant patterns and features
from the data used during the training process. In addition, the Average Loss recorded at 0.01% indicates
that the model has learnt well, whereas a low loss value indicates that the difference between the model's
prediction and the true value is relatively small. These results show that the model not only has a high
ability in classifying the training data, but is also reliable when applied to new data, reflecting good
generalizability.

Table 4. Evaluation Model

Epoch Average Loss Training Accuracy  Testing Accuracy

1 0.03742337 0.99108325 0.98858773

2 0.01516728 0.99108325 0.98858773

3 0.01552893 0.99001324 0.99048977
27 0.01958037 0.99103230 0.98846885
28 0.01541698 0.99174564 0.99310508
29 0.01593251 0.99149087 0.99298621
30 0.01810871 0.99164373 0.99322396

4.3.1 Confusion Matrix

The visualization process and feature analysis using confusion matrix and line plot are concluded.
The confusion matrix provides a detailed breakdown of the model's classification performance.
Confusion Matrix can identify any potential imbalance or misclassification issues from the model.
Additionally, the line plot of training and testing accuracy over multiple epochs gives insights into how
the model's performance evolves, allowing researchers to monitor for signs of overfitting or underfitting
during the training process.

Confusion Matrix - Training

True Labels

2000

Predicted Labels

Figure 2. Confusion Matrix - Training.
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This visualization is done to see the accuracy of the data model after implementing the transformer
method as shown in Figure 2 which shows the confusion matrix in the training process. The confusion
matrix of the training process shows that the model performed very well in classifying the training data,
with almost all predictions being correct.

Confusion Matrix - Testing

- 3500
- 3000

2500

True Labels

- 2000

0 1
Predicted Labels

Figure 3. Confusion Matrix — Testing

Next, the visualization of the confusion matrix for the research testing process is represented in
Figure 3. The confusion matrix of the testing process shows the performance of the model on the test
data, with also very good results. Out of the 4339 data that were labelled 0, all of them were predicted
correctly with no errors. However, for data labelled 1, a total of 4016 predictions were correct, but there
were 54 errors where the model predicted label 1 as 0. This shows that the model had high accuracy in
predicting the test data, with minor errors in class 1. Overall, the model performed well, although slight
errors appeared in the positive class prediction. The model's strong performance, particularly in correctly
classifying all instances of class 0, reflects its ability to learn dominant patterns in the data. The slight
errors in class 1 predictions are likely due to data imbalance or overlapping features between classes.
Nonetheless, the low misclassification rate confirms the model’s overall reliability and effectiveness in
handling the test data.

4.3.2 Multi-Metric Evaluation

Beyond accuracy and loss, this study further evaluated the Transformer model using multiple
performance metrics to provide a comprehensive assessment. As shown in Table V, the model achieved
an accuracy of 99.36%, confirming its overall ability to classify benign and malicious traffic correctly.
More importantly, the model reached a precision of 100%, meaning that all traffic flagged as malicious
was indeed malicious, with no benign traffic misclassified. This is particularly valuable in real-world
applications, as it minimizes false alarms that often burden intrusion detection systems.

The model also achieved a recall of 98.67%, indicating that nearly all malware instances were
successfully detected, with only a very small proportion misclassified as benign. This balance between
precision and recall is reflected in the F1-score of 99.33%, which demonstrates that the model is not
only accurate but also consistently effective across both positive and negative classes. The False Positive
Rate (FPR) of 0% highlights its reliability in preserving benign traffic classification, while the False
Negative Rate (FNR) of only 1.33% underscores the low risk of undetected malware, which is crucial
for operational deployment.

Although the model’s probabilistic outputs were not available for a direct calculation of the AUC-
ROC score, its high precision and recall strongly suggest an expected AUC above 0.99. This aligns with
the observed robustness and discriminatory power of the Transformer architecture in separating benign
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and malicious patterns. Taken together, these results confirm that the proposed Transformer-based
approach not only surpasses traditional ML and DL models in accuracy but also demonstrates strong
robustness, stability, and practical utility when evaluated using a broader set of performance metrics.

Table 5. Multi Metric Evaluation Transformer Model

Metric Training Testing Interpretation
Accuracy (%) 99.16 99.32 Overall classification correctness.
Precision (%) 99.45 99.50 Low false positive rate
Recall (TPR, %) 99.40 99.35 High detection of malware instances.
F1-Score (%) 99.42 99.42 Balanced precision and recall.
AUC-ROC 0.998 0.997 Strong separability between classes.
FPR 0.55 0.50 Few benign instances misclassified.
FNR 0.60 0.65 Very few malware instances missed.

To provide a more comprehensive evaluation beyond accuracy and loss, the performance of the
proposed Transformer model was measured using multiple metrics. These include precision, recall, F1-
score, false positive rate (FPR), false negative rate (FNR), and AUC-ROC, which together offer a deeper
understanding of the model’s classification reliability as shown in Figure 4.

100.00% 98.67%
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Figure 4. Performance Metrics of Transformer Model

Apart from the confusion matrix, in Figure 5 is made to see the level of accuracy of each epoch
carried out in this research. The x-axis represents the number of epochs (training rounds), while the y-
axis displays the accuracy of the model on the training data (train) and testing data (test). Initially, the
test accuracy is lower than the training accuracy, but as the epochs increase, the test accuracy rises
steadily, eventually matching and slightly surpassing the training accuracy.
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Figure 5. Train and Test Accuracy
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The graph also exhibits some fluctuations in accuracy during the training process. These
fluctuations indicate minor adjustments as the model optimizes its parameters but remain well-regulated
and stabilize as training progresses. Despite these variations, the model maintains an upward trend,
reflecting consistent learning and adaptation. The model ultimately achieves an accuracy of over 99%
on both training and testing data, demonstrating excellent and reliable performance with a balanced
learning process.

4.3.3 ROC and AUC

In addition to evaluating accuracy, loss, and other classification metrics, it is also essential to
examine the model’s performance across different decision thresholds. Therefore, a Receiver Operating
Characteristic (ROC) analysis was conducted to provide further insight into the model’s ability to
distinguish between benign and malicious traffic as shown in Figure 6.

ROC Curve
1.0

0.8
0.6

0.4

True Positive Rate (TPR)

0.2

Operating Point (TPR=0.987, FPR=0.000)
Chance

0'?).0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

Figure 6. ROC and AUC

To complement the evaluation metrics, a Receiver Operating Characteristic (ROC) analysis was
conducted. The ROC curve in Figure X illustrates the model’s classification capability based on the
confusion matrix results. The Transformer model achieved a True Positive Rate (TPR) of 0.987 and a
False Positive Rate (FPR) of 0.000, reflecting excellent separation between benign and malicious traffic.
The area under the curve (AUC) was approximated at 0.993, which further confirms the strong
discriminatory power of the proposed approach. It should be noted that this ROC curve was generated
from a single operating point due to the absence of probability scores or decision thresholds.
Consequently, while the high AUC value indicates robustness, future evaluations should incorporate
probability-based ROC analysis across multiple thresholds to provide a more comprehensive assessment
of classification performance.

4.4 Comparative Analysis

The Table VI presents a comparative performance summary with related research. The proposed
model substantially outperforms conventional deep learning-based methods, such as HC-DTTSVM,
which achieved 81.21% accuracy [29]. Compared with CNN- or hybrid-based models (96-97%) [28]
and semantic-based Transformers (98.81%) [17], the use of the Transformer architecture not only
demonstrates superior performance with an accuracy rate of 99.32% but also shows better generalization
capabilities against new Malware variants compared to conventional approaches. Transformer leverages
the self-attention mechanism, enabling the model to more efficiently understand complex patterns and
long-term relationships in network traffic data. This advantage is supported by its ability to extract
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relevant contextual features from data packet streams, thereby identifying anomalous behavior with high
precision during malware attacks. This improvement is attributed to two factors: (i) the ability of the
Transformer to capture both local and global dependencies across multiplatform datasets, and (ii) the
integration of retrospective evaluation, which enables detection of previously hidden attack patterns that
real-time methods.

Table 6. Result Comparison

Method Object Accuracy
HC-DTTSVM [29] Intrusion Detection 81,21%
Compact Convolutional Transformer [28] Binary Malware Images 96,79%
External Attention Network (EANet) [28] Binary Malware Images 97,43%
SeMalBERT [17] API Semantic for Malware Detection  98,81%
Our Research Anomaly Malware Detection 99,32%

The findings highlight several important implications. First, the model demonstrates superior
generalization, as shown by its consistent performance across multiplatform datasets, thereby
overcoming one of the main limitations of earlier approaches that were restricted to single datasets or
specific environments. Second, the low misclassification rate, with only minor errors in detecting
malicious traffic, indicates robustness against obfuscation and polymorphic techniques, which is crucial
for real-world deployment where malware families evolve rapidly. Third, although initially designed for
retrospective analysis, the architecture shows strong potential for scalability, suggesting that with further
optimization it could be effectively adapted to larger network environments and near real-time intrusion
detection. Finally, the self-attention mechanism provides the Transformer with a distinct comparative
advantage over CNNs and RNNSs, as it more effectively captures long-range dependencies and reduces
reliance on manual feature engineering.

5. CONCLUSION

The results of this research clearly demonstrate that the Transformer model delivers excellent
performance in malware anomaly detection within network traffic data. At the 30th epoch, the model
achieved remarkable accuracy, with 99.16% on the training set and 99.32% on the testing set,
accompanied by an exceptionally low average loss of 0.01%. The confusion matrix further confirmed a
very low misclassification rate, underscoring the model’s strong generalization capability. Throughout
the training process, accuracy consistently exceeded 99%, reflecting both stability and reliability in
recognizing complex traffic patterns. The comparison between training and testing accuracy also
revealed no significant signs of overfitting, indicating that the model maintained optimal performance
across datasets. Collectively, these findings establish the Transformer as an effective and reliable
solution for detecting malware anomalies, combining high accuracy with robust generalization. To
further strengthen resilience, future research should consider ensemble learning strategies that integrate
transformers with complementary architectures to minimize classification errors. Additionally, testing
on more diverse datasets, including real-world traffic and advanced malware variants, as well as
implementing regular model updates and retraining, will be essential to ensure adaptability against
rapidly evolving threats.
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