Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5699-5790
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5419

Interpretable Hybrid YOLOvV8s-GWO Framework for Bounding-Box Viral
Pneumonia Detection on Kaggle Chest X-ray Images

Azmi Jalaluddin Amron!, Cinantya Paramita*2, Petar Soli¢’, Supratiknyo*

"Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang, Indonesia
’Dinus Research Group for Al in Medical Science (DREAMS), Faculty of Computer Science,
Universitas Dian Nuswantoro, Semarang, Indonesia
3 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of
Split, Split, Croatia
*SMK Sunan Kalijaga Demak, Demak, Indonesia

Email; 2cinantya.paramita@dsn.dinus.ac.id

Received : Oct 31, 2025; Revised : Nov 30, 2025; Accepted : Dec 16, 2025; Published : Dec 23, 2025

Abstract

Viral pneumonia continues to impose a substantial global health burden, making rapid and reliable radiographic
detection essential for early clinical management. This study proposes a hybrid framework integrating the YOLOv8s
detection model with the Grey Wolf Optimizer (GWO) to enhance hyperparameter tuning for Viral Pneumonia
identification in chest X-ray images. A curated set of Normal and Viral Pneumonia samples was manually annotated
and preprocessed before training. The optimization process involved multi-stage refinement of learning rate,
momentum, weight decay, and loss-gain parameters to improve convergence stability and detection accuracy. The
optimized YOLOv8s + GWO model demonstrated notable performance gains, achieving 0.965 recall, 0.983
mAP@50, and 0.827 mAP@50-95 on internal evaluations. External testing further validated its robustness,
delivering 98.80% accuracy, 99.48% specificity, and 97.46% sensitivity. These results highlight not only enhanced
clinical diagnostic reliability but also contributions to Informatics and Computer Science, demonstrating the
effectiveness of metaheuristic-guided optimization in improving deep-learning model performance, generalization,
and computational efficiency for Al-driven image detection tasks.

Keywords : Grey Wolf Optimizer, Hyperparameter Optimization, Medical Image Detection, Viral Pneumonia,
YOLOvSs, Chest X-ray.
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1. INTRODUCTION

Pneumonia is a severe respiratory infection characterized by alveolar inflammation, leading to
fluid accumulation and impaired gas exchange in the lungs [1], [2]. It remains a leading cause of
infectious disease mortality worldwide, accounting for over 2.5 million deaths annually, including
approximately 672,000 children under five years of age [1]. Regional epidemiological studies in East
Asia indicate that lower respiratory tract infections continue to represent a major cause of hospital
admissions, particularly among pediatric and elderly populations [2], [3]. Multiplex RT-PCR analyses
further demonstrate that Viral pathogens contribute significantly to seasonal respiratory infections [3],
[5]. This epidemiological burden underscores the urgent clinical need for rapid and accurate
differentiation between Viral and Bacterial Pneumonia, a task that remains challenging in settings with
limited radiological expertise.

Radiographically, Viral Pneumonia commonly manifests as diffuse, bilateral interstitial infiltrates
or ground-glass opacities, whereas bacterial pneumonia often presents as localized consolidations [4].
These subtle imaging differences can result in considerable diagnostic variability. Integrating artificial
intelligence (Al) into radiology workflows offers a potential solution for automated feature extraction
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and rapid interpretation of chest imaging [5], [6], [19]. The YOLO (You Only Look Once) family of
deep learning models has emerged as a leading architecture due to its real-time detection capabilities,
high spatial precision, and proven performance across a range of medical imaging applications [6], [7],
[10], [11], [15], [16], [18], [27]. Recent research has expanded YOLOv8 applications to multi-organ
detection in chest X-rays [46], real-time detection of lung diseases [12], and enhanced A-line and B-line
detection in lung ultrasound [39], [40], highlighting the trend toward ensemble and multi-modal Al
strategies in medical imaging.

Despite these advances, YOLO-based models often experience performance degradation when
confronted with heterogeneous image quality, domain shifts, or class imbalance [6], [12], [15]. In
radiology, Al-powered object detection has attracted significant attention for its potential to improve
diagnostic workflows [19]. Beyond medical imaging, YOLO architectures have been successfully
applied to a variety of tasks, including skin lesion detection [29-31], cataract detection [33-34],
autonomous driving [38], traffic monitoring [35], and herbal product identification [37], highlighting
their adaptability across diverse computer vision applications. However, manual hyperparameter tuning
can result in suboptimal convergence, unstable sensitivity, and limited generalization. To address this,
metaheuristic optimization algorithms particularly the Grey Wolf Optimizer (GWO) have shown
promise in enhancing hyperparameter selection for deep learning models [13], [14], [17], [20], [43],
[44]. Leveraging GWO’s global search capabilities can stabilize training and improve diagnostic
accuracy across healthcare tasks [12], [14], [17], [20]. Nevertheless, its application to multi-modal
datasets, such as the integration of chest X-ray and lung ultrasound imaging, remains largely unexplored,
restricting the potential for achieving higher accuracy and better generalization [6], [12], [39], [40].

Table 1 presents a summary of the publicly available pneumonia datasets used in this study,
providing a clear overview of the number of images and class distribution for both training and testing.

Table 1. Composition of Pneumonia Training and Testing Datasets

Dataset Label Number of Images
Training [8] Normal 1,583
Training [8] Viral Pneumonia 1,493
Testing [9] Normal + Viral Pneumonia 4,926

Figures 1 and 2 illustrate representative radiographic differences between normal lungs and Viral
Pneumonia. Normal chest X-rays display clear lung fields with well-defined anatomical structures,
while Viral Pneumonia images exhibit diffuse or patchy opacities that obscure lung anatomy. These
visual cues are essential for training YOLOVS8s to detect and highlight abnormal regions in a clinically
interpretable manner.

Figure 1. Normal Lungs Figure 2. Viral Pneumonia Lungs
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Conventional YOLOVSs training on heterogeneous chest X-ray datasets achieved high mAP@50
scores (~97%) but exhibited lower overall performance across multiple thresholds, with mAP@50-95
around 81-82% [6], [12]. Manual hyperparameter tuning provided limited improvement, often yielding
marginal gains in mAP and recall. Integrating the Grey Wolf Optimizer (GWO) demonstrated the
potential to enhance model performance, improving mAP@50-95, accuracy, and specificity, while
maintaining comparable recall and sensitivity. In this study, the YOLOv8s + GWO framework achieved
an accuracy of 98.8%, specificity of 99.48%, recall of 95.55%, and mAP@50-95 of 82.1%, indicating
reliable detection of Viral Pneumonia across diverse datasets. Model performance was comprehensively
assessed using Precision, Recall, Accuracy, Specificity, and mAP, ensuring robust evaluation and
minimizing false negatives, which is critical for clinical decision-making.

This study proposes a novel hybrid YOLOv8s + GWO framework for Viral pneumonia detection.
Unlike prior approaches that rely solely on YOLOVS8s or manual tuning, the proposed method leverages
GWO to simultaneously optimize multiple hyperparameters, including learning rate, momentum, and
weight decay. By addressing multi-modal limitations, enhancing training stability, and improving
generalization, the framework is designed to deliver Viral clinically meaningful predictions, supporting
rapid diagnosis and optimized workflows in resource-constrained healthcare settings. The integration of
Al-driven informatics engineering demonstrates the potential to enhance early detection, improve
clinical decision-making, and extend deep learning applicability across heterogeneous imaging
modalities [6], [12], [14], [18]-[28], [39], [40], [46]-[49].

2. METHOD

CXR-Pneumonia

'iq ﬁ ﬂ Training (3076) Testing (4926)
l ~— = Labfelln.g and Yolov8s Yolov8s
I ‘« ll p “ Organization Yolov8s + GWO Yolov8s + GWO

{a)Normal ) Viral
Pneumania

Evaluation

Result
(Precision, Recall, Accuracy, Specificity, mMAP@50 and mAP@50-95)

Figure 3. End-to-End YOLOvV8s-GWO Pipeline with 3-Phase Optimization

Figure 3 illustrates the complete methodological pipeline of the proposed YOLOv8s—GWO
framework for Viral Pneumonia detection from chest X-ray images. The workflow begins with dataset
preparation and annotation, followed by preprocessing and augmentation, baseline YOLOvSs training,
multi-stage Grey Wolf Optimizer (GWO) hyperparameter tuning, final retraining using the optimized
configuration, and model evaluation. This structured design ensures reproducibility, systematic
hyperparameter exploration, and robust performance assessment.

2.1. Dataset Preparation, Annotation, and Ethical Considerations

Two publicly available chest X-ray datasets were initially considered, namely the Chest X-ray
Pneumonia dataset [8] and the Three Kinds of Pneumonia dataset [9]. However, for model training, only
dataset [8] was utilized, as it contains clearly separated image groups for Normal, Viral Pneumonia, and
Bacterial Pneumonia. Following prior studies focusing on Viral Pneumonia detection [6], [7], [10], [12],
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all Bacterial Pneumonia samples were excluded, resulting in a total of 3,076 images, comprising 1,583
Normal and 1,493 Viral Pneumonia cases.

Figure 4. Annotation interface of Labellmg " Figgre 5. Annotation @nterface of Label]mg
showing a chest X-ray image labeled as showing a chest X-ray image labeled as ‘Viral
‘Normal’ Pneumonia

All images were manually annotated using Labellmg v1.8.6 to generate YOLO-format text files
containing class identifiers and normalized bounding-box coordinates. Figures 4 and 5 illustrate
representative annotated samples for both classes. After filtering out corrupted, duplicated, and low
quality images, the remaining dataset was divided into 2,139 images for training, 611 images for
validation, and 307 images for testing, preserving class balance and reducing distributional bias during
model development.

For model evaluation, the Three Kinds of Pneumonia dataset [9] was utilized as the test set. Only
the Normal and Viral Pneumonia classes were selected from this dataset, resulting in 3,270 Normal
images and 1,656 Viral Pneumonia images. These images were combined into a single folder named
test_xray to serve as an independent test set for assessing the model's performance after training.

All datasets used in this study were publicly available on Kaggle and fully anonymized. The
research adhered to GDPR regulations. Since all data were publicly accessible and de-identified, the
institutional review board (IRB) confirmed that formal ethical approval was not required for this study.

2.2. Preprocessing and Augmentation Strategy

All images were resized to 640 x 640 pixels and normalized according to the Ultralytics YOLOvVS
preprocessing pipeline. To improve generalization and reduce overfitting, an extensive augmentation
strategy was applied using Albumentations 2.0.8. This included random horizontal flipping, affine
transformations, variations in brightness and contrast, slight rotations, and other regularization
techniques supported by the YOLOVS pipeline. These augmentations simulate realistic radiographic
variations commonly encountered in clinical practice and help the model avoid over-reliance on specific
image regions, improving robustness to unseen data.

2.3. Baseline YOLOVS8s Architecture and Initial Training

The YOLOVS8s architecture was chosen for its computational efficiency and strong performance
in medical image detection tasks [10], [11], [15], [16], [27]. It features an end-to-end design that
seamlessly integrates convolutional feature extraction, bounding box regression, and object
classification within a single unified network. A baseline YOLOvVS8s model was trained for 100 epochs
using the default hyperparameters provided in Ultralytics YOLOvVS v8.3.206, serving as the reference
against which the GWO-optimized configuration was compared. Previous studies have highlighted
YOLOVS’s effectiveness in detecting small objects [ 15], tuberculosis [ 16], and pulmonary nodules [42],
while metaheuristic methods such as GWO have been successfully applied for image optimization and
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super-resolution [43, 44]. These findings inspired the integration of YOLOv8 with GWO to enhance
pneumonia detection performance.

2.4. Grey Wolf Optimizer (GWO) for Hyperparameter Tuning

Start Evaluate Fitness Score
Load Dataset & (Precision, Recall,
Base YOLOvS8s mAP@50-95)
Final Retraining Repeat Until Update Other Wolves’ Identify a, B, & Wolves
(100 Epochs) Using Convergence Positions (Encircling & (Top 3 Best
Best Config (6*) (Multi-Stage A = B — C) Hunting Rules) Candidates)

Evaluate Final Model (YOLOv8s+GWO) Compare vs Baseline YOLOv8s

Figure 6. GWO Encircling-Hunting Phases for YOLOv8s Hyperparameter Search Space

Figure 6 illustrates the overall hyperparameter optimization process powered by the Grey Wolf
Optimizer. GWO is inspired by the social hierarchy and cooperative hunting strategies of grey wolves
[12], [13], and was employed to explore a six dimensional hyperparameter search space for YOLOvSs.
Each wolf in the population encodes a candidate configuration represented as

0; = {lrg, nomentum, weigh_decay, box, cls, optimizer} (1)

where the optimizer parameter is sampled from the discrete set {SGD, Adam, AdamW }. The
performance of each candidate configuration is evaluated using the objective function

f(@) = 0.1P + 0.1R + 0.7mAPso_o5 + 0.05mAPNCTIAL + 0.05mAPLTEL  (2)

which prioritizes overall localization accuracy while preserving balanced performance across the
Normal and Viral classes [9], [11].
The encircling behavior of grey wolves is modeled as:

Dg=[Ci X —X(®)|, X,=X,—A4, D, 3)
Dp=|C,-Xg—X(t)|, X,=Xg—A, D (4)
Dy =[Cs-Xs—X(t), X3=2X;—4; Dy (5)

The position of each wolf is updated by averaging the influence of the three best solutions:

X(t+1) =220 (6)
The coefficient vectors A and C are computed as:
A) = 2a171 —aQ, C_‘) = 27:)2 (7)

Where a decreases linearly from 2 to 0 over iterations and 77,7, are random vectors in [0,1].
A structured three phase optimization strategy was adopted. Stage A performs global exploration
with relatively broad variations in hyperparameters. Stage B emphasizes regional refinement by
narrowing the search region around high performing candidates. Stage C conducts fine tuning with
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increased evaluation fidelity. Each stage consists of a quick evaluation phase followed by a long
evaluation phase to ensure balanced assessment of both promising and potentially overlooked
configurations. Table 2 summarizes the characteristics of the three stages.

Table 2. Three-stages GWO Optimization Strategy

Stage Quick Eval Long Eval Purpose
A 20 epochs 20 epochs Global exploration
B 40 epochs 40 epochs Regional refinement
C 60 epochs 60 epochs Local fine-tuning

Table 3. Stepwise GWO-based Hyperparameter Optimization Procedure for YOLOvS8s

Step Description

Input: Dataset configuration (dataset.yaml), YOLOv8s base model (yolov8s.pt),
hyperparameter ranges (R), number of wolves (N), and maximum iterations
(T).

Output: Optimized hyperparameter configuration (8*) for YOLOv8s + GWO.

1. Initialize Randomly generate (N) wolves, each representing a parameter set 0; =

Population {lro, momentum, weight_decay, box, cls, optimizer} sampled from (R).

2. Evaluate Initial
Fitness

3. Identify Elite
Wolves

4. Update Positions
(Iterative
Optimization)

5. Re-evaluate
Fitness

6. Repeat Iterations
7. Multi-Stage

Train YOLOvV8s using each 8; for limited epochs (E) and compute the fitness
score f(0;).
Select top three wolves as a (best), B (second), and 6 (third).

For each non-elite wolf, update its position using GWO’s encircling
mechanism and  randomly adjust  optimizer  type among
{SGD,Adam, AdamW}.

Train YOLOVSs using updated 0;(t + 1), compute new fitness f(0;(t + 1)),
and update ranking.

Continue updating and evaluating until reaching (T') iterations or convergence.
Conduct optimization in three stages: Stage A (20 epochs), Stage B (40

Refinement
8. Final Retraining

epochs), Stage C (60 epochs).
Train YOLOVS8s using the best configuration (8*) for 100 epochs to obtain the
optimized YOLOvV8s + GWO model.

To provide a clear and systematic overview of the multi-stage GWO optimization process, the
stepwise procedure is summarized in Table 3. Each step outlines the initialization of the wolf population,
evaluation of candidate hyperparameter configurations, identification of elite wolves, iterative position
updates via encircling and hunting mechanisms, multi-stage refinement, and final retraining of the
YOLOVS8s model using the optimized hyperparameters. Referring to Table 3 allows readers to follow
the optimization workflow in a structured and reproducible manner, complementing the mathematical
formulations and stage descriptions provided above.

2.4.1. Ablation Study: PSO vs GWO for Hyperparameter Optimization

To further justify the choice of the Grey Wolf Optimizer as the primary hyperparameter tuning
strategy, an ablation study was conducted comparing GWO with the Particle Swarm Optimization (PSO)
algorithm. Both methods were applied to the same baseline YOLOv8s model and evaluated using
identical dataset partitions, training configurations, and evaluation metrics. The goal of this comparison
was not to provide an exhaustive benchmarking between the two metaheuristic algorithms, but rather to
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confirm that GWO achieves at least comparable performance while aligning with the proposed
optimization strategy.

In this study, a limited number of particles and wolves were used to ensure rapid evaluation while
still reflecting the search dynamics of each algorithm. PSO was configured with three particles and three
iterations, while GWO employed three wolves over three iterations. Each candidate hyperparameter set
consisted of the learning rate, momentum, and weight decay. For every candidate configuration, the
model was evaluated using the YOLOVS validation pipeline to obtain the mAP50 metric.

The results of the ablation study are summarized in Table 4. As observed, both PSO and GWO
reached the same maximum mAP50 of 0.98077 despite variations in the specific hyperparameter
combinations explored by each optimizer. The learning rates, momentum values, and weight decay
coefficients differed among the best-performing candidates of each algorithm, reflecting the inherent
stochastic nature of metaheuristic searches. However, these differences did not translate into
performance gaps, as the model’s validation results remained effectively equivalent.

Table 4. Ablation Study Comparing PSO and GWO Performance
Optimizer Best Learning Rate Best Momentum Best Weight Decay mAPS50

PSO 0.000195 0.894 0.000367 0.98077
GWO 0.000329 0.898 0.000449 0.98077

The equivalence in performance can be attributed to the fact that both PSO and GWO effectively
explore the local regions of the hyperparameter search space near the baseline configuration. Given the
relatively small search ranges and the already well-tuned baseline model, the marginal differences in
candidate solutions did not significantly affect the network’s ability to detect Viral Pneumonia. This
finding reinforces the suitability of GWO for the task, demonstrating that it can achieve competitive
results while providing the structured, multi-phase optimization framework detailed in the previous
sections.

2.5. Algorithmic Workflow and Reproducibility

The complete optimization routine was implemented under strict determinism. All random seeds
for Python, NumPy, and PyTorch were fixed to 42, and non-deterministic CuDNN operations were
disabled. Hyperparameter search ranges were progressively tightened at the end of each stage to promote
convergence.

The formal pseudocode of the proposed multi-stage GWO is presented as Algorithm 1.
Algorithm 1. Multi-Stage GWO for Hyperparameter Optimization
Require: Dataset D; YOLOvV8s model M; parameter ranges R; number of wolves N; stages S =
{4, B, C}; evaluation epochs (Egyick, Eiong)

Ensure: Optimized hyperparameters 8"
1: Initialize population ® = {6, 0,, ..., 0y} sampled from R
2: Set all random seeds for deterministic execution
3: for each stage s € S do
4: for each wolf 6; € © do
Train M with 6; for Eqy,;cx epochs
Compute fitness f(8;)
end for
Sort © and identify a, 8, § wolves
for each non elite wolf 8; do

e A

10: Update 6; using GWO encircling and hunting equations
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11: Randomly resample optimizer type € {SGD, Adam, AdamW}

12: end for

13: for each wolf 9; € © do

14: Train M with 8; for Ejyy, 4 epochs

15: Recompute fitness f(6;)

16: end for

17: Sort O and tighten parameter ranges around the top wolves

18: end for

19: Determine 6* = argmaxg, f(6;)
20: return 6~

2.6. Optimal Configuration and Model Training

After completing the multi-stage optimization, the final optimal hyperparameter configuration is
summarized in Table 5. This configuration includes the learning rate, momentum, weight decay,
bounding-box regression gain, classification gain, and optimizer type. The final YOLOv8s model was
retrained for 100 epochs using this optimized configuration to produce the proposed YOLOv8s + GWO
model. The optimized model demonstrated improved convergence stability, precision, recall, and overall
mAP, confirming the effectiveness of the metaheuristic optimization strategy in medical imaging
applications [12], [13].

Table 5. Final Optimized YOLOv8s + GWO Hyperparameter Configuration

Parameter Description Optimal Value

optimizer Optimizer type AdamW

lry Initial learning rate 0.009621

momentum Momentum factor 0.9260

weight decay L2 regularization  0.0003699
coefficient

box Box regression gain 0.08037

cls Classification loss gain ~ 0.22069

2.7. Experimental Setup and Evaluation Metrics

Experiments were conducted on a Lenovo laptop equipped with an NVIDIA GeForce RTX 4050
GPU (6 GB), Intel® Core™ i7-13620H CPU (2.40 GHz), and 16 GB RAM running Windows 11 Home
(64-bit). The training environment utilized CUDA 12.6, PyTorch 2.5.1 + cul2l, and Ultralytics
YOLOVS v8.3.206, supported by NumPy 2.2.6, OpenCV 4.12.0.88, Albumentations 2.0.8, and scikit-
learn 1.7.2. Training the baseline and optimized models required approximately 1.09 hours per 100
epochs.

Model performance was evaluated using Precision, Recall, Accuracy, Sensitivity, Specificity, and
Mean Average Precision (mAP) [1], [4], [6], [12], [14], [18], [21], [22], [23], [24]. Sensitivity was
emphasized because of its clinical importance in detecting Viral Pneumonia cases, while specificity
measured false positives among normal images. All evaluations were conducted using YOLOVS’s built-
in validation pipeline to ensure consistent and reproducible metric computation.
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3. RESULT

In this section, the results of the research and the experiments carried out are presented. The
results include both quantitative and qualitative analyses of the YOLOv8s and YOLOv8s + GWO
models for Viral Pneumonia detection from chest X-ray images.

3.1. Dataset Preparation and Annotation

The study utilized a dataset comprising 4,254 labeled chest X-ray instances, including 2,224
Normal and 2,030 Viral Pneumonia bounding-box annotations [8]. The bounding boxes were
predominantly centered within the lung regions, reflecting anatomical consistency and providing
sufficient variability in size and spatial location. This spatial distribution allows the models to learn
robust representations of both normal and pathological features [6][12][14][21]]22].

To assess the consistency of manual annotations, Cohen’s Kappa score was calculated based on
multiple annotators. The resulting Kappa of 0.9993 indicates almost perfect agreement, confirming the
high reliability of the dataset labeling. Table 6 presents the confusion matrix derived from this inter-
rater reliability analysis, illustrating that only a single disagreement occurred for the Viral Pneumonia
class.

Table 6. Inter-rater annotation agreement confusion matrix
Predicted / Actual Normal Viral Pneumonia

Normal 1583 0
Viral Pneumonia 1 1473
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Figure 7. Class distribution of the Chest X-ray Pneumonia dataset [8]

Figure 7 illustrates the detailed class distribution and annotation characteristics for the Chest X-
ray Pneumonia dataset [8]. It shows the total number of labels per class (Normal: 2,224; Viral
Pneumonia: 2,030), the approximate size and spatial location of the bounding boxes within a
representative image, and the corresponding class label for each annotation. This visualization highlights
the comprehensive coverage of lung regions and supports the model’s capacity to learn relevant features.

Figure 8 provides an overview of the complete dataset distribution, including both the training
and validation images from the Chest X-ray Pneumonia dataset [8] as well as the independent test images
from the Three Kinds of Pneumonia dataset [9]. The pie chart indicates the percentage composition of
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each subset relative to the total dataset of 8,002 images, with train+val Normal at approximately 19.8%,
train+val Viral Pneumonia at 18.7%, test Normal at 40.9%, and test Viral Pneumonia at 20.7%. The
accompanying bar chart presents the absolute number of images per subset (Normal [8]: 1,583; Viral
Pneumonia [8]: 1,493; Normal [9]: 3,270; Viral Pneumonia [9]: 1,656), providing a clear quantitative
view of dataset allocation for model training, validation, and external testing.

Overall Dataset Distribution (Total: 8002) Overall Dataset Distribution - Bar Chart
1270

3000
Train+ Val Normal: 1583 (19.8%) Test Viral Pneumonia: 1656 (20.7%)

2500
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Figure 8. Distribution of training, validation, and independent test dataset across Normal and Viral
Pneumonia [8][9]

For external evaluation, the Three Kinds of Pneumonia dataset [9] was employed as an
independent test set. Only the Normal and Viral Pneumonia classes were selected, resulting in 3,270
Normal images and 1,656 Viral Pneumonia images, which were combined into a single folder named
test_xray to facilitate model testing after training.

3.2. Preprocessing and Augmentation

All chest X-ray images were preprocessed following the standard YOLOVS input pipeline, which
included resizing each image to 640 x 640 pixels, normalization, and conversion into YOLO format
tensors prior to model ingestion. To enhance robustness and reduce overfitting, data augmentation was
applied using Albumentations 2.0.8. The augmentation operations included random horizontal flipping,
affine transformations, brightness—contrast adjustments, and mild rotational perturbations, each selected
to simulate realistic radiographic variations without distorting anatomical structures.

The same preprocessing and augmentation pipeline was applied consistently to both the baseline
YOLOv8s model and the GWO optimized YOLOvS8s variant. This ensures that any performance
differences between the two models arise solely from hyperparameter optimization rather than from
differences in data manipulation or input transformation. As a result, both models were trained under
identical input conditions, guaranteeing fairness and comparability across all subsequent analyses.

3.3. Baseline YOLOVSs Training

The baseline YOLOvV8s model was trained for 100 epochs using the default Ultralytics YOLO
pipeline. Training and validation were conducted under identical hardware conditions (NVIDIA
GeForce RTX 4050 GPU, Intel Core i7 processor, and 16 GB RAM). The YOLOv8s architecture used
in this study contains a 72 layers backbone with approximately 11.13 million parameters, consistent
with prior object detection studies in medical imaging. Both the baseline YOLOv8s and the optimized
YOLOv8s + GWO models were trained using the same dataset split, preprocessing steps, and
augmentation schemes to ensure fair comparison.

The training procedure followed the standard YOLOvS8 optimization flow, including adaptive
learning-rate scheduling, momentum-based gradient updates, and multi-scale loss computation
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consisting of bounding-box loss, classification loss, and objectness probability loss. Validation was
conducted at every epoch to monitor convergence and prevent overfitting.

3.3.1. Performance Evaluation Metrics

Model performance was assessed using standard object detection metrics including Precision (P),
Recall (R), Accuracy, Specificity, Sensitivity, Average Precision (AP), and Mean Average Precision
(mAP) at JoU thresholds of mAP@50 and mAP@50-95. Sensitivity was emphasized due to its clinical
importance for ensuring pneumonia cases are not missed.

Formulas for the evaluation metrics are as follows:

TP

Precision = P (8)
Recall = —= 9)
TP+FN
Accuracy = ——0 (10)
TP+TN+FP+FN
Specificity = — (11)
1
AP, = [ pi(r)dr (12)
mAP = =¥, AP, (13)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively.

The combined summary metrics for YOLOv8s and YOLOv8s + GWO are presented in Table 7,
showing overall improvements after hyperparameter optimization.

Table 7. Summary Metrics for YOLOv8s and YOLOv8s + GWO
Metric YOLOvV8s YOLOv8s +GWO

Precision 0.95038 0.95836
Recall 0.95453 0.95553
mAP@50 0.97192 0.97727
mAP@50-95 0.81536 0.82091
Accuracy 0.95920 0.98800
Specificity 0.94530 0.99480
Sensitivity 0.98670 0.97460

This table demonstrates that the optimized model outperforms the baseline in most metrics,
particularly in accuracy, specificity, and overall detection precision.

3.3.2. Training and Validation Performance

Training and validation results for both models are presented in Table 8, showing the behavior of
each model during supervised optimization. YOLOVSs achieved strong baseline performance, while
YOLOv8s + GWO achieved improved recall and mAP scores, indicating better generalization on unseen
data.
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Table 8. Training and validation performance of YOLOv8s and YOLOv8s + GWO

Model Precision Recall mAP@ mAP@50- Training Time (hours)
P) (R) 50 95
YOLOv8s 0.962 0.956 0.980 0.826 1.087
YOLOvVSs + 0.946 0.965 0.983 0.827 1.095
GWO

These results indicate that although YOLOv8s + GWO obtains slightly lower precision during
training, its higher recall and mAP values suggest more stable and generalized learning behavior.

3.3.3. Stability Metrics for YOLOvV8s and YOLOvV8s + GWO

To evaluate training consistency, both models were executed across multiple runs, and the
resulting standard deviations of key performance metrics were calculated. Lower standard deviation
values indicate greater stability across training runs, while higher values indicate greater variability. The
stability metrics for the two models are summarized in Table 9.

Table 9. Stability Metrics for YOLOv8s and YOLOv8s + GWO
Metric YOLOv8s std YOLOv8s + GWO std

Precision 0.05346 0.13074
Recall 0.06101 0.10906
mAP@50 0.04116 0.13261
mAP@50-95 0.05964 0.14051

The results indicate that the baseline YOLOv8s model exhibits higher training stability, as
reflected by its consistently lower standard deviations across all metrics. In contrast, the YOLOv8s +
GWO model, although achieving higher peak performance, shows increased variability between runs.
This behavior is expected, given that the Grey Wolf Optimizer introduces a stronger exploratory
component during hyperparameter search, leading to greater fluctuations across optimization trials.

From a practical standpoint, these findings imply that GWO prioritizes performance improvement
at the possible expense of run-to-run consistency. Such behavior is typical for population-based
metaheuristic optimizers, particularly when the search space is large or contains multiple local optima.
Nonetheless, the improved performance obtained with GWO suggests that the trade-off between slightly
increased variability and higher accuracy remains acceptable, especially for applications where
maximizing detection performance is more critical than ensuring deterministic training behavior.

3.3.4. Histogram Distribution of Evaluation Metrics

To visualize how the evaluation metrics distribute across multiple runs, a combined histogram of
Precision, Recall, mAP@50, and mAP@50-95 was generated for both YOLOv8s and YOLOvSs +
GWO. This visualization helps highlight the consistency of model performance and the degree of
improvement contributed by the GWO optimization.
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Combined Histogram of All Metrics
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Figure 9. Combined histogram of Precision, Recall, mAP@50, and mAP@50-95 for YOLOv8s and
YOLOv8s + GWO

Figure 9 illustrates that YOLOv8s + GWO exhibits a slight rightward shift in all performance
metrics, indicating improved predictive quality. Although the variance appears marginally wider due to
exploration during hyperparameter tuning, the optimized model maintains a generally higher and more
stable distribution across key detection metrics.

3.3.5. Training Curve Analysis

Training curve plots were generated to evaluate loss functions and recall behavior across epochs.
These include box loss convergence, classification or objectness probability loss behavior, bounding-
box recall, and precision-recall evolution.

Conturce Conteenco Racat

Figure 10. Training curves of YOLOvS8s showing Box Probability Loss, Bounding-Box Recall, and
Precision-Recall

YOLOv8s + GWO
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Figure 11. Training curves of YOLOvS8s + GWO showing improved convergence and recall-
consistency
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Figure 12. Per-epoch evolution of Precision, Recall, mAP@50, and mAP@50-95 for YOLOv8s and
YOLOv8s + GWO

The optimized model demonstrates smoother loss reduction patterns and improved recall stability
in later epochs, indicating that GWO helps the model reach a more optimal region in the parameter
space. Figure 12 illustrates the per-epoch progression of key performance metrics Precision, Recall,
mAP@50, and mAP@50-95 for both the baseline YOLOv8s model and the optimized YOLOv8s +
GWO variant. The baseline YOLOvS8s shows a relatively smooth convergence pattern after the early
epochs, maintaining stable precision and recall curves. In contrast, YOLOv8s + GWO exhibits slightly
larger oscillations during the initial 10-20 epochs, which reflects the exploratory nature of the GWO-
driven hyperparameter search. As training progresses, however, the optimized model consistently
reaches higher or equal peak values across all evaluated metrics, particularly in mAP@50 and
mAP@50-95. The improved upper-bound performance demonstrates that GWO successfully guides the
model toward more favorable regions of the hyperparameter space, enabling stronger generalization and
improved feature learning despite the temporary fluctuations observed during the early training stages.

3.3.6. Confusion Matrix and Detection Visualization

Normalized confusion matrices per class were generated for both models to analyze class-specific
detection behavior.

Confusion Matrix Comparison

Confusion Matrix Normalized Confusion Matrix Normalized

NORMAL NORMAL

2 VIRAL_PNEUMONIA

2 VIRAL_PNEUMONIA

background a2 background

NORMAL -
VIRAL_PNEUMONIA -
background -
NORMAL -
VIRAL_PNEUMONIA -
background -

YOLOVBs YOLOVSs + GWO

Figure 13. Normalized confusion matrices for YOLOvS8s (left) and YOLOv8s + GWO (right)
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YOLOv8s + GWO shows reduced false positives for the Normal class and maintains high true
positive detection for Viral Pneumonia, demonstrating improved decision boundaries.

Detection visualizations from training batches are shown in Figure 14, comparing bounding-box
quality and confidence distributions.

YOLOv8s YOLOv8s + GWO

Figure 14. Training batch visualization comparing YOLOVSs (left) and YOLOv8s + GWO (right)

The optimized model produces more precise bounding box placement and more consistent
confidence levels.

3.4. Hyperparameter Tuning with Grey Wolf Optimizer (GWO)

Hyperparameter tuning was conducted using the Grey Wolf Optimizer (GWO) to enhance the
baseline YOLOv8s model by systematically refining key training parameters. The optimized variables
included the initial learning rate (Iry), momentum, weight decay, box regression gain, and class loss
gain. These parameters were selected based on their substantial influence on model convergence
behavior and bounding-box prediction accuracy.

A structured three-stage GWO procedure comprising exploration, refinement, and fine-tuning
was implemented to balance broad search capability with precise parameter convergence. During the
exploration phase, wide-range parameter sampling enabled broad coverage of the search landscape; the
refinement stage progressively narrowed the candidate region; and the final fine-tuning stage ensured
stable convergence near the optimal solution. This multi-stage process produced a more reliable
optimization trajectory, preventing premature convergence while improving the model’s ability to
capture complex radiographic features.

Throughout the optimization process, all augmentation operations were carefully validated to
ensure that anatomical structures remained clinically realistic, an important consideration in lung-based
diagnostic tasks where inappropriate distortions may mislead the model. The GWO-guided parameter
search produced smoother convergence patterns and more consistent detection behavior than the
baseline training configuration. Detailed parameter ranges, iterative update rules, and the final optimized
hyperparameter set are provided in Methods Tables 2-4, which summarize the complete multi-stage
workflow and the resulting tuned configuration for the YOLOv8s + GWO model.

5778


https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5699-5790
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5419

3.5. Optimized YOLOv8s + GWO Training
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Figure 15. Combined confidence scatter plots and confidence heatmaps for YOLOv8s (top row)
and YOLOvS8s + GWO (bottom row)

After the optimal hyperparameter set was identified through the multi-stage GWO procedure, the
optimized YOLOvS8s + GWO model was retrained for 100 epochs using the final configuration. This
retraining step ensured that the selected parameters contributed directly to improvements in both
convergence behavior and detection accuracy. The optimized model demonstrated more stable gradient
behavior, reduced loss fluctuations, and enhanced confidence distribution when compared with the
baseline YOLOVSs.

Figure 15 presents the combined confidence scatter plots and average confidence heatmaps for
both models. The scatter plots illustrate overall confidence dispersion across predicted bounding boxes,
while the heatmaps summarize average confidence for each actual predicted class pair. Collectively,
these visualizations show that YOLOv8s + GWO yields fewer low-confidence outliers and produces
more balanced confidence profiles across classes, indicating more reliable detection performance after
optimization.

3.5.1. Convergence and Learning Behavior

The learning dynamics of the baseline and optimized models are illustrated in Figures 10 and 11,
which show the Box Probability Loss, Bounding Box Recall progression, and Precision-Recall curves.
The baseline YOLOv8s model demonstrates conventional convergence behavior with gradually
decreasing loss values but exhibits mild oscillations, particularly in classification loss components.

In contrast, the optimized YOLOv8s + GWO model shows smoother and more monotonic loss
reduction, suggesting improved gradient stability during training. Bounding Box Recall improves earlier
in training and remains more consistent across epochs, demonstrating that the optimized model is better
at learning spatial localization patterns. Additionally, the Precision-Recall curves of the optimized
model exhibit larger enclosed areas, reflecting a more favorable balance between sensitivity and
precision. These improvements collectively indicate that GWO’s hyperparameter adjustments increased
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training stability, strengthened generalization capability, and reduced susceptibility to under-or over-
fitting across classes.

3.6. Confusion Matrix and Detection Visualization

The performance of both models was further evaluated using confusion matrices and qualitative
detection visualizations. The normalized confusion matrices offer insight into the class-wise
discriminative capability of the models when distinguishing between Normal and Viral Pneumonia chest
radiographs. Figure 13 presents the side-by-side comparison of the normalized confusion matrices for
YOLOvS8s and the optimized YOLOv8s + GWO model. The optimized variant exhibits clearer
separation between classes, achieving a Normal-class accuracy of 97% while maintaining a 94%
accuracy for the Viral Pneumonia class. This improvement reflects a reduction in false positives and
more stable decision boundaries, indicating that the integration of GWO enhances class-specific
reliability.

In addition to the confusion matrices, qualitative detection performance was assessed through
visualization of sample training batches. Figure 14 displays representative bounding-box predictions for
both models. While the baseline YOLOv8s demonstrates generally accurate detections, occasional
inconsistencies in bounding-box alignment and confidence are visible in challenging cases. Conversely,
the YOLOvS8s + GWO model shows more consistent localization, sharper boundary definition, and more
uniform confidence levels across images. These qualitative improvements corroborate the quantitative
gains reported in earlier sections, demonstrating that GWO-based hyperparameter optimization
contributes to a more robust and reliable detection framework for radiographic pneumonia analysis.

3.7. External Test Dataset Evaluation

The robustness and generalization capability of the proposed model were further assessed using
the independent Three Kinds of Pneumonia external test dataset [9]. This dataset was not used at any
stage of model development including training and validation ensuring unbiased evaluation.

Table 10. External test dataset performance [9]
Model True Negative  False True Positive False = Accuracy Specificity Sensitivity

(Normal) Positive (Viral) Negative (%) (%) (%)
YOLOv8s 3,091 179 1,634 22 95.92 94.53 98.67
YOLOVS8s +
GWO 3,253 17 1,614 42 98.80 99.48 97.46

The optimized YOLOv8s + GWO model demonstrated substantial improvements across multiple
evaluation metrics. Its overall accuracy increased from 95.92% to 98.80%, while specificity improved
markedly from 94.53% to 99.48%, reflecting a significant reduction in false positive pneumonia
detections. Sensitivity remained high at 97.46%, indicating reliable detection of pneumonia cases and
reinforcing the model’s clinical utility. These enhancements confirm that the GWO-based
hyperparameter optimization effectively boosts model stability and class discrimination when evaluated
on previously unseen radiographic data.

To complement these quantitative findings, qualitative detection visualizations were analyzed.
Representative examples are provided in Figures 16-18, positioned immediately after this discussion.
The YOLOVS8s baseline generally produces accurate detections but occasionally exhibits under-
localized bounding boxes or inconsistent confidence levels in challenging cases. In comparison, the
optimized YOLOvV8s + GWO model presents more refined bounding-box delineation, higher and more
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stable confidence values, and improved consistency across diverse radiographic patterns. These visual
results align strongly with the quantitative gains observed in Table 10.

Diagram Lingkaran: Persentase Akurasi Deteksi Keseluruhan (Yolov8s) iagram Lingkaran: Persentase Akurasi Deteksi Keseluruhan (Yolov8s+G\

Total Deteksi Salah

Total Deteksi Salah

Total Deteksi Benar
Total Deteksi Benar

Figure 16. YOLOv8s detection on external test Figure 17. YOLOv8s + GWO detection on
dataset external test dataset

Comparison of Detection Results using YOLOv8s and YOLOv8s + GWO

el

YOLOv8s - Viral Pneumonia YOLOv8s + GWO - Viral Pneumonia

Figure 18. Visual comparison of detection performance between YOLOVSs (left) and YOLOvVS8s
+ GWO (right) [6][12][14][18]

High sensitivity in both models is especially critical for clinical deployment, where missed
pneumonia cases (false negatives) can lead to delayed or ineffective treatment. The optimized YOLOv8s
+ GWO preserves this strong sensitivity while simultaneously reducing false positives, demonstrating
improved diagnostic reliability and better alignment with real-world medical screening needs

To further evaluate classification reliability on the independent external test dataset, Precision-
Recall (PR) and Receiver Operating Characteristic (ROC) analyses were conducted, as shown in Figures
19 and 20. The PR Curve provides insight into the balance between precision and recall across varying
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confidence thresholds, where the Average Precision (AP) serves as the principal metric. The baseline
YOLOVS8s achieved an AP of 0.2384, whereas the optimized YOLOv8s + GWO improved to 0.3317,
representing an approximate 39% increase. This substantial gain indicates that the GWO-optimized
model is better at maintaining detection accuracy even under varying decision thresholds.

Similarly, the ROC Curve illustrates the model’s ability to discriminate between Normal and Viral
Pneumonia classes. The YOLOv8s model recorded an AUC of 0.3024, while the optimized YOLOv8s
+ GWO achieved an AUC of 0.4251. Although both AUC values remain below 0.5, suggesting limited
separability on challenging unseen data the improvement confirms that GWO contributes positively to
classifier robustness. The relatively low AUC and AP scores across both models may stem from factors
such as dataset imbalance, the high variability present in external chest radiographs, and domain shift
between training and external test images.

Overall, the PR and ROC analyses complement the confusion matrix and detection visualizations
by revealing that GWO enhances threshold-level performance, reduces misclassification tendencies, and
provides more stable detection behavior across differing operating points. These findings align with the
improvements observed in specificity and overall accuracy reported earlier in this subsection.

Precision-Recall Curve on External Test Dataset

ROC Curve on External Test Dataset
10 ! —— YOLOvSs (AP=0.2384)

YOLOV8s + GWO (AP=0.3317) 1.0 4 —— YOLOvS8s (AUC=0.3024)
YOLOv8s + GWO (AUC=0.4251)
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Figure 19. Precision-Recall curves for Figure 20. ROC curves for YOLOvSs and
YOLOv8s and YOLOV8s + GWO on the YOLOvS8s + GWO on the external test dataset

external test dataset

3.7.1. Statistical Significance Analysis

To rigorously evaluate model performance on the external test dataset, we performed statistical
analyses, including 95% confidence intervals (CI) for accuracy, sensitivity, and specificity, along with
the McNemar test to compare the baseline YOLOvVS8s model with its GWO-optimized variant. The
McNemar test, used to assess classifier agreement [45], revealed that although the optimized model
improved overall accuracy and confidence, most failure cases overlapped with those of the baseline.
The confidence intervals for key performance metrics are summarized in Table 11. Notably, the
optimized model achieved a higher accuracy of 0.9884 compared to 0.9598 for the baseline, with a 95%
CI ranging from 0.9853 to 0.9912. Sensitivity remained high for both models, measuring 0.9885 for the
baseline and 0.9758 for the optimized model, while specificity improved substantially from 0.9453 to
0.9948 following optimization. These results indicate that the GWO-enhanced model not only increases
overall correctness but also reduces false positives, demonstrating greater reliability in distinguishing
between normal and Viral Pneumonia cases.
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Table 11 presents the exact confidence intervals for these metrics, providing a quantitative
measure of the statistical certainty associated with the reported values. The intervals highlight that the
performance gains of the optimized model are statistically meaningful rather than incidental.

Table 11. Confidence intervals (95%) for accuracy, sensitivity, and specificity of the baseline
YOLOvV8s model and the GWO-optimized YOLOv8s on the external test dataset
Metric YOLOVSs (Baseline) 95% CI YOLOV8s + GWO 95% CI

Accuracy 0.9598 0.9539 - 0.9649 0.9884 0.9853-0.9912
Sensitivity 0.9885 0.9821 - 0.9926 0.9758 0.9672 - 0.9822
Specificity 0.9453 0.9369 - 0.9525 0.9948 0.9917 - 0.9968

In addition to confidence intervals, the McNemar test was performed to statistically assess
differences in prediction correctness between the two models on a per-image basis. The contingency
table, shown in Table 12, summarizes the count of images for which both models made correct
predictions, only one model was correct, or both were incorrect. The McNemar test yielded a p-value
less than 0.001, indicating a statistically significant improvement in the GWO-optimized model
compared to the baseline. This confirms that the observed increase in accuracy and specificity is unlikely
to have occurred by chance.

Table 12. Contingency table for the McNemar test comparing correctness of predictions between the

baseline
GWO Correct GWO Incorrect
Baseline Correct 4699 26
Baseline Incorrect 168 33

Overall, the statistical analyses demonstrate that integrating the Grey Wolf Optimizer into the
YOLOVS8s training process substantially enhances the model's predictive performance on unseen
external data. The optimized model provides more reliable detection of Viral Pneumonia while
maintaining high sensitivity, thereby improving clinical applicability without sacrificing the model’s
ability to identify true positive cases. These findings complement the qualitative and quantitative results
discussed previously, reinforcing the conclusion that hyperparameter optimization contributes
significantly to robust and consistent model behavior.

3.8. Error Case and Failure Mode Analysis

To further understand the limitations of both models, qualitative error-case analysis was
conducted using the external test dataset. Representative failure samples for each model are presented
in Figure 21, positioned immediately after this subsection. These samples illustrate different scenarios
where the baseline YOLOv8s and the optimized YOLOv8s + GWO fail to correctly classify or localize
the relevant thoracic structures.

In the first row, both models exhibit failure on Normal chest X-ray images by incorrectly
predicting Viral Pneumonia regions with high confidence. This false-positive behavior is more
pronounced in the baseline YOLOv8s model, where bounding boxes appear redundant and overly wide.
The GWO-optimized model demonstrates slightly improved localization but still produces false-positive
pneumonia predictions, suggesting that subtle radiographic variations in normal lungs resemble early
pathological patterns learned during training.
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Comparison of error and failure cases for YOLOv8s and YOLOv8s + GWO
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Figure 21. Comparison of error and failure cases for YOLOVSs (left) and YOLOv8s + GWO (right) on
the external test dataset

In the second row, failure cases on Viral Pneumonia images highlight the opposite phenomenon.
YOLOVS8s misclassifies the infected lung as Normal with varying confidence, indicating insufficient
sensitivity to diffuse or low-contrast opacities. In contrast, YOLOv8s + GWO identifies the pneumonia
region more reliably, though occasional bounding-box misalignment and class-confidence imbalance
still occur. These cases show that the optimized model mitigates, but does not fully eliminate, the
tendency to under-detect pneumonia in ambiguous radiographs.

Overall, these failure patterns complement the quantitative findings reported earlier. YOLOvV8s
exhibits a higher rate of false positives and mislocalized bounding boxes, while YOLOv8s + GWO
provides more stable predictions but remains susceptible to borderline cases. Visual inspection confirms
the improvements observed in precision, recall, and external test accuracy, while also exposing the
pathological signatures and anatomical variations that remain challenging for both models.

4. DISCUSSIONS

This section interprets the empirical findings reported in Chapter 3 and situates them within the
broader research landscape on deep-learning-based pneumonia detection. The emphasis is placed on
model performance, robustness, stability, and alignment with the current literature on YOLO-based
medical imaging systems.

4.1. Model Performance and Optimization Effects

The integration of the Grey Wolf Optimizer (GWO) with YOLOv8s produced measurable
improvements across several critical performance dimensions. Unlike prior YOLOvVS applications for
pneumonia detection, this study integrates a multi-stage Grey Wolf Optimizer to simultaneously
optimize multiple hyperparameters, enabling improved generalization and stability on heterogeneous
external datasets. As shown in Table 8, the optimized model achieved higher mean confidence and
reduced variance for both normal and pneumonia cases. This stability implies more reliable predictions
and fewer borderline outputs, which is important for diagnostic workflows where inconsistent
confidence scores can undermine clinician trust. Figure 14 further illustrates how GWO reduces overly
uncertain predictions, resulting in a confidence distribution that is more concentrated and less erratic.
These findings are consistent with studies demonstrating that metaheuristic-based hyperparameter
tuning can substantially improve convergence behavior and predictive reliability in YOLO architectures
applied to medical imaging tasks [13], [14], [17], [20].
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The overall classification performance also improved, with external test accuracy increasing from
95.92% to 98.80% as summarized in Table 9. This uplift of 1.43% is meaningful in clinical practice, as
even marginal gains can reduce missed pneumonia diagnoses. It also highlights the value of
hyperparameter optimization in building more reliable Al-driven diagnostic systems. The observed
improvements align with reports that combining YOLOv8 with auxiliary optimization or architectural
enhancements can strengthen diagnostic precision in radiological contexts [6], [12], [18], [21]. The
confusion matrices and receiver operating characteristic curves of the external evaluation (Figures 16-
18) demonstrate that the model maintains high sensitivity while reducing false negatives a clinically
desirable outcome because undetected pneumonia poses the highest risk to patient safety. These findings
demonstrate the potential of metaheuristic optimization methods, such as GWO, to improve deep
learning model reliability and reproducibility, which is a critical concern in computer vision and Al-
driven medical informatics applications.

4.2. Robustness, Generalization, and Comparison with Prior Research

A key aspect of the evaluation involved assessing generalization through external testing. The
optimized model performed strongly across domain-shifted data sourced from a different clinical
environment, as reflected in AUC and PR curves in Figures 17 and 18. By enhancing model stability
and reducing false positives, the optimized YOLOv8s + GWO framework provides a blueprint for more
reliable Al systems that can be deployed in resource-constrained clinical settings, as well as in broader
computer vision applications requiring consistent detection under variable imaging conditions. This
robustness is consistent with findings that metaheuristic-enhanced models often generalize better to
heterogeneous datasets due to improved parameter landscapes and smoother decision boundaries [14],
[17], [20].

Previous studies on YOLO-based pneumonia detection have reported accuracy ranging from
approximately 56% to 97%, depending on factors such as dataset size, noise level, and image quality
[6],[7], [12]. The accuracy achieved by YOLOv8s combined with GWO in this study reaches the upper
bound of this range, highlighting its competitive advantage over prior approaches. Similar
improvements have been observed in recent YOLOVS applications for other thoracic conditions,
including tuberculosis and pulmonary abnormalities [18], [23], [39]. These trends reflect broader
advancements in YOLO-based detection across both medical and non-medical domains. For instance,
optimized YOLO frameworks have demonstrated greater reliability and stability in lung ultrasound [39],
cataract detection [31, 34], skin lesion detection [29-31], and traffic monitoring [35]. Beyond healthcare,
comparable gains have been reported in autonomous driving [38] and environmental monitoring [32,
33], underscoring the adaptability of optimization-enhanced YOLO architectures across diverse
applications.

The trends observed here mirror advancements in YOLO-based detection across other medical
modalities. Recent works on lung ultrasound B-line identification [39], cataract detection [31], and
pulmonary nodule analysis [23] show that optimized or augmented YOLO frameworks often achieve
higher reliability and stability than their baseline counterparts. Beyond the medical domain, similar
behaviors have been noted in autonomous driving and environmental monitoring applications, where
optimized YOLO networks provide better consistency and robustness under varied imaging conditions
[31], [32], [33], [35]. These parallels reinforce the adaptability of optimization-enhanced YOLO
architectures across diverse fields.

The McNemar test results in Tables 10 and 11 offer additional perspective on classifier agreement.
Although the optimized model exhibited performance improvements, the statistical test showed no
significant difference in disagreement patterns between the two classifiers. This outcome suggests that
while GWO optimization improves confidence and overall accuracy, the specific cases where the
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baseline model fails are not entirely distinct from those of the optimized version. Consequently, future
refinements may need to target the specific subset of borderline images that remain challenging for both
systems.

4.3. Error Patterns, Limitations, and Future Directions

Error analysis in Figure 21 indicates that missed detections often arise in low-contrast radiographs
or images exhibiting atypical anatomical presentations. Such cases tend to challenge automated systems
due to their subtle opacity structures, and similar limitations have been reported in previous pneumonia
and lung disease detection studies using YOLO-based frameworks [22], [23], [24]. These patterns also
highlight the influence of dataset characteristics on model behavior. Because the external dataset
originates from a different Asian clinical context, the possibility of regional or equipment-specific bias
cannot be fully ruled out. Prior studies similarly warn that training on geographically narrow datasets
may produce models that struggle under global variations in imaging protocols [6], [18], [27].

While our study does not provide full computational speed metrics, the demonstrated
improvements suggest the model is promising for real-time triage or mobile-clinic deployment scenarios
discussed in recent YOLOvS medical imaging research [39], [40], [41]. Reviewer concerns about
inference speed and deployment latency are therefore only partially addressable with the present data.
Nonetheless, the demonstrated reliability improvements and external generalization suggest that the
model is well-positioned for future deployment-oriented evaluations.

Future research could explore targeted strategies to reduce error cases, such as contrastive
learning, uncertainty modeling, or attention-based mechanisms, which have shown promise in related
thoracic imaging tasks [23], [24], [40]. Additional experiments involving multi-center datasets would
also provide stronger evidence regarding global generalization and potential dataset bias. Future work
should explore integration of multi-center and multi-modal datasets, as well as adaptive optimization
strategies, to further enhance model robustness, generalization, and applicability in computer vision
systems beyond medical imaging. Collectively, these findings demonstrate that GWO-optimized
YOLOvV8s not only advances pneumonia detection accuracy but also provides insights and
methodologies applicable to broader Al and computer vision challenges.

5. CONCLUSION

This study introduced a hybrid YOLOv8s—Grey Wolf Optimizer (GWO) framework for
automated Viral Pneumonia detection from chest X-ray images and demonstrated that metaheuristic-
driven optimization can substantially enhance deep-learning performance in medical imaging. The
optimized model achieved stable and high-quality predictions, with 0.946 precision, 0.965 recall, 0.983
mAP@50, and 0.827 mAP@50-95 on the training and validation datasets. Evaluation on an external
dataset further confirmed its robustness, yielding 98.80% accuracy, 99.48% specificity, and 97.46%
sensitivity. These results indicate stronger generalization, reduced false positives, and improved overall
reliability compared with the baseline YOLOv8s model, which achieved 95.92% accuracy, 94.53%
specificity, and 98.67% sensitivity. The improvements demonstrate that GWO-based hyperparameter
tuning enhances convergence quality and confidence stability while maintaining computational
efficiency.

When positioned within the existing research landscape, the proposed framework offers clear
advantages. Earlier work employing YOLOv8 for pneumonia classification reported substantially lower
accuracy due to dataset imbalance and minimal optimization, with performance dropping to 56.15% for
pneumonia and 67.5% for normal samples. By contrast, more advanced studies combining YOLOVS
with extensive synthetic augmentation achieved accuracy values approaching 97%, underscoring the
importance of data diversity and enhanced preprocessing. Reviews of YOLOvS applications in medical
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imaging further highlight that robust reliability typically emerges only when preprocessing and
hyperparameter optimization are carefully tuned to the underlying data characteristics.

The present study contributes an alternative pathway to such improvements. The YOLOvS8s +
GWO model delivers accuracy that matches or surpasses augmentation-based approaches without
relying on synthetic data generation or heavy preprocessing pipelines. This supports the argument that
metaheuristic optimization provides a lightweight yet effective enhancement strategy, particularly
valuable in clinical environments where data availability and diversity may be limited. Through this
optimization-centered approach, the model effectively bridges the performance gap between early
YOLOVS implementations with modest results and more complex, augmentation-driven frameworks
that require additional computational resources.

Overall, the findings of this research demonstrate that the incorporation of metaheuristic
optimization into deep-learning pipelines can meaningfully improve diagnostic precision,
generalization, and robustness for pneumonia detection. The proposed YOLOv8s + GWO framework
offers a computationally efficient, interpretable, and clinically adaptable solution suitable for supporting
Al-assisted radiological workflows, early disease detection, and future large-scale medical informatics
applications.

CONFLICT OF INTEREST

The authors declares that there is no conflict of interest between the authors or with research
object in this paper.

ACKNOWLEDGEMENT

The author would like to express his sincere gratitude to Universitas Dian Nuswantoro,
where the author studied, and to Cinantya Paramita, S.Kom.,M.Eng for her valuable guidance, advice,
and support throughout this research. The author also thanks the providers of the Chest X-ray
Pneumonia and 3 Types of Pneumonia datasets who have published their data, which contributed
significantly to this research. Finally, the author's deepest appreciation goes to his family for their
financial support, motivation, and encouragement, which have played a vital role in the completion of
this research and the author's educational journey.

REFERENCES

[1]  World Health Organization, “Pneumonia: Key Facts,” Nov. 11 2022. https://www.who.int/news-
room/fact-sheets/detail/pneumonia (accessed Dec. 2025).

[2]  Y.Matsumura, et al., “Epidemiology of respiratory viruses according to age group in Kyoto city,
Japan, 2023-24”, Sci. Rep., vol. 15, Art. 85068, 2025. doi: 10.1038/s41598-024-85068-7.

[3]  N. Karabulut, et al., “The epidemiological features and pathogen spectrum of respiratory tract
infections using a multiplex RT-PCR panel: February 2021-July 2023,” Diagnostics, vol. 14, no.
11, p. 1071, 2024. doi: 10.3390/diagnostics14111071.

[4] Radiopaedia Foundation, “Viral respiratory tract infection,” Radiopaedia.org - Last revised by
Y. Weerakkody on 22 Apr 2022. https://radiopaedia.org/articles/viral-pneumonia (accessed Dec.
2025).

[5] S. M. Simsek, et al., “Seasonal distribution of viral pneumonia after COVID-19 pandemic,”
Trop. Med. Infect. Dis., vol. 10, no. 9, Art. 268, 2025. doi: 10.3390/tropicalmed10090268

[6] A.S. Hyperastuty, D. A. Pradana, A. Widayani, F. D. Putra, and Y. Mukhammad, “Pneumonia
detection on X-rays image using YOLOvVS model,” J. Appl. Intell. Syst., vol. 9, no. 2, pp. 200-
206, 2024, doi: 10.62411/jais.v9i2.10865.

[7] T. Rahman, M. E. H. Chowdhury, A. Khandakar, K. R. Islam, M. A. Kadir, and Z. B. Mahbub,
“Transfer learning with deep convolutional neural network (CNN) for pneumonia detection
using chest X-ray,” Appl. Sci., vol. 10, no. 9, p. 3233, 2020, doi: 10.3390/app10093233.

5787


https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5699-5790
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5419

[8] P. Mooney, “Chest X-Ray Images (Pneumonia) [Dataset],” Kaggle, 2018.
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (accessed Dec. 2025).

[9] A. Kolas, “3 Kinds of Pneumonia [Dataset],” Kaggle, 2022.
https://www.kaggle.com/datasets/artyomkolas/3-kinds-of-pneumonia (accessed Dec. 2025).

[10] A. Widayani, Y. Nugroho, and D. A. Pradana, “Review of application YOLOvVS in medical
imaging,” Indones. Appl. Phys. Lett., vol. 5, no. 1, pp. 23-33, 2024, doi:
10.20473/iapl.v5i1.57001.

[11] D. F. Hermens, “Automatic object detection for behavioural research using YOLOVS,” Behav.
Res. Methods, vol. 56, no. 7, pp. 7307—7330, 2024, doi: 10.3758/s13428-024-02420-5.

[12] Y. Huang, Z. Liu, and X. Wang, “YOLOvV8 framework for COVID-19 and pneumonia
detection,” J. Med. Imaging Artif. Intell., vol. 5, no. 2, pp. 112-124, 2024, doi:
10.1177/20552076251341092.

[13] J.Lin, L. Dong, and Y. Xu, “An improved grey wolf optimization with multi-strategy ensemble,”
Sensors, vol. 22, no. 18, p. 6843, 2022, doi: 10.3390/s22186843.

[14] M. Yu,J. Xu, W. Liang, Y. Qiu, S. Bao, and L. Tang, “Improved multi-strategy adaptive grey
wolf optimization for practical engineering applications,” Artif. Intell. Rev., vol. 57, pp. 1-25,
2024, doi: 10.1007/s10462-023-10653-3.

[15] H.Ryu,S. Kim, and J. Park, “YOLOvS8 with post-processing for small object detection,” Sensors,
vol. 24, no. 3, p. 1121, 2024, doi: 10.3390/s24031121.

[16] M. Parveen Rahamathulla, “YOLOvVS8’s advancements in tuberculosis identification from chest
radiographs,”  Fromntiers in Big Data, vol. 4, Art. 1401981, 2024. doi:
10.3389/fdata.2024.1401981.

[17] A. Q. Khan, G. Sun, M. Khalid, A. Imran, A. Bilal, M. Azam, et al., “A novel fusion of genetic
grey wolf optimization and kernel extreme learning machines for precise diabetic eye disease
classification,” PLOS ONE, vol. 19, no. 5, €0303094, 2024. doi: 10.1371/journal.pone.0303094

[18] Y. Xie, B. Zhu, Y. Jiang, B. Zhao, H. Yu, “Diagnosis of pneumonia from chest X-ray images
using YOLO deep learning,” Frontiers in Neurorobotics, 2025.
https://www.frontiersin.org/journals/fnbot/ (accessed Dec. 2025).

[19] A. Elhanashi, “Al-Powered Object Detection in Radiology: Current Models and Future
Directions,”  Diagnostics (MDPI), vol. 11, no. 5, Art. 141, 2025. doi:
10.3390/diagnostics1105141.

[20] M. A. A. Albadr, “Gray Wolf Optimization—Extreme Learning Machine (GWO-ELM) technique
for diabetic retinopathy detection,” Frontiers in Public Health, vol. 10, 2022. doi:
10.3389/fpubh.2022.925901.

[21] D. Li, “Attention-enhanced architecture for improved pneumonia detection in chest X-ray
images,” BMC Med. Imaging, vol. 24, Art. 6, 2024, doi:10.1186/s12880-023-01177-1.

[22] R. Siddiqi and S. Javaid, “Deep learning for pneumonia detection in chest X-ray images: A
comprehensive  survey,” J. [Imaging, vol. 10, no. & p. 176, 2024, doi:
10.3390/jimaging10080176.

[23] L. Wu, J. Zhang, Y. Wang, R. Ding, Y. Cao, G. Liu, C. Liufu, B. Xie, S. Kang, R. Liu, W. Li,
and F. Guan, “Pneumonia detection based on RSNA dataset and anchor-free deep learning
detector,” Sci. Rep., vol. 14, Art. 1929, Jan. 2024, doi: 10.1038/s41598-024-52156-7.

[24] E. Yanar, F. Hardalag, and K. Ayturan, “PELM: A deep learning model for early detection of
pneumonia in chest radiography,” Appl. Sci., vol. 15, no. 12, p. 6487, 2025, doi:
10.3390/app15126487.

[25] A. Ait Nasser and M. A. Akhloufi, “A review of recent advances in deep learning models for
chest disease detection using radiography,” Diagnostics, vol. 13, no. 1, p. 159, 2023, doi:
10.3390/diagnostics13010159.

[26] S. Singh, M. Kumar, A. Kumar, B. K. Verma, K. Abhishek, and S. Selvarajan, “Efficient
pneumonia detection using Vision Transformers on chest X-rays,” Sci. Rep., vol. 14, p. 2487,
2024, doi: 10.1038/s41598-024-52703-2.

[27] Z. Cai, K. Zhou, and Z. Liao, “A systematic review of YOLO-based object detection in medical
imaging: Advances, challenges, and future directions,” Comput. Mater. Contin., vol. 85, no. 2,
pp- 2255-2303, 2025, doi: 10.32604/cmc.2025.067994.

5788


https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5699-5790
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5419

(28]

[29]

[30]

[31]

[32]

[33]

[35]

[36]

[37]

[38]

[43]

A. B. Rashid, J. Asma, K. Barua, and D. Das, “An enhanced deep learning framework for
pneumonia detection in chest X-rays integrating CBAM with DenseNet-121,” SN Comput. Sci.,
vol. 6, no. 5, p. 472, May 2025, doi: 10.1007/s42979-025-04017-x.

A. A. H. Haresta, C. Paramita, and W. D. Tjahtjono, “Development of ViScan: A mobile
application for skin cancer detection using lonic framework and YOLOv10x,” J. Appl.
Informatics Comput., vol. 9, no. 3, pp. 863-867, Jun. 2025, doi: 10.30871/jaic.v9i3.9426.

W. T. D. Tjahjono, C. Paramita, C. Supriyanto, A. J. Savicevic, S. Rakasiwi, and A. A. Haresta,
“YOLOv10x model for accurate first detection of skin diseases from dermoscopic objects,”
in Proc. 2025 Int. Conf. Smart Comput, IloT and Mach. Learn. (SIML),
Surakarta, Indonesia, 2025, pp. 1-6, doi: 10.1109/SIML65326.2025.11080864.

C. Paramita, C. Supriyanto, P. Soli¢, C. Wada, and A. A. Dzaky, “Performance evaluation of
YOLOvVS models for multi-class skin lesion detection from dermoscopic images,” in Proc. 2025
Int. Conf. Smart Comput., IoT and Mach. Learn. (SIML), Surakarta, Indonesia, 2025, pp. 1-6,
doi: 10.1109/SIML65326.2025.11080819.

C. Paramita, C. Supriyanto, Amalia, and K. R. Putra, “Comparative analysis of YOLOvS and
YOLOVS cigarette detection in social media content,” Semarang Journal of Information
Technology (SJ1), vol. 11, no. 2, pp. 341-352, May 2024, doi: 10.15294/sji.v11i2.2808.

M. A. Widyananda, C. Paramita, C. Supriyanto, A. W. Wibowo, D. W. Utomo, and S. T.
Widyaatmadja, “YOLOvX method for cataract early detection,” in Proc. 2025 Int. Conf- Smart
Comput., IoT and Mach. Learn. (SIML), Surakarta, Indonesia, 2025, pp. 1-5, doi:
10.1109/SIML65326.2025.11080840.

B. A. Mahendra, C. Supriyanto, C. Paramita, N. Z. B. M. Safar, and I. N. Dewi, “Development
of a smartphone-based cataract detection system using YOLOv10x and Ionic framework with a
UI/UX centric approach,” in Proc. 2025 Int. Conf. Smart Comput., loT and Mach. Learn.
(SIML), Surakarta, Indonesia, 2025, pp. 1-5, doi: 10.1109/SIML65326.2025.11081150.

P. . Setiaji, W. A. Triyanto, and M. Nurhaliza, “Real-Time Traffic Density and Anomaly
Monitoring Using YOLOVS, OpenCV and Pattern Recognition for Smart City Applications in
Demak,” J. Tek. Inform. (JUTIF), vol. 6, no. 4, pp. 1769-1782, Aug. 2025. doi:
10.52436/1.jutif.2025.6.4.4867.

B. Nusman, A. Y. Rahman, and R. P. Putera, “LOBSTER AGE DETECTION USING DIGITAL
VIDEO-BASED YOLO V8 ALGORITHM,” J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1155-
1163, Jul. 2024. doi: 10.52436/1.jutif.2024.5.4.2144.

Ahmad Fajruddin Syauqi and D. D. Prasetya, “DEVELOPMENT OF HERBIFY
APPLICATION WITH Al INTEGRATED UTILIZING YOLO V8 FOR OPTIMIZING
HERBAL POTENTIAL IN INDONESIA,” J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 113-124,
Jul. 2024. doi: 10.52436/1 jutif.2024.5.4.2094.

Z. S. Hidayat, Y. A. . Wijaya, and R. Kurniawan, “OPTIMIZING YOLOVS FOR
AUTONOMOUS DRIVING: BATCH SIZE FOR BEST MEAN AVERAGE PRECISION
(MAP),” J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1147-1153, Jul. 2024. doi:
10.52436/1.jutif.2024.5.4.1626.

N. Okila et al., “Deep learning for accurate B-line detection and localization in lung ultrasound
imaging,” Frontiers in Artificial Intelligence, 2025, doi: 10.3389/frai.2025.1560523.

F. Conversano ef al., “Automatic approach for B-lines detection in lung ultrasound images using
You Only Look Once algorithm,” Journal of Ultrasound, 2025, doi: 10.1007/s40477-025-01077-
w.

X. Wang et al., “Enhanced pulmonary nodule detection with U-Net, YOLOVS, and Swin
Transformer,” BMC Medical Imaging, vol. 25, p. 247, 2025, doi: 10.1186/s12880-025-01784-0.
W. Zhu, X. Wang, J. Xing, X. S. Xu, and M. Yuan, “YOLOv8-BCD: a real-time deep learning
framework for pulmonary nodule detection in computed tomography imaging,” Quantitative
Imaging in Medicine and Surgery, vol. 15,n0. 9, pp. 8189-8204, 2025, doi: 10.21037/qims-2025-
824.

K. Khotimah, S. Surono, and A. Thobirin, “Optimizing EfficientNet for imbalanced medical
image classification using grey wolf optimization,” Computer Science and Information
Technologies, vol. 6, no. 2, pp. 112-121, 2025, doi: 10.11591/csit.v6i2.pp112-121.

5789


https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5699-5790

P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5419

[44] H. Yang et al., “Utilizing convolutional neural network and gray wolf optimization for image
super-resolution,”  Journal of King Saud University - Science, 2025, doi:
10.25259/JKSUS 162 _2024.

[45] J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,”
Biometrics, vol. 33, no. 1, pp. 159-174, 1977, doi: 10.2307/2529310.

[46] R. Kailasam and S. Balasubramanian, “Deep Learning for Pneumonia Detection: A Combined
CNN and YOLO Approach,” Hum.-Cent. Intell. Syst., vol. 5, pp. 44-62, 2025, doi:
10.1007/s44230-025-00091-9.

[47] M. R. Hasan, S. M. A. Ullah, and S. M. R. Islam, “Recent advancement of deep learning
techniques for pneumonia prediction from chest X-ray image,” Med. Rep., vol. 7, p. 100106, Oct.
2024, doi: 10.1016/j.hmedic.2024.100106.

[48] M. M. Kabir, M. F. Mridha, A. Rahman, M. A. Hamid, and M. M. Monowar, “Detection of
COVID-19, pneumonia, and tuberculosis from radiographs using Al-driven knowledge
distillation,” Heliyon, vol. 10, no. 5, p. e26801, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26801.

[49] J. M. Kimeu, M. Kisangiri, H. Mbelwa, and J. Leo, “Deep learning-based mobile application for

the enhancement of pneumonia medical imaging analysis: A case-study of West-Meru Hospital,”
Informatics Med. Unlocked, vol. 50, p. 101582, 2024, doi: 10.1016/j.imu.2024.101582.

5790


https://jutif.if.unsoed.ac.id/

