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Abstract 

Viral pneumonia continues to impose a substantial global health burden, making rapid and reliable radiographic 

detection essential for early clinical management. This study proposes a hybrid framework integrating the YOLOv8s 

detection model with the Grey Wolf Optimizer (GWO) to enhance hyperparameter tuning for Viral Pneumonia 

identification in chest X-ray images. A curated set of Normal and Viral Pneumonia samples was manually annotated 

and preprocessed before training. The optimization process involved multi-stage refinement of learning rate, 

momentum, weight decay, and loss-gain parameters to improve convergence stability and detection accuracy. The 

optimized YOLOv8s + GWO model demonstrated notable performance gains, achieving 0.965 recall, 0.983 

mAP@50, and 0.827 mAP@50–95 on internal evaluations. External testing further validated its robustness, 

delivering 98.80% accuracy, 99.48% specificity, and 97.46% sensitivity. These results highlight not only enhanced 

clinical diagnostic reliability but also contributions to Informatics and Computer Science, demonstrating the 

effectiveness of metaheuristic-guided optimization in improving deep-learning model performance, generalization, 

and computational efficiency for AI-driven image detection tasks. 
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1. INTRODUCTION 

Pneumonia is a severe respiratory infection characterized by alveolar inflammation, leading to 

fluid accumulation and impaired gas exchange in the lungs [1], [2]. It remains a leading cause of 

infectious disease mortality worldwide, accounting for over 2.5 million deaths annually, including 

approximately 672,000 children under five years of age [1]. Regional epidemiological studies in East 

Asia indicate that lower respiratory tract infections continue to represent a major cause of hospital 

admissions, particularly among pediatric and elderly populations [2], [3]. Multiplex RT-PCR analyses 

further demonstrate that Viral pathogens contribute significantly to seasonal respiratory infections [3], 

[5]. This epidemiological burden underscores the urgent clinical need for rapid and accurate 

differentiation between Viral and Bacterial Pneumonia, a task that remains challenging in settings with 

limited radiological expertise. 

Radiographically, Viral Pneumonia commonly manifests as diffuse, bilateral interstitial infiltrates 

or ground-glass opacities, whereas bacterial pneumonia often presents as localized consolidations [4]. 

These subtle imaging differences can result in considerable diagnostic variability. Integrating artificial 

intelligence (AI) into radiology workflows offers a potential solution for automated feature extraction 
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and rapid interpretation of chest imaging [5], [6], [19]. The YOLO (You Only Look Once) family of 

deep learning models has emerged as a leading architecture due to its real-time detection capabilities, 

high spatial precision, and proven performance across a range of medical imaging applications [6], [7], 

[10], [11], [15], [16], [18], [27]. Recent research has expanded YOLOv8 applications to multi-organ 

detection in chest X-rays [46], real-time detection of lung diseases [12], and enhanced A-line and B-line 

detection in lung ultrasound [39], [40], highlighting the trend toward ensemble and multi-modal AI 

strategies in medical imaging. 

Despite these advances, YOLO-based models often experience performance degradation when 

confronted with heterogeneous image quality, domain shifts, or class imbalance [6], [12], [15]. In 

radiology, AI-powered object detection has attracted significant attention for its potential to improve 

diagnostic workflows [19]. Beyond medical imaging, YOLO architectures have been successfully 

applied to a variety of tasks, including skin lesion detection [29-31], cataract detection [33-34], 

autonomous driving [38], traffic monitoring [35], and herbal product identification [37], highlighting 

their adaptability across diverse computer vision applications. However, manual hyperparameter tuning 

can result in suboptimal convergence, unstable sensitivity, and limited generalization. To address this, 

metaheuristic optimization algorithms particularly the Grey Wolf Optimizer (GWO) have shown 

promise in enhancing hyperparameter selection for deep learning models [13], [14], [17], [20], [43], 

[44]. Leveraging GWO’s global search capabilities can stabilize training and improve diagnostic 

accuracy across healthcare tasks [12], [14], [17], [20]. Nevertheless, its application to multi-modal 

datasets, such as the integration of chest X-ray and lung ultrasound imaging, remains largely unexplored, 

restricting the potential for achieving higher accuracy and better generalization [6], [12], [39], [40]. 

Table 1 presents a summary of the publicly available pneumonia datasets used in this study, 

providing a clear overview of the number of images and class distribution for both training and testing. 

 

Table 1. Composition of Pneumonia Training and Testing Datasets 

Dataset Label Number of Images 

Training [8] Normal 1,583 

Training [8] Viral Pneumonia 1,493 

Testing [9] Normal + Viral Pneumonia 4,926 

 

Figures 1 and 2 illustrate representative radiographic differences between normal lungs and Viral 

Pneumonia. Normal chest X-rays display clear lung fields with well-defined anatomical structures, 

while Viral Pneumonia images exhibit diffuse or patchy opacities that obscure lung anatomy. These 

visual cues are essential for training YOLOv8s to detect and highlight abnormal regions in a clinically 

interpretable manner. 

 

 

Figure 1. Normal Lungs 

 

 

Figure 2. Viral Pneumonia Lungs
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Conventional YOLOv8s training on heterogeneous chest X-ray datasets achieved high mAP@50 

scores (~97%) but exhibited lower overall performance across multiple thresholds, with mAP@50-95 

around 81-82% [6], [12]. Manual hyperparameter tuning provided limited improvement, often yielding 

marginal gains in mAP and recall. Integrating the Grey Wolf Optimizer (GWO) demonstrated the 

potential to enhance model performance, improving mAP@50-95, accuracy, and specificity, while 

maintaining comparable recall and sensitivity. In this study, the YOLOv8s + GWO framework achieved 

an accuracy of 98.8%, specificity of 99.48%, recall of 95.55%, and mAP@50-95 of 82.1%, indicating 

reliable detection of Viral Pneumonia across diverse datasets. Model performance was comprehensively 

assessed using Precision, Recall, Accuracy, Specificity, and mAP, ensuring robust evaluation and 

minimizing false negatives, which is critical for clinical decision-making. 

This study proposes a novel hybrid YOLOv8s + GWO framework for Viral pneumonia detection. 

Unlike prior approaches that rely solely on YOLOv8s or manual tuning, the proposed method leverages 

GWO to simultaneously optimize multiple hyperparameters, including learning rate, momentum, and 

weight decay. By addressing multi-modal limitations, enhancing training stability, and improving 

generalization, the framework is designed to deliver Viral clinically meaningful predictions, supporting 

rapid diagnosis and optimized workflows in resource-constrained healthcare settings. The integration of 

AI-driven informatics engineering demonstrates the potential to enhance early detection, improve 

clinical decision-making, and extend deep learning applicability across heterogeneous imaging 

modalities [6], [12], [14], [18]-[28], [39], [40], [46]-[49]. 

2. METHOD 

  

 
Figure 3. End-to-End YOLOv8s-GWO Pipeline with 3-Phase Optimization 

 

Figure 3 illustrates the complete methodological pipeline of the proposed YOLOv8s–GWO 

framework for Viral Pneumonia detection from chest X-ray images. The workflow begins with dataset 

preparation and annotation, followed by preprocessing and augmentation, baseline YOLOv8s training, 

multi-stage Grey Wolf Optimizer (GWO) hyperparameter tuning, final retraining using the optimized 

configuration, and model evaluation. This structured design ensures reproducibility, systematic 

hyperparameter exploration, and robust performance assessment.  

2.1. Dataset Preparation, Annotation, and Ethical Considerations 

Two publicly available chest X-ray datasets were initially considered, namely the Chest X-ray 

Pneumonia dataset [8] and the Three Kinds of Pneumonia dataset [9]. However, for model training, only 

dataset [8] was utilized, as it contains clearly separated image groups for Normal, Viral Pneumonia, and 

Bacterial Pneumonia. Following prior studies focusing on Viral Pneumonia detection [6], [7], [10], [12], 
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all Bacterial Pneumonia samples were excluded, resulting in a total of 3,076 images, comprising 1,583 

Normal and 1,493 Viral Pneumonia cases. 

 

 
Figure 4. Annotation interface of LabelImg 

showing a chest X-ray image labeled as 

‘Normal’ 

 
Figure 5. Annotation interface of LabelImg 

showing a chest X-ray image labeled as ‘Viral 

Pneumonia

 

All images were manually annotated using LabelImg v1.8.6 to generate YOLO-format text files 

containing class identifiers and normalized bounding-box coordinates. Figures 4 and 5 illustrate 

representative annotated samples for both classes. After filtering out corrupted, duplicated, and low 

quality images, the remaining dataset was divided into 2,139 images for training, 611 images for 

validation, and 307 images for testing, preserving class balance and reducing distributional bias during 

model development. 

For model evaluation, the Three Kinds of Pneumonia dataset [9] was utilized as the test set. Only 

the Normal and Viral Pneumonia classes were selected from this dataset, resulting in 3,270 Normal 

images and 1,656 Viral Pneumonia images. These images were combined into a single folder named 

test_xray to serve as an independent test set for assessing the model's performance after training. 

All datasets used in this study were publicly available on Kaggle and fully anonymized. The 

research adhered to GDPR regulations. Since all data were publicly accessible and de-identified, the 

institutional review board (IRB) confirmed that formal ethical approval was not required for this study. 

2.2. Preprocessing and Augmentation Strategy 

All images were resized to 640 × 640 pixels and normalized according to the Ultralytics YOLOv8 

preprocessing pipeline. To improve generalization and reduce overfitting, an extensive augmentation 

strategy was applied using Albumentations 2.0.8. This included random horizontal flipping, affine 

transformations, variations in brightness and contrast, slight rotations, and other regularization 

techniques supported by the YOLOv8 pipeline. These augmentations simulate realistic radiographic 

variations commonly encountered in clinical practice and help the model avoid over-reliance on specific 

image regions, improving robustness to unseen data. 

2.3. Baseline YOLOv8s Architecture and Initial Training 

The YOLOv8s architecture was chosen for its computational efficiency and strong performance 

in medical image detection tasks [10], [11], [15], [16], [27]. It features an end-to-end design that 

seamlessly integrates convolutional feature extraction, bounding box regression, and object 

classification within a single unified network. A baseline YOLOv8s model was trained for 100 epochs 

using the default hyperparameters provided in Ultralytics YOLOv8 v8.3.206, serving as the reference 

against which the GWO-optimized configuration was compared. Previous studies have highlighted 

YOLOv8’s effectiveness in detecting small objects [15], tuberculosis [16], and pulmonary nodules [42], 

while metaheuristic methods such as GWO have been successfully applied for image optimization and 
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super-resolution [43, 44]. These findings inspired the integration of YOLOv8 with GWO to enhance 

pneumonia detection performance. 

2.4. Grey Wolf Optimizer (GWO) for Hyperparameter Tuning 

 

 
Figure 6. GWO Encircling-Hunting Phases for YOLOv8s Hyperparameter Search Space 

 

Figure 6 illustrates the overall hyperparameter optimization process powered by the Grey Wolf 

Optimizer. GWO is inspired by the social hierarchy and cooperative hunting strategies of grey wolves 

[12], [13], and was employed to explore a six dimensional hyperparameter search space for YOLOv8s. 

Each wolf in the population encodes a candidate configuration represented as 

𝜃𝑖 = {𝑙𝑟0,𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚,𝑤𝑒𝑖𝑔ℎ_𝑑𝑒𝑐𝑎𝑦, 𝑏𝑜𝑥, 𝑐𝑙𝑠, 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟}   (1) 

 where the optimizer parameter is sampled from the discrete set {SGD, Adam, AdamW}. The 

performance of each candidate configuration is evaluated using the objective function 

𝑓(∅𝑖) = 0.1𝑃 + 0.1𝑅 + 0.7𝑚𝐴𝑃50−95 + 0.05𝑚𝐴𝑃50−95
𝑁𝑜𝑟𝑚𝑎𝑙 + 0.05𝑚𝐴𝑃50−95

𝑉𝑖𝑟𝑎𝑙  (2) 

which prioritizes overall localization accuracy while preserving balanced performance across the 

Normal and Viral classes [9], [11]. 

The encircling behavior of grey wolves is modeled as: 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ ∙ 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 (𝑡)|,          𝑋1

⃗⃗⃗⃗ = 𝑋𝛼
⃗⃗ ⃗⃗  − 𝐴1

⃗⃗ ⃗⃗ ∙ 𝐷𝛼
⃗⃗⃗⃗  ⃗    (3) 

𝐷𝛽
⃗⃗⃗⃗  ⃗ = |𝐶2

⃗⃗⃗⃗ ∙ 𝑋𝛽
⃗⃗ ⃗⃗ − 𝑋 (𝑡)|,          𝑋2

⃗⃗⃗⃗ = 𝑋𝛽
⃗⃗ ⃗⃗ − 𝐴2

⃗⃗ ⃗⃗  ∙ 𝐷𝛽
⃗⃗⃗⃗  ⃗    (4) 

𝐷𝛿
⃗⃗⃗⃗  ⃗ = |𝐶3

⃗⃗⃗⃗ ∙ 𝑋𝛿
⃗⃗ ⃗⃗ − 𝑋 (𝑡)|,          𝑋3

⃗⃗⃗⃗ = 𝑋𝛿
⃗⃗ ⃗⃗ − 𝐴3

⃗⃗ ⃗⃗  ∙ 𝐷𝛿
⃗⃗⃗⃗  ⃗    (5) 

The position of each wolf is updated by averaging the influence of the three best solutions: 

𝑋(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
       (6) 

The coefficient vectors 𝐴  and 𝐶  are computed as: 

𝐴 = 2𝑎𝑟 1 − 𝑎,          𝐶 = 2𝑟 2      (7) 

Where 𝛼 decreases linearly from 2 to 0 over iterations and 𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗ are random vectors in [0,1]. 

A structured three phase optimization strategy was adopted. Stage A performs global exploration 

with relatively broad variations in hyperparameters. Stage B emphasizes regional refinement by 

narrowing the search region around high performing candidates. Stage C conducts fine tuning with 
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increased evaluation fidelity. Each stage consists of a quick evaluation phase followed by a long 

evaluation phase to ensure balanced assessment of both promising and potentially overlooked 

configurations. Table 2 summarizes the characteristics of the three stages. 

 

Table 2. Three-stages GWO Optimization Strategy 

Stage Quick Eval Long Eval Purpose 

A 20 epochs 20 epochs Global exploration 

B 40 epochs 40 epochs Regional refinement 

C 60 epochs 60 epochs Local fine-tuning 

 

Table 3. Stepwise GWO-based Hyperparameter Optimization Procedure for YOLOv8s 

Step Description 

Input: Dataset configuration (dataset.yaml), YOLOv8s base model (yolov8s.pt), 

hyperparameter ranges (𝑹), number of wolves (𝑵), and maximum iterations 

(𝑻). 

Output: Optimized hyperparameter configuration (𝜽∗) for YOLOv8s + GWO. 

1. Initialize 

Population 

Randomly generate (𝑵) wolves, each representing a parameter set  𝛉𝒊 =

 {𝒍𝒓𝟎,𝐦𝐨𝐦𝐞𝐧𝐭𝐮𝐦,𝐰𝐞𝐢𝐠𝐡𝐭_𝐝𝐞𝐜𝐚𝐲, 𝐛𝐨𝐱, 𝐜𝐥𝐬, 𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐞𝐫} sampled from (𝑹). 

2. Evaluate Initial 

Fitness 

Train YOLOv8s using each 𝜽𝒊 for limited epochs (𝑬) and compute the fitness 

score 𝒇(𝜽𝒊). 
3. Identify Elite 

Wolves 

Select top three wolves as α (best), β (second), and δ (third). 

4. Update Positions 

(Iterative 

Optimization) 

For each non-elite wolf, update its position using GWO’s encircling 

mechanism and randomly adjust optimizer type among 

{𝑺𝑮𝑫,𝑨𝒅𝒂𝒎,𝑨𝒅𝒂𝒎𝑾}. 

5. Re-evaluate 

Fitness 

Train YOLOv8s using updated 𝜽𝒊(𝒕 + 𝟏), compute new fitness 𝒇(𝜽𝒊(𝒕 + 𝟏)), 

and update ranking. 

6. Repeat Iterations Continue updating and evaluating until reaching (𝑻) iterations or convergence. 

7. Multi-Stage 

Refinement 

Conduct optimization in three stages: Stage A (20 epochs), Stage B (40 

epochs), Stage C (60 epochs). 

8. Final Retraining Train YOLOv8s using the best configuration (𝜽∗) for 100 epochs to obtain the 

optimized YOLOv8s + GWO model. 

 

To provide a clear and systematic overview of the multi-stage GWO optimization process, the 

stepwise procedure is summarized in Table 3. Each step outlines the initialization of the wolf population, 

evaluation of candidate hyperparameter configurations, identification of elite wolves, iterative position 

updates via encircling and hunting mechanisms, multi-stage refinement, and final retraining of the 

YOLOv8s model using the optimized hyperparameters. Referring to Table 3 allows readers to follow 

the optimization workflow in a structured and reproducible manner, complementing the mathematical 

formulations and stage descriptions provided above. 

2.4.1. Ablation Study: PSO vs GWO for Hyperparameter Optimization 

To further justify the choice of the Grey Wolf Optimizer as the primary hyperparameter tuning 

strategy, an ablation study was conducted comparing GWO with the Particle Swarm Optimization (PSO) 

algorithm. Both methods were applied to the same baseline YOLOv8s model and evaluated using 

identical dataset partitions, training configurations, and evaluation metrics. The goal of this comparison 

was not to provide an exhaustive benchmarking between the two metaheuristic algorithms, but rather to 
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confirm that GWO achieves at least comparable performance while aligning with the proposed 

optimization strategy. 

In this study, a limited number of particles and wolves were used to ensure rapid evaluation while 

still reflecting the search dynamics of each algorithm. PSO was configured with three particles and three 

iterations, while GWO employed three wolves over three iterations. Each candidate hyperparameter set 

consisted of the learning rate, momentum, and weight decay. For every candidate configuration, the 

model was evaluated using the YOLOv8 validation pipeline to obtain the mAP50 metric. 

The results of the ablation study are summarized in Table 4. As observed, both PSO and GWO 

reached the same maximum mAP50 of 0.98077 despite variations in the specific hyperparameter 

combinations explored by each optimizer. The learning rates, momentum values, and weight decay 

coefficients differed among the best-performing candidates of each algorithm, reflecting the inherent 

stochastic nature of metaheuristic searches. However, these differences did not translate into 

performance gaps, as the model’s validation results remained effectively equivalent. 

 

Table 4. Ablation Study Comparing PSO and GWO Performance 

Optimizer Best Learning Rate Best Momentum Best Weight Decay mAP50 

PSO 0.000195 0.894 0.000367 0.98077 

GWO 0.000329 0.898 0.000449 0.98077 

 

The equivalence in performance can be attributed to the fact that both PSO and GWO effectively 

explore the local regions of the hyperparameter search space near the baseline configuration. Given the 

relatively small search ranges and the already well-tuned baseline model, the marginal differences in 

candidate solutions did not significantly affect the network’s ability to detect Viral Pneumonia. This 

finding reinforces the suitability of GWO for the task, demonstrating that it can achieve competitive 

results while providing the structured, multi-phase optimization framework detailed in the previous 

sections. 

2.5. Algorithmic Workflow and Reproducibility 

The complete optimization routine was implemented under strict determinism. All random seeds 

for Python, NumPy, and PyTorch were fixed to 42, and non-deterministic CuDNN operations were 

disabled. Hyperparameter search ranges were progressively tightened at the end of each stage to promote 

convergence. 

The formal pseudocode of the proposed multi-stage GWO is presented as Algorithm 1. 

Algorithm 1. Multi-Stage GWO for Hyperparameter Optimization 

Require: Dataset 𝐷; YOLOv8s model 𝑀; parameter ranges 𝑅; number of wolves 𝑁; stages 𝑆 =

{𝐴, 𝐵, 𝐶}; evaluation epochs (𝐸𝑞𝑢𝑖𝑐𝑘 , 𝐸𝑙𝑜𝑛𝑔) 

Ensure: Optimized hyperparameters 𝜃∗ 

1: Initialize population Θ = {𝜃1, 𝜃2, … , 𝜃𝑁}  sampled from 𝑅 

2: Set all random seeds for deterministic execution 

3: for each stage 𝑠 ∈ 𝑆 do 

4:   for each wolf 𝜃𝑖 ∈  Θ do 

5:    Train 𝑀 with 𝜃𝑖 for 𝐸𝑞𝑢𝑖𝑐𝑘 epochs 

6:    Compute fitness 𝑓(𝜃𝑖) 

7:   end for 

8:   Sort Θ and identify 𝛼, 𝛽, 𝛿 wolves 

9:   for each non elite wolf 𝜃𝑖 do 

10:    Update 𝜃𝑖 using GWO encircling and hunting equations 
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11:    Randomly resample optimizer type ∈ {𝑆𝐺𝐷, 𝐴𝑑𝑎𝑚, 𝐴𝑑𝑎𝑚𝑊} 

12:   end for 

13:   for each wolf 𝜃𝑖 ∈ Θ do 

14:    Train 𝑀 with 𝜃𝑖 for 𝐸𝑙𝑜𝑛𝑔 epochs 

15:    Recompute fitness 𝑓(𝜃𝑖) 

16:   end for 

17:   Sort Θ and tighten parameter ranges around the top wolves 

18: end for 

19: Determine 𝜃∗ = arg𝑚𝑎𝑥𝜃𝑖
𝑓(𝜃𝑖) 

20: return 𝜃∗ 

2.6. Optimal Configuration and Model Training 

After completing the multi-stage optimization, the final optimal hyperparameter configuration is 

summarized in Table 5. This configuration includes the learning rate, momentum, weight_decay, 

bounding-box regression gain, classification gain, and optimizer type. The final YOLOv8s model was 

retrained for 100 epochs using this optimized configuration to produce the proposed YOLOv8s + GWO 

model. The optimized model demonstrated improved convergence stability, precision, recall, and overall 

mAP, confirming the effectiveness of the metaheuristic optimization strategy in medical imaging 

applications [12], [13]. 

 

Table 5. Final Optimized YOLOv8s + GWO Hyperparameter Configuration 

Parameter Description Optimal Value 

optimizer Optimizer type AdamW 

𝒍𝒓𝟎 Initial learning rate 0.009621 

momentum Momentum factor 0.9260 

weight_decay L2 regularization 

coefficient 

0.0003699 

box Box regression gain 0.08037 

cls Classification loss gain 0.22069 

 

2.7. Experimental Setup and Evaluation Metrics 

Experiments were conducted on a Lenovo laptop equipped with an NVIDIA GeForce RTX 4050 

GPU (6 GB), Intel® Core™ i7-13620H CPU (2.40 GHz), and 16 GB RAM running Windows 11 Home 

(64-bit). The training environment utilized CUDA 12.6, PyTorch 2.5.1 + cu121, and Ultralytics 

YOLOv8 v8.3.206, supported by NumPy 2.2.6, OpenCV 4.12.0.88, Albumentations 2.0.8, and scikit-

learn 1.7.2. Training the baseline and optimized models required approximately 1.09 hours per 100 

epochs. 

Model performance was evaluated using Precision, Recall, Accuracy, Sensitivity, Specificity, and 

Mean Average Precision (mAP) [1], [4], [6], [12], [14], [18], [21], [22], [23], [24]. Sensitivity was 

emphasized because of its clinical importance in detecting Viral Pneumonia cases, while specificity 

measured false positives among normal images. All evaluations were conducted using YOLOv8’s built-

in validation pipeline to ensure consistent and reproducible metric computation. 

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 6, December 2025, Page. 5699-5790 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5419 

 

 

5772 

3. RESULT 

In this section, the results of the research and the experiments carried out are presented. The 

results include both quantitative and qualitative analyses of the YOLOv8s and YOLOv8s + GWO 

models for Viral Pneumonia detection from chest X-ray images. 

3.1. Dataset Preparation and Annotation 

The study utilized a dataset comprising 4,254 labeled chest X-ray instances, including 2,224 

Normal and 2,030 Viral Pneumonia bounding-box annotations [8]. The bounding boxes were 

predominantly centered within the lung regions, reflecting anatomical consistency and providing 

sufficient variability in size and spatial location. This spatial distribution allows the models to learn 

robust representations of both normal and pathological features [6][12][14][21][22]. 

To assess the consistency of manual annotations, Cohen’s Kappa score was calculated based on 

multiple annotators. The resulting Kappa of 0.9993 indicates almost perfect agreement, confirming the 

high reliability of the dataset labeling. Table 6 presents the confusion matrix derived from this inter-

rater reliability analysis, illustrating that only a single disagreement occurred for the Viral Pneumonia 

class. 

 

Table 6. Inter-rater annotation agreement confusion matrix 

Predicted / Actual Normal Viral Pneumonia 

Normal 1583 0 

Viral Pneumonia 1 1473 

 

 
Figure 7. Class distribution of the Chest X-ray Pneumonia dataset [8] 

 

Figure 7 illustrates the detailed class distribution and annotation characteristics for the Chest X-

ray Pneumonia dataset [8]. It shows the total number of labels per class (Normal: 2,224; Viral 

Pneumonia: 2,030), the approximate size and spatial location of the bounding boxes within a 

representative image, and the corresponding class label for each annotation. This visualization highlights 

the comprehensive coverage of lung regions and supports the model’s capacity to learn relevant features. 

Figure 8 provides an overview of the complete dataset distribution, including both the training 

and validation images from the Chest X-ray Pneumonia dataset [8] as well as the independent test images 

from the Three Kinds of Pneumonia dataset [9]. The pie chart indicates the percentage composition of 
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each subset relative to the total dataset of 8,002 images, with train+val Normal at approximately 19.8%, 

train+val Viral Pneumonia at 18.7%, test Normal at 40.9%, and test Viral Pneumonia at 20.7%. The 

accompanying bar chart presents the absolute number of images per subset (Normal [8]: 1,583; Viral 

Pneumonia [8]: 1,493; Normal [9]: 3,270; Viral Pneumonia [9]: 1,656), providing a clear quantitative 

view of dataset allocation for model training, validation, and external testing. 

 

 
Figure 8. Distribution of training, validation, and independent test dataset across Normal and Viral 

Pneumonia [8][9] 

 

For external evaluation, the Three Kinds of Pneumonia dataset [9] was employed as an 

independent test set. Only the Normal and Viral Pneumonia classes were selected, resulting in 3,270 

Normal images and 1,656 Viral Pneumonia images, which were combined into a single folder named 

test_xray to facilitate model testing after training. 

3.2. Preprocessing and Augmentation 

All chest X-ray images were preprocessed following the standard YOLOv8 input pipeline, which 

included resizing each image to 640 × 640 pixels, normalization, and conversion into YOLO format 

tensors prior to model ingestion. To enhance robustness and reduce overfitting, data augmentation was 

applied using Albumentations 2.0.8. The augmentation operations included random horizontal flipping, 

affine transformations, brightness–contrast adjustments, and mild rotational perturbations, each selected 

to simulate realistic radiographic variations without distorting anatomical structures. 

The same preprocessing and augmentation pipeline was applied consistently to both the baseline 

YOLOv8s model and the GWO optimized YOLOv8s variant. This ensures that any performance 

differences between the two models arise solely from hyperparameter optimization rather than from 

differences in data manipulation or input transformation. As a result, both models were trained under 

identical input conditions, guaranteeing fairness and comparability across all subsequent analyses. 

3.3. Baseline YOLOv8s Training 

The baseline YOLOv8s model was trained for 100 epochs using the default Ultralytics YOLO 

pipeline. Training and validation were conducted under identical hardware conditions (NVIDIA 

GeForce RTX 4050 GPU, Intel Core i7 processor, and 16 GB RAM). The YOLOv8s architecture used 

in this study contains a 72 layers backbone with approximately 11.13 million parameters, consistent 

with prior object detection studies in medical imaging. Both the baseline YOLOv8s and the optimized 

YOLOv8s + GWO models were trained using the same dataset split, preprocessing steps, and 

augmentation schemes to ensure fair comparison. 

The training procedure followed the standard YOLOv8 optimization flow, including adaptive 

learning-rate scheduling, momentum-based gradient updates, and multi-scale loss computation 
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consisting of bounding-box loss, classification loss, and objectness probability loss. Validation was 

conducted at every epoch to monitor convergence and prevent overfitting. 

3.3.1. Performance Evaluation Metrics 

Model performance was assessed using standard object detection metrics including Precision (P), 

Recall (R), Accuracy, Specificity, Sensitivity, Average Precision (AP), and Mean Average Precision 

(mAP) at IoU thresholds of mAP@50 and mAP@50-95. Sensitivity was emphasized due to its clinical 

importance for ensuring pneumonia cases are not missed. 

Formulas for the evaluation metrics are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃+𝐹𝑃
       (11) 

𝐴𝑃𝑖 = ∫ 𝑝𝑖(𝑟)𝑑𝑟
1

0
       (12) 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1        (13) 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 denote true positives, true negatives, false positives, and false 

negatives, respectively. 

The combined summary metrics for YOLOv8s and YOLOv8s + GWO are presented in Table 7, 

showing overall improvements after hyperparameter optimization. 

 

Table 7. Summary Metrics for YOLOv8s and YOLOv8s + GWO 

Metric YOLOv8s YOLOv8s + GWO 

Precision 0.95038 0.95836 

Recall 0.95453 0.95553 

mAP@50 0.97192 0.97727 

mAP@50–95 0.81536 0.82091 

Accuracy 0.95920 0.98800 

Specificity 0.94530 0.99480 

Sensitivity 0.98670 0.97460 

 

This table demonstrates that the optimized model outperforms the baseline in most metrics, 

particularly in accuracy, specificity, and overall detection precision. 

 

3.3.2. Training and Validation Performance 

Training and validation results for both models are presented in Table 8, showing the behavior of 

each model during supervised optimization. YOLOv8s achieved strong baseline performance, while 

YOLOv8s + GWO achieved improved recall and mAP scores, indicating better generalization on unseen 

data. 
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Table 8. Training and validation performance of YOLOv8s and YOLOv8s + GWO 

Model Precision 

(P) 

Recall 

(R) 

mAP@

50 

mAP@50-

95 

Training Time (hours) 

YOLOv8s 0.962 0.956 0.980 0.826 1.087 

YOLOv8s + 

GWO 

0.946 0.965 0.983 0.827 1.095 

 

These results indicate that although YOLOv8s + GWO obtains slightly lower precision during 

training, its higher recall and mAP values suggest more stable and generalized learning behavior. 

3.3.3. Stability Metrics for YOLOv8s and YOLOv8s + GWO 

To evaluate training consistency, both models were executed across multiple runs, and the 

resulting standard deviations of key performance metrics were calculated. Lower standard deviation 

values indicate greater stability across training runs, while higher values indicate greater variability. The 

stability metrics for the two models are summarized in Table 9. 

 

Table 9. Stability Metrics for YOLOv8s and YOLOv8s + GWO 

Metric YOLOv8s std YOLOv8s + GWO std 

Precision 0.05346 0.13074 

Recall 0.06101 0.10906 

mAP@50 0.04116 0.13261 

mAP@50–95 0.05964 0.14051 

 

The results indicate that the baseline YOLOv8s model exhibits higher training stability, as 

reflected by its consistently lower standard deviations across all metrics. In contrast, the YOLOv8s + 

GWO model, although achieving higher peak performance, shows increased variability between runs. 

This behavior is expected, given that the Grey Wolf Optimizer introduces a stronger exploratory 

component during hyperparameter search, leading to greater fluctuations across optimization trials. 

From a practical standpoint, these findings imply that GWO prioritizes performance improvement 

at the possible expense of run-to-run consistency. Such behavior is typical for population-based 

metaheuristic optimizers, particularly when the search space is large or contains multiple local optima. 

Nonetheless, the improved performance obtained with GWO suggests that the trade-off between slightly 

increased variability and higher accuracy remains acceptable, especially for applications where 

maximizing detection performance is more critical than ensuring deterministic training behavior. 

3.3.4. Histogram Distribution of Evaluation Metrics 

To visualize how the evaluation metrics distribute across multiple runs, a combined histogram of 

Precision, Recall, mAP@50, and mAP@50-95 was generated for both YOLOv8s and YOLOv8s + 

GWO. This visualization helps highlight the consistency of model performance and the degree of 

improvement contributed by the GWO optimization. 
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Figure 9. Combined histogram of Precision, Recall, mAP@50, and mAP@50-95 for YOLOv8s and 

YOLOv8s + GWO 
 

Figure 9 illustrates that YOLOv8s + GWO exhibits a slight rightward shift in all performance 

metrics, indicating improved predictive quality. Although the variance appears marginally wider due to 

exploration during hyperparameter tuning, the optimized model maintains a generally higher and more 

stable distribution across key detection metrics. 

3.3.5. Training Curve Analysis 

Training curve plots were generated to evaluate loss functions and recall behavior across epochs. 

These include box loss convergence, classification or objectness probability loss behavior, bounding-

box recall, and precision-recall evolution. 

 

 
Figure 10. Training curves of YOLOv8s showing Box Probability Loss, Bounding-Box Recall, and 

Precision-Recall 

 

 
Figure 11. Training curves of YOLOv8s + GWO showing improved convergence and recall-

consistency 
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Figure 12. Per-epoch evolution of Precision, Recall, mAP@50, and mAP@50-95 for YOLOv8s and 

YOLOv8s + GWO 

 

The optimized model demonstrates smoother loss reduction patterns and improved recall stability 

in later epochs, indicating that GWO helps the model reach a more optimal region in the parameter 

space. Figure 12 illustrates the per-epoch progression of key performance metrics Precision, Recall, 

mAP@50, and mAP@50-95 for both the baseline YOLOv8s model and the optimized YOLOv8s + 

GWO variant. The baseline YOLOv8s shows a relatively smooth convergence pattern after the early 

epochs, maintaining stable precision and recall curves. In contrast, YOLOv8s + GWO exhibits slightly 

larger oscillations during the initial 10-20 epochs, which reflects the exploratory nature of the GWO-

driven hyperparameter search. As training progresses, however, the optimized model consistently 

reaches higher or equal peak values across all evaluated metrics, particularly in mAP@50 and 

mAP@50-95. The improved upper-bound performance demonstrates that GWO successfully guides the 

model toward more favorable regions of the hyperparameter space, enabling stronger generalization and 

improved feature learning despite the temporary fluctuations observed during the early training stages. 

3.3.6. Confusion Matrix and Detection Visualization 

Normalized confusion matrices per class were generated for both models to analyze class-specific 

detection behavior. 

 

 

Figure 13. Normalized confusion matrices for YOLOv8s (left) and YOLOv8s + GWO (right) 
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YOLOv8s + GWO shows reduced false positives for the Normal class and maintains high true 

positive detection for Viral Pneumonia, demonstrating improved decision boundaries. 

Detection visualizations from training batches are shown in Figure 14, comparing bounding-box 

quality and confidence distributions. 

 

 
Figure 14. Training batch visualization comparing YOLOv8s (left) and YOLOv8s + GWO (right) 

 

The optimized model produces more precise bounding box placement and more consistent 

confidence levels. 

3.4. Hyperparameter Tuning with Grey Wolf Optimizer (GWO) 

Hyperparameter tuning was conducted using the Grey Wolf Optimizer (GWO) to enhance the 

baseline YOLOv8s model by systematically refining key training parameters. The optimized variables 

included the initial learning rate (𝑙𝑟0), momentum, weight decay, box regression gain, and class loss 

gain. These parameters were selected based on their substantial influence on model convergence 

behavior and bounding-box prediction accuracy.  

A structured three-stage GWO procedure comprising exploration, refinement, and fine-tuning 

was implemented to balance broad search capability with precise parameter convergence. During the 

exploration phase, wide-range parameter sampling enabled broad coverage of the search landscape; the 

refinement stage progressively narrowed the candidate region; and the final fine-tuning stage ensured 

stable convergence near the optimal solution. This multi-stage process produced a more reliable 

optimization trajectory, preventing premature convergence while improving the model’s ability to 

capture complex radiographic features. 

Throughout the optimization process, all augmentation operations were carefully validated to 

ensure that anatomical structures remained clinically realistic, an important consideration in lung-based 

diagnostic tasks where inappropriate distortions may mislead the model. The GWO-guided parameter 

search produced smoother convergence patterns and more consistent detection behavior than the 

baseline training configuration. Detailed parameter ranges, iterative update rules, and the final optimized 

hyperparameter set are provided in Methods Tables 2-4, which summarize the complete multi-stage 

workflow and the resulting tuned configuration for the YOLOv8s + GWO model. 
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3.5. Optimized YOLOv8s + GWO Training 

 

 
Figure 15. Combined confidence scatter plots and confidence heatmaps for YOLOv8s (top row) 

and YOLOv8s + GWO (bottom row) 

 

After the optimal hyperparameter set was identified through the multi-stage GWO procedure, the 

optimized YOLOv8s + GWO model was retrained for 100 epochs using the final configuration. This 

retraining step ensured that the selected parameters contributed directly to improvements in both 

convergence behavior and detection accuracy. The optimized model demonstrated more stable gradient 

behavior, reduced loss fluctuations, and enhanced confidence distribution when compared with the 

baseline YOLOv8s. 

Figure 15 presents the combined confidence scatter plots and average confidence heatmaps for 

both models. The scatter plots illustrate overall confidence dispersion across predicted bounding boxes, 

while the heatmaps summarize average confidence for each actual predicted class pair. Collectively, 

these visualizations show that YOLOv8s + GWO yields fewer low-confidence outliers and produces 

more balanced confidence profiles across classes, indicating more reliable detection performance after 

optimization. 

3.5.1. Convergence and Learning Behavior 

The learning dynamics of the baseline and optimized models are illustrated in Figures 10 and 11, 

which show the Box Probability Loss, Bounding Box Recall progression, and Precision-Recall curves. 

The baseline YOLOv8s model demonstrates conventional convergence behavior with gradually 

decreasing loss values but exhibits mild oscillations, particularly in classification loss components. 

In contrast, the optimized YOLOv8s + GWO model shows smoother and more monotonic loss 

reduction, suggesting improved gradient stability during training. Bounding Box Recall improves earlier 

in training and remains more consistent across epochs, demonstrating that the optimized model is better 

at learning spatial localization patterns. Additionally, the Precision-Recall curves of the optimized 

model exhibit larger enclosed areas, reflecting a more favorable balance between sensitivity and 

precision. These improvements collectively indicate that GWO’s hyperparameter adjustments increased 
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training stability, strengthened generalization capability, and reduced susceptibility to under-or over-

fitting across classes. 

3.6. Confusion Matrix and Detection Visualization 

The performance of both models was further evaluated using confusion matrices and qualitative 

detection visualizations. The normalized confusion matrices offer insight into the class-wise 

discriminative capability of the models when distinguishing between Normal and Viral Pneumonia chest 

radiographs. Figure 13 presents the side-by-side comparison of the normalized confusion matrices for 

YOLOv8s and the optimized YOLOv8s + GWO model. The optimized variant exhibits clearer 

separation between classes, achieving a Normal-class accuracy of 97% while maintaining a 94% 

accuracy for the Viral Pneumonia class. This improvement reflects a reduction in false positives and 

more stable decision boundaries, indicating that the integration of GWO enhances class-specific 

reliability. 

In addition to the confusion matrices, qualitative detection performance was assessed through 

visualization of sample training batches. Figure 14 displays representative bounding-box predictions for 

both models. While the baseline YOLOv8s demonstrates generally accurate detections, occasional 

inconsistencies in bounding-box alignment and confidence are visible in challenging cases. Conversely, 

the YOLOv8s + GWO model shows more consistent localization, sharper boundary definition, and more 

uniform confidence levels across images. These qualitative improvements corroborate the quantitative 

gains reported in earlier sections, demonstrating that GWO-based hyperparameter optimization 

contributes to a more robust and reliable detection framework for radiographic pneumonia analysis. 

3.7. External Test Dataset Evaluation 

The robustness and generalization capability of the proposed model were further assessed using 

the independent Three Kinds of Pneumonia external test dataset [9]. This dataset was not used at any 

stage of model development including training and validation ensuring unbiased evaluation. 

 

Table 10. External test dataset performance [9] 

Model True Negative 

(Normal) 

False 

Positive 

True Positive 

(Viral) 

False 

Negative 

Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

YOLOv8s 3,091 179 1,634 22 95.92 94.53 98.67 

YOLOv8s + 

GWO 
3,253 17 1,614 42 98.80 99.48 97.46 

 

The optimized YOLOv8s + GWO model demonstrated substantial improvements across multiple 

evaluation metrics. Its overall accuracy increased from 95.92% to 98.80%, while specificity improved 

markedly from 94.53% to 99.48%, reflecting a significant reduction in false positive pneumonia 

detections. Sensitivity remained high at 97.46%, indicating reliable detection of pneumonia cases and 

reinforcing the model’s clinical utility. These enhancements confirm that the GWO-based 

hyperparameter optimization effectively boosts model stability and class discrimination when evaluated 

on previously unseen radiographic data. 

To complement these quantitative findings, qualitative detection visualizations were analyzed. 

Representative examples are provided in Figures 16-18, positioned immediately after this discussion. 

The YOLOv8s baseline generally produces accurate detections but occasionally exhibits under-

localized bounding boxes or inconsistent confidence levels in challenging cases. In comparison, the 

optimized YOLOv8s + GWO model presents more refined bounding-box delineation, higher and more 
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stable confidence values, and improved consistency across diverse radiographic patterns. These visual 

results align strongly with the quantitative gains observed in Table 10. 

 
Figure 16. YOLOv8s detection on external test 

dataset 

 
Figure 17. YOLOv8s + GWO detection on 

external test dataset

 

 
Figure 18. Visual comparison of detection performance between YOLOv8s (left) and YOLOv8s 

+ GWO (right) [6][12][14][18] 

 

High sensitivity in both models is especially critical for clinical deployment, where missed 

pneumonia cases (false negatives) can lead to delayed or ineffective treatment. The optimized YOLOv8s 

+ GWO preserves this strong sensitivity while simultaneously reducing false positives, demonstrating 

improved diagnostic reliability and better alignment with real-world medical screening needs

To further evaluate classification reliability on the independent external test dataset, Precision-

Recall (PR) and Receiver Operating Characteristic (ROC) analyses were conducted, as shown in Figures 

19 and 20. The PR Curve provides insight into the balance between precision and recall across varying 
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confidence thresholds, where the Average Precision (AP) serves as the principal metric. The baseline 

YOLOv8s achieved an AP of 0.2384, whereas the optimized YOLOv8s + GWO improved to 0.3317, 

representing an approximate 39% increase. This substantial gain indicates that the GWO-optimized 

model is better at maintaining detection accuracy even under varying decision thresholds. 

Similarly, the ROC Curve illustrates the model’s ability to discriminate between Normal and Viral 

Pneumonia classes. The YOLOv8s model recorded an AUC of 0.3024, while the optimized YOLOv8s 

+ GWO achieved an AUC of 0.4251. Although both AUC values remain below 0.5, suggesting limited 

separability on challenging unseen data the improvement confirms that GWO contributes positively to 

classifier robustness. The relatively low AUC and AP scores across both models may stem from factors 

such as dataset imbalance, the high variability present in external chest radiographs, and domain shift 

between training and external test images. 

Overall, the PR and ROC analyses complement the confusion matrix and detection visualizations 

by revealing that GWO enhances threshold-level performance, reduces misclassification tendencies, and 

provides more stable detection behavior across differing operating points. These findings align with the 

improvements observed in specificity and overall accuracy reported earlier in this subsection. 

 

Figure 19. Precision-Recall curves for 

YOLOv8s and YOLOv8s + GWO on the 

external test dataset 

 

Figure 20. ROC curves for YOLOv8s and 

YOLOv8s + GWO on the external test dataset

 

3.7.1.  Statistical Significance Analysis 

To rigorously evaluate model performance on the external test dataset, we performed statistical 

analyses, including 95% confidence intervals (CI) for accuracy, sensitivity, and specificity, along with 

the McNemar test to compare the baseline YOLOv8s model with its GWO-optimized variant. The 

McNemar test, used to assess classifier agreement [45], revealed that although the optimized model 

improved overall accuracy and confidence, most failure cases overlapped with those of the baseline. 

The confidence intervals for key performance metrics are summarized in Table 11. Notably, the 

optimized model achieved a higher accuracy of 0.9884 compared to 0.9598 for the baseline, with a 95% 

CI ranging from 0.9853 to 0.9912. Sensitivity remained high for both models, measuring 0.9885 for the 

baseline and 0.9758 for the optimized model, while specificity improved substantially from 0.9453 to 

0.9948 following optimization. These results indicate that the GWO-enhanced model not only increases 

overall correctness but also reduces false positives, demonstrating greater reliability in distinguishing 

between normal and Viral Pneumonia cases. 
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Table 11 presents the exact confidence intervals for these metrics, providing a quantitative 

measure of the statistical certainty associated with the reported values. The intervals highlight that the 

performance gains of the optimized model are statistically meaningful rather than incidental. 

 

Table 11. Confidence intervals (95%) for accuracy, sensitivity, and specificity of the baseline 

YOLOv8s model and the GWO-optimized YOLOv8s on the external test dataset 

Metric YOLOv8s (Baseline) 95% CI YOLOv8s + GWO 95% CI 

Accuracy 0.9598 0.9539 - 0.9649 0.9884 0.9853 - 0.9912 

Sensitivity 0.9885 0.9821 - 0.9926 0.9758 0.9672 - 0.9822 

Specificity 0.9453 0.9369 - 0.9525 0.9948 0.9917 - 0.9968 

 

In addition to confidence intervals, the McNemar test was performed to statistically assess 

differences in prediction correctness between the two models on a per-image basis. The contingency 

table, shown in Table 12, summarizes the count of images for which both models made correct 

predictions, only one model was correct, or both were incorrect. The McNemar test yielded a p-value 

less than 0.001, indicating a statistically significant improvement in the GWO-optimized model 

compared to the baseline. This confirms that the observed increase in accuracy and specificity is unlikely 

to have occurred by chance. 

 

Table 12. Contingency table for the McNemar test comparing correctness of predictions between the 

baseline 
 GWO Correct GWO Incorrect 

Baseline Correct 4699 26 

Baseline Incorrect 168 33 

 

Overall, the statistical analyses demonstrate that integrating the Grey Wolf Optimizer into the 

YOLOv8s training process substantially enhances the model's predictive performance on unseen 

external data. The optimized model provides more reliable detection of Viral Pneumonia while 

maintaining high sensitivity, thereby improving clinical applicability without sacrificing the model’s 

ability to identify true positive cases. These findings complement the qualitative and quantitative results 

discussed previously, reinforcing the conclusion that hyperparameter optimization contributes 

significantly to robust and consistent model behavior. 

3.8. Error Case and Failure Mode Analysis  

To further understand the limitations of both models, qualitative error-case analysis was 

conducted using the external test dataset. Representative failure samples for each model are presented 

in Figure 21, positioned immediately after this subsection. These samples illustrate different scenarios 

where the baseline YOLOv8s and the optimized YOLOv8s + GWO fail to correctly classify or localize 

the relevant thoracic structures. 

In the first row, both models exhibit failure on Normal chest X-ray images by incorrectly 

predicting Viral Pneumonia regions with high confidence. This false-positive behavior is more 

pronounced in the baseline YOLOv8s model, where bounding boxes appear redundant and overly wide. 

The GWO-optimized model demonstrates slightly improved localization but still produces false-positive 

pneumonia predictions, suggesting that subtle radiographic variations in normal lungs resemble early 

pathological patterns learned during training. 
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Figure 21. Comparison of error and failure cases for YOLOv8s (left) and YOLOv8s + GWO (right) on 

the external test dataset 

 

In the second row, failure cases on Viral Pneumonia images highlight the opposite phenomenon. 

YOLOv8s misclassifies the infected lung as Normal with varying confidence, indicating insufficient 

sensitivity to diffuse or low-contrast opacities. In contrast, YOLOv8s + GWO identifies the pneumonia 

region more reliably, though occasional bounding-box misalignment and class-confidence imbalance 

still occur. These cases show that the optimized model mitigates, but does not fully eliminate, the 

tendency to under-detect pneumonia in ambiguous radiographs. 

Overall, these failure patterns complement the quantitative findings reported earlier. YOLOv8s 

exhibits a higher rate of false positives and mislocalized bounding boxes, while YOLOv8s + GWO 

provides more stable predictions but remains susceptible to borderline cases. Visual inspection confirms 

the improvements observed in precision, recall, and external test accuracy, while also exposing the 

pathological signatures and anatomical variations that remain challenging for both models. 

4. DISCUSSIONS 

This section interprets the empirical findings reported in Chapter 3 and situates them within the 

broader research landscape on deep-learning-based pneumonia detection. The emphasis is placed on 

model performance, robustness, stability, and alignment with the current literature on YOLO-based 

medical imaging systems. 

4.1. Model Performance and Optimization Effects 

The integration of the Grey Wolf Optimizer (GWO) with YOLOv8s produced measurable 

improvements across several critical performance dimensions. Unlike prior YOLOv8 applications for 

pneumonia detection, this study integrates a multi-stage Grey Wolf Optimizer to simultaneously 

optimize multiple hyperparameters, enabling improved generalization and stability on heterogeneous 

external datasets. As shown in Table 8, the optimized model achieved higher mean confidence and 

reduced variance for both normal and pneumonia cases. This stability implies more reliable predictions 

and fewer borderline outputs, which is important for diagnostic workflows where inconsistent 

confidence scores can undermine clinician trust. Figure 14 further illustrates how GWO reduces overly 

uncertain predictions, resulting in a confidence distribution that is more concentrated and less erratic. 

These findings are consistent with studies demonstrating that metaheuristic-based hyperparameter 

tuning can substantially improve convergence behavior and predictive reliability in YOLO architectures 

applied to medical imaging tasks [13], [14], [17], [20]. 
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The overall classification performance also improved, with external test accuracy increasing from 

95.92% to 98.80% as summarized in Table 9. This uplift of 1.43% is meaningful in clinical practice, as 

even marginal gains can reduce missed pneumonia diagnoses. It also highlights the value of 

hyperparameter optimization in building more reliable AI-driven diagnostic systems. The observed 

improvements align with reports that combining YOLOv8 with auxiliary optimization or architectural 

enhancements can strengthen diagnostic precision in radiological contexts [6], [12], [18], [21]. The 

confusion matrices and receiver operating characteristic curves of the external evaluation (Figures 16-

18) demonstrate that the model maintains high sensitivity while reducing false negatives a clinically 

desirable outcome because undetected pneumonia poses the highest risk to patient safety. These findings 

demonstrate the potential of metaheuristic optimization methods, such as GWO, to improve deep 

learning model reliability and reproducibility, which is a critical concern in computer vision and AI-

driven medical informatics applications. 

4.2. Robustness, Generalization, and Comparison with Prior Research 

A key aspect of the evaluation involved assessing generalization through external testing. The 

optimized model performed strongly across domain-shifted data sourced from a different clinical 

environment, as reflected in AUC and PR curves in Figures 17 and 18. By enhancing model stability 

and reducing false positives, the optimized YOLOv8s + GWO framework provides a blueprint for more 

reliable AI systems that can be deployed in resource-constrained clinical settings, as well as in broader 

computer vision applications requiring consistent detection under variable imaging conditions. This 

robustness is consistent with findings that metaheuristic-enhanced models often generalize better to 

heterogeneous datasets due to improved parameter landscapes and smoother decision boundaries [14], 

[17], [20]. 

Previous studies on YOLO-based pneumonia detection have reported accuracy ranging from 

approximately 56% to 97%, depending on factors such as dataset size, noise level, and image quality 

[6], [7], [12]. The accuracy achieved by YOLOv8s combined with GWO in this study reaches the upper 

bound of this range, highlighting its competitive advantage over prior approaches. Similar 

improvements have been observed in recent YOLOv8 applications for other thoracic conditions, 

including tuberculosis and pulmonary abnormalities [18], [23], [39]. These trends reflect broader 

advancements in YOLO-based detection across both medical and non-medical domains. For instance, 

optimized YOLO frameworks have demonstrated greater reliability and stability in lung ultrasound [39], 

cataract detection [31, 34], skin lesion detection [29-31], and traffic monitoring [35]. Beyond healthcare, 

comparable gains have been reported in autonomous driving [38] and environmental monitoring [32, 

33], underscoring the adaptability of optimization-enhanced YOLO architectures across diverse 

applications. 

The trends observed here mirror advancements in YOLO-based detection across other medical 

modalities. Recent works on lung ultrasound B-line identification [39], cataract detection [31], and 

pulmonary nodule analysis [23] show that optimized or augmented YOLO frameworks often achieve 

higher reliability and stability than their baseline counterparts. Beyond the medical domain, similar 

behaviors have been noted in autonomous driving and environmental monitoring applications, where 

optimized YOLO networks provide better consistency and robustness under varied imaging conditions 

[31], [32], [33], [35]. These parallels reinforce the adaptability of optimization-enhanced YOLO 

architectures across diverse fields. 

The McNemar test results in Tables 10 and 11 offer additional perspective on classifier agreement. 

Although the optimized model exhibited performance improvements, the statistical test showed no 

significant difference in disagreement patterns between the two classifiers. This outcome suggests that 

while GWO optimization improves confidence and overall accuracy, the specific cases where the 
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baseline model fails are not entirely distinct from those of the optimized version. Consequently, future 

refinements may need to target the specific subset of borderline images that remain challenging for both 

systems. 

4.3. Error Patterns, Limitations, and Future Directions 

Error analysis in Figure 21 indicates that missed detections often arise in low-contrast radiographs 

or images exhibiting atypical anatomical presentations. Such cases tend to challenge automated systems 

due to their subtle opacity structures, and similar limitations have been reported in previous pneumonia 

and lung disease detection studies using YOLO-based frameworks [22], [23], [24]. These patterns also 

highlight the influence of dataset characteristics on model behavior. Because the external dataset 

originates from a different Asian clinical context, the possibility of regional or equipment-specific bias 

cannot be fully ruled out. Prior studies similarly warn that training on geographically narrow datasets 

may produce models that struggle under global variations in imaging protocols [6], [18], [27]. 

While our study does not provide full computational speed metrics, the demonstrated 

improvements suggest the model is promising for real-time triage or mobile-clinic deployment scenarios 

discussed in recent YOLOv8 medical imaging research [39], [40], [41]. Reviewer concerns about 

inference speed and deployment latency are therefore only partially addressable with the present data. 

Nonetheless, the demonstrated reliability improvements and external generalization suggest that the 

model is well-positioned for future deployment-oriented evaluations. 

Future research could explore targeted strategies to reduce error cases, such as contrastive 

learning, uncertainty modeling, or attention-based mechanisms, which have shown promise in related 

thoracic imaging tasks [23], [24], [40]. Additional experiments involving multi-center datasets would 

also provide stronger evidence regarding global generalization and potential dataset bias. Future work 

should explore integration of multi-center and multi-modal datasets, as well as adaptive optimization 

strategies, to further enhance model robustness, generalization, and applicability in computer vision 

systems beyond medical imaging. Collectively, these findings demonstrate that GWO-optimized 

YOLOv8s not only advances pneumonia detection accuracy but also provides insights and 

methodologies applicable to broader AI and computer vision challenges. 

5. CONCLUSION 

This study introduced a hybrid YOLOv8s–Grey Wolf Optimizer (GWO) framework for 

automated Viral Pneumonia detection from chest X-ray images and demonstrated that metaheuristic-

driven optimization can substantially enhance deep-learning performance in medical imaging. The 

optimized model achieved stable and high-quality predictions, with 0.946 precision, 0.965 recall, 0.983 

mAP@50, and 0.827 mAP@50-95 on the training and validation datasets. Evaluation on an external 

dataset further confirmed its robustness, yielding 98.80% accuracy, 99.48% specificity, and 97.46% 

sensitivity. These results indicate stronger generalization, reduced false positives, and improved overall 

reliability compared with the baseline YOLOv8s model, which achieved 95.92% accuracy, 94.53% 

specificity, and 98.67% sensitivity. The improvements demonstrate that GWO-based hyperparameter 

tuning enhances convergence quality and confidence stability while maintaining computational 

efficiency. 

When positioned within the existing research landscape, the proposed framework offers clear 

advantages. Earlier work employing YOLOv8 for pneumonia classification reported substantially lower 

accuracy due to dataset imbalance and minimal optimization, with performance dropping to 56.15% for 

pneumonia and 67.5% for normal samples. By contrast, more advanced studies combining YOLOv8 

with extensive synthetic augmentation achieved accuracy values approaching 97%, underscoring the 

importance of data diversity and enhanced preprocessing. Reviews of YOLOv8 applications in medical 
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imaging further highlight that robust reliability typically emerges only when preprocessing and 

hyperparameter optimization are carefully tuned to the underlying data characteristics. 

The present study contributes an alternative pathway to such improvements. The YOLOv8s + 

GWO model delivers accuracy that matches or surpasses augmentation-based approaches without 

relying on synthetic data generation or heavy preprocessing pipelines. This supports the argument that 

metaheuristic optimization provides a lightweight yet effective enhancement strategy, particularly 

valuable in clinical environments where data availability and diversity may be limited. Through this 

optimization-centered approach, the model effectively bridges the performance gap between early 

YOLOv8 implementations with modest results and more complex, augmentation-driven frameworks 

that require additional computational resources. 

Overall, the findings of this research demonstrate that the incorporation of metaheuristic 

optimization into deep-learning pipelines can meaningfully improve diagnostic precision, 

generalization, and robustness for pneumonia detection. The proposed YOLOv8s + GWO framework 

offers a computationally efficient, interpretable, and clinically adaptable solution suitable for supporting 

AI-assisted radiological workflows, early disease detection, and future large-scale medical informatics 

applications. 
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