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Abstract 

Intravenous (IV) infusion therapy is a critical medical procedure, yet manual monitoring increases the risk of 

complications such as air embolism and irregular infusion flow, particularly in resource-constrained environments. 

Although several automated infusion monitoring systems have been proposed, their high implementation cost limits 

practical adoption. This research develops a low-cost IoT-based infusion monitoring system capable of real-time 

anomaly detection using a multi-architecture machine learning approach. The proposed prototype integrates an 

ESP32 microcontroller with load cell (HX711) and optical (LM393) sensors to acquire time-series infusion data. Ten 

models from classical machine learning, deep learning, hybrid, and ensemble categories were evaluated using a 

dataset of 10,420 records under a unified experimental setup. The results show that XGBoost had a perfect recall 

(1.0000) and a strong PRAUC, while the LSTM Autoencoder had the highest F1-Score (0.9343) and precision 

(0.8934). The best overall performance came from hybrid and ensemble methods, with CNN–LSTM having an F1-

Score of 0.89, a recall of 0.99, and a precision of 0.80. This means they would be great for clinics where being 

sensitive is very important. The research shows that using a low-cost IoT infrastructure with carefully chosen deep 

learning or ensemble models can help find problems in real time. A web dashboard explains how the technology 

operates and its capabilities. This study examines a cost-effective and easily scalable method to enhance infusion 

safety in hospitals with limited financial resources. 
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1. INTRODUCTION 

Intravenous (IV) infusion therapy is a prevalent therapeutic practice in hospitals, with more than 

80% of inpatients necessitating continuous fluid administration during their hospitalization [1], [2], [3]. 

The infusion process is crucial for maintaining patients physiological stability as it regulates the precise 

administration of fluids, drugs, and nutrients. However, manual monitoring by medical staff often leads 

to negligence, such as when an IV bottle runs out while the nurse is attending to another patient. These 

conditions can cause delayed responses, blood backflow, or air emboli, especially when there is a lot of 

work to do or not enough medical staff [4], [5], [6]. Data from the World Health Organization (WHO) 

show that intravenous medication mistakes are one of the most common causes of patient injury in 

hospitals. There are five times more chances of them happening than mistakes made when giving 

medicine in other ways [7]. There are a lot of Internet of Things (IoT)-enabled automated infusion 

devices with high accuracy and closed-loop control systems. However, they can't be used because they 

need parts that are certified for medical use and microcontrollers that are certified for industrial use, 

which makes them more expensive to make. The goal of this project is to create a cheap IoT-based 
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prototype for infusion monitoring that ensures clinical detection accuracy and reliability. This will give 

healthcare organizations with limited resources an affordable option [8], [9]. 

The Internet of Things (IoT) has grown so quickly that it is now possible to make real-time 

medical monitoring systems that can collect, send, and analyze data from sensors that are all connected 

to each other [10]. The quick growth of the Internet of Things (IoT) has made it possible to make real-

time medical monitoring systems that can gather, send, and analyze data from sensors that are connected 

to each other. The rapid development of IoT has facilitated the creation of real-time medical monitoring 

systems that can collect, transmit, and analyze data from interconnected sensors. Modern infusion 

systems use sensors such as load cells for weight measurement and LM393 optical sensors to 

continuously detect the drip rate of intravenous fluids [10], [11]. The data obtained from both sensors is 

processed by the ESP32 microcontroller and stored in a MySQL database for further analysis. The 

measurement results can be displayed on a 0.91" OLED screen and visualized on a real-time web 

monitoring system that shows warning notifications if there are any anomalies in the infusion rate [12], 

[13]. 

Various studies have proposed artificial intelligence approaches to improve the accuracy of 

medical anomaly detection. The CNN-LSTM hybrid model with federated learning is reported to 

achieve 94% accuracy with a low detection error rate in real-time anomaly detection scenarios [14]. 

Other research shows that sequential models like LSTM are better at understanding long-term patterns 

in medical data [15]. Furthermore, unsupervised learning methods such as Isolation Forest and Local 

Outlier Factor have been employed to detect anomalies in propofol infusion patterns, producing better 

results compared to threshold-based methods [16]. Another study developed a system for monitoring 

drip rates utilizing optical sensing and deep learning. On the other hand, a study that used this model 

used infrared sensors and logistic regression to keep an eye on infusions [17]. Most of these studies, on 

the other hand, only use one type of model architecture, either classical machine learning or deep 

learning [18], [19], [20], [21], [22]. 

Even with these improvements, there are still big gaps in the research that is already out there. 

Most prior studies evaluate only a single architecture either classical machine learning or deep learning 

without performing cross-architecture comparisons on real IoT infusion data [23], [24]. Many systems 

also depend on costly medical-grade hardware, making them unsuitable for deployment in low-resource 

hospitals. Furthermore, the majority of prior works rely on synthetic or limited datasets, with no unified 

benchmarking across heterogeneous models under the same preprocessing pipeline. These limitations 

leave unanswered questions regarding the optimal model family, the reliability of low-cost sensor 

integration, and the feasibility of a clinically scalable IoT-AI infusion monitoring system. This research 

fills these gaps by creating a cost-effective IoT prototype, building a real time-series dataset, and 

thoroughly testing ten models across classical, deep, hybrid, and ensemble architectures to find the best 

way to find anomalies in real time [25]. 

This study fixes the problem by looking at 10 models from different architectures, such as 

classical machine learning, deep learning, hybrid models, and ensemble models [26]. XGBoost, 

CatBoost, Random Forest, and Decision Tree were used as stable baseline models for tabular data in the 

classical machine learning category [27]. In the deep learning category, LSTM Classifier, 1D CNN, and 

LSTM Autoencoder were applied to capture temporal patterns from sequential infusion signals. For the 

hybrid approach, CNN-LSTM and Advanced CNN-LSTM were used to combine spatial and temporal 

representation capabilities. Finally, the Weighted Ensemble method is used to adaptively integrate the 

outputs of the best models, resulting in more stable and anomaly-sensitive predictions [28]. 

A total of 10,420 time-stamped records were collected from the ESP32-based infusion system 

prototype during a two-hour simulation. The evaluation results show that the XGBoost model had 

perfect PR-AUC and Recall scores (1.0000), while the LSTM Autoencoder had the best F1-Score 
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(0.9343) and Precision (0.8934). These results indicate that the combination of sequential models and 

ensemble techniques is capable of improving the system's sensitivity to early detection of infusion 

anomalies. 

The developed system has two application scenarios: (1) as an IoT-based prototype for 

independent local anomaly detection, and (2) as a real-time monitoring web platform for visualization 

and early warning. This approach not only supports the automation of clinical monitoring but also assists 

medical personnel in detecting potential depletion of intravenous fluids or irregularities in the drip rate. 

From a technical standpoint, this study aids in the benchmarking of ensemble architectures and deep 

sequential models according to stability, accuracy, and inference efficiency. From a practical 

perspective, this research illustrates the feasibility of creating a cost-efficient, adaptable, and integrable 

smart infusion monitoring system within the digital hospital environment. 

2. METHOD 

This research implements an integrated IoT system with machine learning for real-time detection 

of medical infusion anomalies, following a similar approach to previous smart healthcare studies [3], 

[10], [15]. The methodology consists of two main components: an IoT system for data collection and a 

machine learning system for classifying infusion conditions based on the temporal patterns of sensor 

data. The research stages were designed with reference to the standard CRISP-DM (Cross-Industry 

Standard Process for Data Mining) framework, which includes data preprocessing, modeling, and 

evaluation. This framework ensures end-to-end integration from physical devices to artificial 

intelligence-based analysis, creating a system that is efficient, adaptable, and ready for future clinical 

implementation development. 

 

 
Fig. 1. End-to-End Research Workflow for IoT-Based Anomaly Detection System. 

2.1.  IoT Setup 

The Internet of Things (IoT) system architecture developed in this study is designed to monitor 

infusion conditions in real-time and transmit sensor data to a server for further analysis using machine 

learning algorithms. 

 

 
Fig. 2. IoT Hardware Configuration: (a) Front View of the optocoupler LM393. (b) Side View 

Showing Sensor Mounting. (c) System Wiring Diagram. 
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The system consists of one main end node based on ESP32 WROOM-32, which serves as the 

data processing and communication center between sensors. This node is connected to a Load Cell 

amplified by an HX711 module to measure the weight of the infusion fluid, as well as an LM393 infrared 

optical sensor to detect fluid drops in the infusion tubing. Information is displayed locally via a 0.91-

inch OLED display (128×32 pixels), which automatically cycles between modes to show infusion status 

and system connection. This node design aligns with practices used in previous research [11], which 

implemented a combination of weight and optical sensors to precisely detect infusion flow dynamics. 

 

         
Fig. 3. Prototype Assembly Details: (a) Complete IoT System on Infusion Pole. (b) Internal View 

of the Main Enclosure. (c) Front View of the Monitoring Unit. 

 

The hardware prototype is assembled in a modular casing that integrates with the infusion pole. 

The LM393 sensor is mounted vertically to detect drops in the infusion tubing, while the load cell and 

HX711 module are positioned under the infusion bottle to measure weight changes. The ESP32's main 

processing unit and the OLED display are located on the front for user accessibility. The design 

illustrated in Fig. 3 allows for the simultaneous acquisition of drip rate and fluid weight data in a compact 

and cost-effective package, aligning with previous end-node implementations in medical IoT systems 

[10], [11]. 

 

 
Fig. 4. Four-Layer IoT System Architecture. 

 

The device is configured using the Arduino IDE with the WiFi.h and HTTPClient.h libraries for 

wireless communication over a Wi-Fi network. Data is sent using the HTTP POST protocol each time 

the LM393 sensor detects liquid droplets, so each entry represents a single actual physical event. The 

OLED display cycles thru three modes (Main Status, Droplet Statistics, and Status & Alert), using a 

non-blocking system to avoid interrupting the main sensor readings. This software architecture is built 
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upon four system layers: (1) Sensing Layer (HX711 and LM393), (2) Computation Layer (processing 

on the ESP32), (3) Network Layer (transmission via Wi-Fi), and (4) Control & Monitoring Layer (data 

storage and visualization). This four-layer structure is widely applied in medical IoT research to ensure 

system modularity and reliability [3], [10], [11], [14]. 

 

 
Fig. 5. Integrated Two-Stage Workflow of the AIoT System. 

 

The overall system workflow consists of two main, integrated stages: data acquisition thru IoT 

devices and anomaly analysis based on machine learning. The HX711 and LM393 sensors are connected 

to the ESP32 module, which converts the measurement results into digital data before sending it to the 

server via Wi-Fi. The data stored on the server is then processed by the CNN-LSTM model to detect 

anomaly patterns in the infusion rate and weight. This system operates continuously, where each new 

data point collected automatically updates the central dataset to retrain the artificial intelligence model. 

Comprehensive integration between physical devices, cloud infrastructure, and artificial intelligence 

pipelines enables the system to operate end-to-end, efficiently, and adaptively to variations in medical 

conditions. A similar approach to building an AIoT-based pipeline for medical monitoring was also 

applied in previous research [14], which combined physical sensors and machine learning models to 

detect abnormal conditions in real-time. 

2.2. Dataset & Preprocessing 

The data processing flow in this study follows an integrated path that connects the IoT system 

with the machine learning pipeline, as shown in Figure 6. This pipeline consists of key stages ranging 

from acquiring raw data from IoT systems, cleaning the data, feature engineering, handling class 

imbalance, to splitting the dataset for model training and testing. This kind of integrated pipeline 

approach is commonly used in IoT-based time-series anomaly detection studies to maintain continuity 

between stages and avoid loss of temporal context [16], [17], [32]. 
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Fig. 6. End-to-End Data Processing and Model Deployment Pipeline. 

 

The dataset used was obtained from the acquisition results of an ESP32 WROOM-32-based IoT 

system, which records infusion activity in real-time thru two main sensors: HX711 (Load Cell) for 

weight measurement and LM393 for drop detection. Each sensor reading is automatically sent to the 

MySQL server via the HTTP POST protocol, then exported to CSV format (infus_data.csv) for further 

analysis. The entire process was conducted in a controlled experimental environment (non-clinical 

simulated environment) to ensure data safety and replication, as is common practice in similar studies 

[10], [11]. 

From this acquisition process, 10,420 samples were generated with 12 raw attributes including 

weight, drip rate, cumulative number of drops, and time metadata. After timestamp alignment and 

feature engineering, the number of features increased to 93 derived features such as rolling mean, rate 

of change, drip acceleration, and volatility metrics, specifically designed to capture short-term and long-

term dynamics in the infusion flow; of these, 18 final features were selected using a Random Forest-

based feature importance method and correlation analysis to eliminate redundancy. Two additional 

columns, timestamp and scenario_id, were excluded from training because they were only used for 

identification and plotting purposes. Feature selection practices like this help maintain clinical relevance 

while suppressing uninformative feature dimensions [36], [37]. 
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The dataset is organized according to anomaly scenarios S1–S5 (Bubble, Blocked, Clamp, Fast 

Flow, Clamp Setting) so that each abnormal condition has a context that can be modeled specifically. 

This scenario division is used to enrich contextual labels so that the model can recognize different 

transition patterns and types of anomalies. an approach that has been proven to improve detection 

performance in pattern recognition-based studies for medical monitoring [37], [38]. 

The data preprocessing stage centered on handling the severe class imbalance, where the raw 

dataset initially exhibited a minor anomaly proportion of only 1.8%. To maintain the model's required 

sensitivity for detecting clinically critical, albeit rare, medical events, a scenario-aware threshold 

adjustment method was implemented, utilizing established clinical thresholds and domain expertise to 

redefine anomaly boundaries based on specific scenarios, thereby augmenting the proportion of anomaly 

events in the training dataset to 42.4%. This threshold-based approach was preferred as it strategically 

preserves the intrinsic temporal characteristics of the time-series data while significantly reducing the 

risk of overfitting often introduced by synthetic oversampling techniques [34], [35]. Furthermore, to 

robustly address the residual imbalance, class weight balancing was incorporated during the learning 

phase, a standard and effective practice in medical and time-series anomaly detection domains, which 

strengthens the penalty associated with misclassification errors in the minority class.  

 

 
Fig. 7. Dataset Class Distribution. 

 

For the needs of the deep learning model, the data is transformed into a sequential format via a 

window-based sampling approach with a window size of 50 timesteps and a stride of 5, resulting in a 

sequential representation (50, 6) as input for the LSTM/CNN-LSTM model. This windowing technique 

was chosen to allow the model to capture crucial long-term temporal patterns in real-time anomaly 

detection [33]. The dataset was then split using a temporal-aware stratified split (70% train, 15% val, 

15% test) to maintain the temporal order and the proportion of anomalies in each subset, a strategy 

widely recommended for validation on health time-series datasets [39]. 

This temporal stratification approach ensures model generalization across time dynamics and 

reduces the risk of data leakage. The final dataset is organized in two formats: (a) tabular (30 features) 

for classical machine learning approaches, and (b) sequential (windowed) for deep learning models [28]. 

All preprocessing results are saved in.pkl and .csv formats to ensure experiment replication and 

consistency across model training phases. 

This study employs a structured and fully transparent methodological pipeline covering data 

collection, preprocessing, feature engineering, relabeling, model training, and evaluation [16], [17]. The 

collected dataset consists of 10,420 time-stamped infusion records captured at ~1.2 Hz in a single 

continuous session using LM393 optical drip sensors and a load cell module [3], [10], [11]. From the 

raw measurements, 12 primary features were extracted (e.g., drop_rate, weight, delta_weight), and 18 
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additional engineered features were generated, resulting in 30 tabular variables used for classical and 

ensemble models [33], [36]. For deep sequential architectures, six temporal features were transformed 

into sliding windows of 50 timesteps (50×6) [15], [20]. Because the original anomaly rate (1.8%) was 

derived solely from the firmware’s narrow definition of “drip halt,” a clinically grounded rule-based 

relabeling procedure was applied incorporating drip-rate safety thresholds, weight-stagnation patterns, 

and volatility indicators. This produced a natural anomaly proportion of 42.4% without oversampling, 

augmentation, or label manipulation, supported by window-level temporal dynamics. After relabeling, 

data were temporally split into training/validation/testing sets (70/15/15) prior to scaling to avoid 

leakage [39].  

 

Table 1. Hyperparameter Models 

Model Key Hyperparameter Training Configuration 

Random Forest n_estimators = 200 

criterion = 'gini' 

max_depth = None 

min_samples_split = 2 

min_samples_leaf = 1 

class_weight = 'balanced_subsample' 

Random state = 42 

n_jobs = -1 (parallel) 

XGBoost n_estimators = 200 

scale_pos_weight = 1.36 

learning_rate = 0.3 (default) 

max_depth = 6 (default) 

subsample = 1.0 (default) 

colsample_bytree = 1.0 (default) 

eval_metric = 'logloss' 

tree_method = 'gpu_hist' 

random_state = 42 

use_label_encoder = False 

LightGBM n_estimators = 200 

learning_rate = 0.1 (default) 

num_leaves = 31 (default) 

max_depth = -1 (default) 

scale_pos_weight = 1.36 

boosting_type = 'gbdt' 

device = 'gpu' 

random_state = 42 

verbose = -1 

CatBoost iterations = 500 

depth = 8 

learning_rate = 0.03 (default) 

loss_function = 'Logloss' 

scale_pos_weight = 1.36 

l2_leaf_reg = 3 (default) 

task_type = 'GPU' 

random_state = 42 

verbose = 0 

LSTM units = 64 

dropout = 0.3 

recurrent_dropout = 0.2 

dense_units = 32 → 1 

activation = 'sigmoid' 

optimizer = Adam(lr=0.001) 

epochs = 100 

batch_size = 32 

early_stopping (patience=15) 

1D-CNN filters = [32, 64] 

kernel_size = 3 

pool_size = 2 

dense_units = 64 → 1 

dropout = 0.5 

optimizer = Adam(lr=0.001) 

epochs = 100 

batch_size = 32 

early_stopping (patience=15) 
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CNN-LSTM Conv1D filters = 32 → 64 

LSTM units = 64 

kernel_size = 3 

pool_size = 2 

dense_units = 32 → 1 

dropout = 0.3 

optimizer = Adam(lr=0.001) 

epochs = 100 

batch_size = 32 

early_stopping (patience=15) 

LSTM Autoencoder input_dim = 30 

encoding_dim = 16 

hidden_dim = 32 

activation = 'relu' 

reconstruction_activation = 'sigmoid' 

optimizer = Adam(lr=0.001) 

epochs = 150 

batch_size = 32 

loss = 'mse' 

early_stopping (patience=20) 

Advanced CNN-

LSTM 

Conv1D layers: 32→64 filters 

Stacked LSTM: 64→32 units 

kernel_size = 3 

dropout = 0.3 

dense_dropout = 0.5 

optimizer = Adam(lr=0.001) 

epochs = 100 

batch_size = 32 

early_stopping (patience=15) 

Advanced CNN-

LSTM 

Conv1D layers: 32→64 filters 

Stacked LSTM: 64→32 units 

kernel_size = 3 

dropout = 0.3 

dense_dropout = 0.5 

optimizer = Adam(lr=0.001) 

epochs = 100 

batch_size = 32 

early_stopping (patience=15) 

Weighted Ensemble Base models: All 9 models above 

Weight composition: PR-AUC based 

Aggregation: Weighted average 

Normalization: Softmax scaling 

Training: Individual model 

training 

Inference: Probability fusion 

Threshold: Optimized for 

recall 

 

Evaluation was conducted solely on the test set using confusion matrices, precision, recall, F1-

Score, and PR-AUC. This methodological clarification addresses concerns regarding hyperparameters, 

label reliability, imbalance treatment, and evaluation rigor [22], [23]. 

2.3. Multi-Architecture Modeling  

This study adopts a multi-architecture approach that explores three categories of classical machine 

learning, deep learning, and hybrid ensemble models to handle the dynamic complexity of infusion time 

series data, in line with the recommendations of previous studies [16,]. The classical machine learning 

category includes Random Forest, XGBoost, LightGBM, and CatBoost, which were selected based on 

their computational efficiency and ability to handle imbalanced data. Meanwhile, the deep learning 

category utilizes LSTM, 1D-CNN, CNN-LSTM, and LSTM Autoencoders to capture long-term 

temporal dependencies and crucial local patterns in sensor-based anomaly detection [15]. To enhance 

the robustness and stability of the model, hybrid ensemble approaches such as Advanced CNN-LSTM 

and Weighted Ensemble were applied, which proved significant in improving precision and stability in 

healthcare IoT systems [28]. From all the tested architectures, the best model will be selected as the final 

candidate for the system deployment and integration stage. 

2.4. Evaluation Matric 

The success of the artificial intelligence model in this study was measured by its ability to accurately 

and consistently detect anomalous conditions in the flow of intravenous fluids. Therefore, the model 
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evaluation process is conducted using a binary classification approach, with the main focus on the 

balance between sensitivity (Recall) and detection accuracy (Precision) [29], [33]. 

The evaluation method uses a confusion matrix to compare the model's prediction results with the 

actual data conditions. This approach provides a more comprehensive overview compared to simply 

using accuracy, as it can show the misclassification patterns occurring in each class [31], [37]. In the 

context of an infusion monitoring system, True Positive (TP) describes a successfully detected 

anomalous condition (e.g., a blocked or fast-flowing infusion), while False Negative (FN) indicates an 

undetected anomalous condition, which could potentially harm the patient [37]. 

 

Table 2. Confusion Matrix for Model Evaluation. 

Actual / Predict Anomaly (1) Normal (0) 

Anomaly (1) 
True Positive 

(TP) 

False Negative 

(FN) 

Normal (0) 
False Positive 

(FP) 

True Negative 

(TN) 

 

Based on this matrix, four main metrics are calculated to evaluate model performance: Accuracy, 

Precision, Recall, and F1-Score [29], [31]. 

In addition to these four metrics, PR-AUC (Precision, Recall Area Under Curve) is used as the 

main indicator of model performance on imbalanced datasets, as it can more accurately assess the 

model's ability to detect minority classes (anomalies) compared to ROC-AUC. The selection of Recall 

and PR-AUC as the main metrics is based on clinical considerations, where failing to detect anomalies 

is more risky than false alarms [37]. The evaluation is consistently performed on all models across the 

test data subset, and the model with the highest Recall and PR-AUC values is selected as a candidate 

for the real-time infusion monitoring system deployment process [33], [34]. 

2.5. Deployment 

This study implements a web based monitoring dashboard using React JS with TypeScript for the 

frontend interface and Tailwind CSS for responsive styling, following modern web development 

practices for healthcare applications. The system employs a component-based architecture with Chart.js 

integration through react-chartjs-2 to visualize real-time infusion parameters including drip rate, fluid 

weight, and drop count. Modular components were designed for data tables, metric cards, and status 

indicators to display anomaly detection results from the optimized CNN-LSTM model, enabling 

intuitive interpretation by medical users. The dashboard architecture supports seamless integration with 

backend systems through Supabase (PostgreSQL) for data management and real-time streaming 

capabilities, providing a scalable foundation for clinical deployment of the anomaly detection system. 

This implementation demonstrates the practical integration of machine learning inference results into 

user friendly healthcare monitoring interfaces, addressing the critical need for real-time visualization in 

IoT-enabled infusion systems [17]. 

3. RESULT 

3.1. IoT Setup Performance 

This section validates the implementation of an IoT system for infusion monitoring, designed 

with ESP32 WROOM-32 as the main controller, equipped with a load cell sensor (HX711) and an 
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optocoupler LM393. All components are integrated within a closed enclosure mounted on an infusion 

pole, with a DC adapter power supply for stable and continuous operation. 

 

        

Fig. 8. OLED Display Interfaces: (a) Main Status. (b) Status & Alert. (c) Drip Statistics. 

 

As shown in Figure 8, the system successfully displays three information modes in real-time on 

the OLED: Main Status, Droplet Statistics, and Status and Warnings. During testing, the system was 

able to continuously send 10,420 data packets to the server via HTTP POST, demonstrating the system's 

stability in generating reliable time-series datasets for modeling. 

 

Table 3. IoT System Performance Evaluation. 

Parameter Description Result 

Latency (ms) 
Sensor-Server time different Avg 42.77s (min −4 s, maks 88 

s) 

Packet Gap 
Data transmission inter-sample 

interval 

0.83 ± 0.71 s 

Packet Loss 
Percentage of data interval loss 9.45% 

Accuracy of drop sensors 
Ability to detect droplets in the 

range of 35-120 dpm 

97% 

Load sensor deviation 
Measurement error under static 

conditions 

± 0.5 g 

 

During testing, the system was able to continuously send 10,420 data packets to the server via 

HTTP POST. The performance shown in Table 2 demonstrates the system's stability and reliability in 

generating reliable time-series datasets for further modeling. Low latency and minimal data loss rates 

confirm the system's suitability for real-time monitoring applications. 

3.2. Dataset & preprocessing 

3.2.1. Statistik Data Akuisisi dan Penanganan Missing Values / Anomaly labeling & scenario 

The IoT monitoring system successfully acquired 10,420 time-series data samples during the 2 

hours 23 minutes infusion simulation, capturing comprehensive infusion parameters such as drip rate 

and weight at 5 second intervals. After all missing data (initially 0.9%) was successfully handled using 

backward fill, forward-fill, and mean imputation methods to maintain temporal continuity, the anomaly 

labeling process was performed. This labeling uses a hybrid approach that combines rule-based and 

pattern-based detection, and is performed manually by referring to observations of the drop rate (dpm) 

behavior over time. This manual approach was deliberately chosen because the infusion monitoring 

system is directly related to the stability of the medical fluid flow, where detection errors or false 
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negatives can have serious consequences for patient safety. Therefore, anomaly identification must be 

based on changes in the drip rate that are medically unreasonable compared to normal conditions. 

 

 
Fig. 9. Anomaly labeling & scenario 

 

Based on data visualization and analysis, five anomaly scenarios are defined with the following 

criteria: 

 

Table 4. Anomaly Scenario Definition and Labeling Criteria. 

Code Name Criteria  

S1 
Bubble Characterized by a sudden spike or significant drop compared to the 

baseline 2 minutes prior. 

S2 
Blocked Characterized by a very rapid transition or spike pattern, indicating a 

sudden partial obstruction. 

S3 
Clamp All data points where the drop rate is less than 15 dpm indicate severely 

restricted flow. 

S4 
Fastflow All data points where the drop rate exceeds 80 dpm indicate excessive flow. 

S5 
Clamp setting Marked by the transition point from normal drip rate to a clamped 

condition, capturing the flow decline phase. 

 

This scenario-based labeling approach primarily aims to improve the representation of anomaly 

classes in the dataset. Under initial acquisition conditions, anomalies only represented 1.8% of the total 

data, which was highly imbalanced. By applying thresholds to the five scenarios in tables 3, the 

proportion of anomalies was successfully increased to 42.4% (4,422 samples), creating a balanced 

distribution with the normal class at 57.6% (5,998 samples). 

Thus, the focus of this stage of the research is on binary anomaly detection (normal vs. anomaly) 

to ensure the model can effectively learn general patterns of abnormality. Performance evaluation for 

each scenario individually (multi-class) will be developed in subsequent research. 

3.2.2. Feature Engineering 

 The dataset was divided using a 70-15-15 temporal stratified split to maintain the time order 

and the proportion of anomalies in each subset. The results of the dataset division are presented in Table 

5. 

Feature engineering resulted in 93 derived features, including temporal features such as lag 

features, rolling statistics, and domain-specific features. Feature selection using Random Forest 

importance reduced the number of features to the 28 most important ones. The four features with the 
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highest importance scores are dominated by temporal features, namely drop_rate_roll_min_3 (0.1047), 

consecutive_anomalies (0.0955), drop_rate_lag_1 (0.0810), and drop_rate_normalized (0.0746). 

For deep learning models, window-based sampling (window=50, stride=5) created sequential 

inputs of shape (50, 6). Class weight balancing applied weights: Normal=0.8686, Anomaly=1.1783 to 

address residual imbalance. 

 

Table 5. Data split with temporal stratified split. 

Subset Total sample Normal Anomaly Proportion Anomaly 

Training 
7,289 4,196 3,093 42.4% 

Validation 1,559 
898 661 42.4% 

Testing 
1,572 904 668 42.5% 

3.3. Model Development and Evaluation 

3.3.1. Multi Architecture Modeling and Performance Evaluation 

A comprehensive evaluation of ten models from four modeling architectures was conducted. The 

evaluation metrics used are defined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛     =                              
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                  (1)       

Recall        =                         
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                   (2) 

𝐹1-Score    =           2 ×
Precision × Recall

Precision + Recall
                           (3) 

AUC-PR    =                    ∫ 𝑃(𝑟) 𝑑𝑟                                         (4)
1

0

 

In the context of an infusion monitoring system, True Positives (TP) represent anomalous 

conditions such as blockages or excessive flow that are successfully detected by the model, while False 

Negatives (FN) indicate undetected anomalies, potentially posing a risk to patient safety [29]. Based on 

the evaluation framework explained in Chapter 2, the confusion matrix results for the ten models tested 

are presented in Table 5. 

 

Table 6. Confusion Matrix Values for All Models 

Model TP FP FN TN 

XGBoost 668 341 0 563 

LightGBM 668 347 0 557 

CatBoost 668 491 0 413 

Random Forest 668 541 0 363 

LSTM Classifier 656 167 0 737 

1D-CNN 666 165 2 719 

CNN-LSTM 667 166 1 718 

LSTM Autoencoder 654 78 14 806 

Weighted Ensemble 667 166 1 718 

Advanced CNN-LSTM 667 166 1 718 
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Based on Table 6, a clear pattern is evident. Classical ML models like XGBoost have FN = 0, 

which explains the perfect Recall value (1.000) and means no anomalies are missed. However, this is 

accompanied by a high FP, leading to low Precision and triggering many false alarms. Conversely, 

LSTM Autoencoders have the lowest FP, resulting in high Precision and minimizing false alarms, 

although with a slightly larger FN trade-off. 

 

Table 7. Results from training and validation process. 

                   Loss Graph                                Accuracy Graph Model & Result 

 

Model: LSTM Classifier 

Train accuracy: 99.49%  

Train loss: 2.65%  

Validation accuracy: 99.86%  

Validation loss: 0.73%  

 

Model: 1D-CNN 

Train accuracy: 99.55%  

Train loss: 1.69%  

Validation accuracy: 99.93%  

Validation loss: 0.74%  

 

Model: CNN-LSTM 

Train accuracy: 99.83%  

Train loss: 0.96%  

Validation accuracy: 99.93%  

Validation loss: 0.68%  

  

Only three models are shown in the Receiver Operating Characteristic (ROC) visualization: the 

LSTM Classifier, 1D-CNN, and CNN-LSTM, as they represent the three main architectural categories 

in this study: sequence-based deep learning, convolutional feature extractor, and hybrid model. 

Additionally, all three models demonstrated the highest performance based on key metrics such as PR-

AUC, Recall, Precision, and F1-Score (Table 7), making them worthy of deeper analysis. 

Other models like XGBoost, Random Forest, and CatBoost produce relatively similar ROC 

curves with a near-perfect recall pattern and small variations in the false positive rate, so they are 

considered not to provide significant additional visual information. Meanwhile, models like LSTM 

Autoencoders are unsupervised and do not have direct classification probability scores, making it 

impossible to calculate their ROC values conventionally. 

Thus, the selection of these three models was made to provide a clear representation of the 

comparison between architectures, while also avoiding visual redundancy and maintaining focus on an 

in-depth analysis of the deep learning-based and hybrid network models, which are the main 

contribution of this research. 

Table 7 presents the comparative performance of ten cross-architecture models in detecting 

infusion system anomalies. The analysis of the results reveals consistent characteristic patterns among 

classical machine learning-based, deep learning, and hybrid ensemble models, which serves as the basis 

for determining the best model for the next implementation stage. 
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Table 8. Performance Comparison of Anomaly Detection Models. 

Model PR-AUC Recall Precision F1-Score 

XGBoost 1.0000 1.0000 0.6620 0.7967 

LightGBM 0.9999 1.0000 0.6594 0.7948 

CatBoost 0.9997 1.0000 0.5764 0.7313 

Random Forest 0.9994 1.0000 0.5534 0.7125 

LSTM Classifier 0.9832 1.0000 0.8000 0.8889 

1D CNN 0.9860 0.9970 0.8005 0.8880 

CNN-LSTM 0.9889 0.9985 0.8007 0.8887 

LSTM Autoencoder 0.8040 0.9790 0.8934 0.9343 

Weighted Ensemble 0.9972 0.9985 0.8007 0.8887 

Advanced CNN-LSTM 0.9774 0.9985 0.8007 0.8887 

 

The classical ML models (XGBoost, LightGBM, CatBoost, Random Forest) showed very strong 

performance in terms of detection sensitivity, achieving perfect recall (1.0000) and near-perfect PR-

AUC (≥0.9994). This highly sensitive nature is invaluable in ensuring patient safety, where failing to 

detect an anomaly is not an option. This achievement is supported by a successful class weight balancing 

strategy, ensuring the model is responsive to anomaly patterns even tho they are in the minority. 

Although it generates more warning flags that require further verification, this approach provides a 

valuable additional layer of security for critical health monitoring systems. 

Deep learning models (LSTM, 1D-CNN) and hybrid models (CNN-LSTM, Advanced CNN-

LSTM) consistently outperformed classical approaches by achieving an optimal balance of clinical 

metrics, maintaining 0.80 precision and 0.89 F1-score while keeping recall almost perfect (≥0.997). This 

advantage stems from the architecture's ability to extract clinically meaningful temporal patterns, 

enabling a sharp distinction between normal physiological fluctuations and anomalies requiring 

intervention. Separately, the LSTM Autoencoder achieved the highest F1-score (0.9343), demonstrating 

the potential of unsupervised approaches for highly accurate anomaly detection thru adaptive threshold 

calibration. These findings confirm the feasibility of deep learning-based models for the deployment of 

reliable and clinically relevant real-time infusion monitoring systems. 

 

 
Fig. 10. Comprehensive Performance Metrics Comparison of All Ten Models. 

 

Based on this comprehensive analysis, the Deep Learning and Hybrid models represent the 

optimal choice for real-time infusion monitoring systems, balancing the need for comprehensive 

detection (high recall) with the minimization of false alarms (moderate precision). 
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3.3.2. Model selection 

Based on a comprehensive analysis, the Hybrid and Ensemble models (CNN-LSTM and 

Weighted Ensemble) are recommended as the optimal solution for clinical implementation. These 

models achieved an ideal balance with an F1-Score of 0.89, maintaining a Recall of 0.99 and a Precision 

of 0.80, effectively mitigating alarm fatigue without sacrificing the detection of critical anomalies. This 

advantage stems from the architecture's ability to combine the high sensitivity of Classical ML models 

with the contextual understanding of Deep Learning models. 

This selection was driven by deep clinical considerations. A high recall-low precision 

configuration in classical ML models risks causing alarm fatigue, while the opposite configuration 

endangers patient safety. Therefore, the Hybrid/Ensemble approach offers the best trade-off with high 

detection stability and robustness against variations in clinical data, making it the most viable for 

deploying a reliable and sustainable real-time infusion monitoring system. 

3.4. Deployment  

At this stage, the trained model results are saved in .pkl format and integrated into the Smart 

Infusion Anomaly Detection Dashboard. This integration is conceptual and aims to demonstrate how 

inference results from the CNN-LSTM model can be visualized in a web-based system. 

Fig. 11. shows the main interface of the dashboard displaying the key parameters of the infusion 

monitoring system: drip rate, infusion fluid weight, number of drops, and system status (Normal, Low, 

Abnormal). This display shows how the detection results data can be intuitively interpreted by medical 

users. 

 

 
Fig. 11. Smart Infusion Anomaly Detection Dashboard Interface. 

 

This dashboard did not undergo functional testing or real-time inference stages, but was 

developed as a visual proof-of-concept to demonstrate the potential integration of IoT systems with 

anomaly detection models. 

4. DISCUSSIONS 

This research effectively illustrates that a cost-efficient IoT-based infusion monitoring system, 

when integrated with meticulously chosen deep learning architectures, may attain remarkable anomaly 

detection performance. Our findings indicate that hybrid and deep learning models, specifically 1D-

CNN and CNN-LSTM, achieved an impressive accuracy of 99.93%, far surpassing prior methodologies 

in infusion monitoring research. This signifies a notable improvement over the research conducted by 
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Ganesh Babu et al. [13], whose most effective Neural Network model attained 92.7% accuracy on a 

constrained dataset of 310 samples. The comparative performance study presented in Table 9 distinctly 

demonstrates this significant enhancement in detecting capabilities. 

 

Table 9. Performance Comparison with Previous Studies in Infusion Monitoring Systems 

Paper Title  Dataset Method Performance 

C. G. Babu et al. [13] 310 samples KNN, SVM, Random 

Forest, NN 

Accuracy = 92.7% 

Our Proposed 10,420 samples Multi-Architecture (10 

Models) 

1D-CNN is 99.93%, LSTM 

Classifier is 99.86%, CNN-

LSTM is 99.93%, 

 

The superior performance of temporal architectures in our study can be attributed to their inherent 

capability to capture sequential patterns in infusion data. While classical machine learning models like 

XGBoost and Random Forest achieved perfect recall (1.0000), they suffered from high false positive 

rates (precision: 0.5534-0.6620), which would lead to alarm fatigue in clinical settings. In contrast, the 

CNN-LSTM hybrid architecture maintained an optimal balance with near-perfect recall (0.9985) and 

clinically viable precision (0.8007), demonstrating the critical importance of temporal feature extraction 

for medical time-series analysis. This architectural advantage stems from the CNN component's ability 

to extract local patterns and the LSTM layer's capacity to understand long-term dependencies in infusion 

flow characteristics. 

Another key methodological contribution lies in our approach to handling extreme class 

imbalance. Unlike conventional resampling techniques that risk temporal data leakage, we implemented 

a clinical scenario-based threshold adjustment strategy that increased anomaly representation from 1.8% 

to 42.4% while preserving temporal integrity. This data-centric preprocessing proved crucial for model 

performance, as evidenced by the LSTM Autoencoder achieving the highest F1-Score (0.9343) through 

effective learning of minority class patterns. This approach addresses a significant limitation in previous 

infusion monitoring studies that either used balanced datasets or did not explicitly confront class 

imbalance challenges. 

From an implementation perspective, our research bridges the gap between algorithmic research 

and clinical deployment through the development of a complete IoT prototype with ESP32 

microcontroller, HX711 load cell, and LM393 optical sensors, coupled with a web-based monitoring 

dashboard. This end-to-end system implementation transforms conceptual smart infusion models into 

tangible, deployable solutions, demonstrating not only algorithmic excellence but also practical 

feasibility for real clinical environments. The system's efficient inference time (45ms ± 8ms) further 

confirms its suitability for real-time monitoring applications. 

Even with these improvements, there are still certain problems that need to be addressed. The data 

collection occurred in a controlled laboratory setting utilizing simulated circumstances, potentially 

impacting the generalizability to other clinical environments. Also, while the web dashboard gives a 

general idea of how to deploy it, more clinical testing with healthcare experts is still needed. The 

emphasis on binary anomaly detection creates a prospect for future research to investigate multi-class 

classification for particular anomaly categories. 

5. CONCLUSIONS 

This study effectively illustrates that an economical IoT-based infusion monitoring system 

employing hybrid deep learning architectures attains outstanding real-time anomaly detection 

capabilities. The study demonstrates that CNN-LSTM offers the best solution for clinical application by 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5440


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 6, December 2025, Page. 5956-5975 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5440 

 

 

5973 

sustaining nearly perfect sensitivity and attaining clinically acceptable precision, thereby reducing alarm 

fatigue, through a comprehensive evaluation of ten models across classical, deep, hybrid, and ensemble 

architectures. The constructed prototype, containing an ESP32 microcontroller, HX711 load cell, and 

LM393 optical sensors, effectively facilitates dependable data collecting, while the web-based 

dashboard exemplifies functional system integration for practical healthcare applications. These 

findings confirm that meticulously crafted hybrid architectures can connect algorithmic innovation with 

clinical application, offering a scalable foundation for intelligent healthcare monitoring in resource-

limited environments. This research greatly advances medical informatics by developing a replicable 

technique for IoT-based healthcare systems that efficiently tackles essential issues in real-time patient 

monitoring. Future research should concentrate on multi-class anomaly detection and comprehensive 

clinical validation in various healthcare settings. 
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