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Abstract

Lung diseases remain a major global health challenge, requiring accurate and interpretable diagnostic systems to
support timely detection and treatment. This study proposes a high-fidelity deep learning approach using the
ConvNeXt architecture for automated multi-class classification of chest X-ray (CXR) images into five categories:
Bacterial Pneumonia, Viral Pneumonia, COVID-19, Tuberculosis, and Normal. The methodology involved
preprocessing 10.095 Kaggle-sourced images (normalization, CLAHE, augmentation, resizing) and training a
ConvNeXt model for 70 epochs with the Adam optimizer. The model achieved strong performance with 92.66%
validation accuracy, 86.32% test accuracy, a macro-average F1-score of 0.86, and a macro-average AUC of 0.99.
Grad-CAM visualizations demonstrated the model's consistent focus on clinically relevant lung regions, significantly
improving interpretability and clinical applicability. This study contributes to advancing interpretable Al methods for
clinical decision support in medical imaging, offering a reliable and transparent framework for automated lung
disease diagnosis.
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1. INTRODUCTION

Lung diseases remain a significant global health problem, with high morbidity and mortality rates
and a widespread impact on patients' quality of life. According to the latest WHO report, the Eastern
Mediterranean region accounted for approximately 8.7% of global tuberculosis (TB) cases, with 936.000
new cases and nearly 86.000 deaths in 2023 [1]. Besides TB, pneumonia is also a leading cause of death,
particularly among children. UNICEF (2025) reported that pneumonia kills more than 700.000 children
under the age of five annually, including about 190.000 newborns, equivalent to 2.000 child deaths per
day [2]. This data underscores the critical importance of early detection and accurate diagnosis of lung
diseases.

A chest X-ray (CXR) serves as a highly utilized diagnostic method for identifying pulmonary
conditions. Beyond its ready availability and modest cost, CXR imaging offers a visual assessment of
both the lungs and adjacent structures. Despite its efficacy, the manual analysis of CXR scans is a
laborious process contingent upon the interpreter's skill, thereby indicating a need for a more
streamlined, automated methodology [3]

Significant progress in artificial intelligence (Al), especially in deep learning techniques, has
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created novel possibilities within medical image analysis. A highly notable approach used is the
Convolutional Neural Network (CNN), which has proven effective in classification and object detection
tasks in medical images [4]. Convolutional Neural Networks (CNNs) have been demonstrated to be
effective in extracting spatial features from two-dimensional images like X-rays [5]. Furthermore, CNNs
can automatically recognize patterns and important features in images that are often difficult for human
observers to identify [6].

Based on the journal introduction above, several relevant studies have been conducted. Souid et
al. (2021) highlighted the limitations of radiologists in diagnosing lung diseases through X-ray images
and proposed the use of MobileNet V2 with a transfer learning approach on the ChestX-ray14 dataset.
Their results showed an accuracy of over 90% with an average AUC value of 0.811, confirming the
effectiveness of this lightweight model for implementation on IoT devices [7]. Hasanah et al. (2023)
conducted a comparative study of ResNet-50, ResNet-101, and ResNet-152 architectures for identifying
pneumonia, COVID-19, and lung opacities using 21.885 CXR images. They reported that ResNet-152
delivered the best performance with an F1-score of 94%, higher than ResNet-50 (91%) and ResNet-101
(93%), thus recommending it for CXR-based lung disease classification [8]. Meanwhile, Shamrat et al.
(2022) developed LungNet22, a customized model based on VGG16, for the multi-class classification
of 10 lung diseases, including COVID-19, TB, and pneumonia, using a dataset of over 80.000 X-ray
images. This model achieved a very high accuracy of 98.89%, with other evaluation metrics such as
precision, recall, F1-score, and ROC-AUC reinforcing its reliability [9]. These findings confirm that the
application of various CNN architectures, both lightweight and deeper models, can deliver superior
performance in the automated detection of lung diseases from X-ray images.

Similarly, Izdihar et al. (2024) compared VGG16 and ResNet50 for pneumonia detection,
showing that ResNet50 outperformed VGG16 in accuracy and processing time [10]. Jiang et al. (2021)
proposed an improved VGG13 model (IVGG13) with data augmentation to address imbalanced datasets,
achieving better precision, recall, and F1 scores compared to standard CNN models [11]. Recently,
Bundea and Danciu (2024) used the DenseNet architecture (DenseNetl21, DenseNet169, and
DenseNet201), reporting an accuracy rate of 92% for normal cases and 97% for pneumonia cases,
highlighting the robustness and efficiency of DenseNet in clinical decision support [12]. These findings
collectively demonstrate that diverse CNN architectures, ranging from lightweight models to deeper
models, can significantly improve the automated diagnosis of lung diseases from CXR images.

The ConvNeXt architecture, introduced by Liu et al. (2022), represents a cutting-edge
development in the field of computer vision. Developed in response to the success of Transformer-based
models, ConvNeXt successfully adapts Transformer design principles into a conventional CNN
architecture while delivering significant performance improvements. The advantage of ConvNeXt lies
in its ability to achieve performance competitive with the latest Transformer models, but with greater
computational efficiency and ease of implementation within existing CNN ecosystems. This study posits
that ConvNeXt offers a distinct advantage over widely used architectures like ResNet and DenseNet for
medical image analysis, particularly in achieving a superior balance between accuracy and inherent
interpretability. While ResNet and DenseNet excel through feature reuse and depth, their complex,
highly interconnected feature maps can be challenging to interpret. In contrast, ConvNeXt's modernized
design—featuring large kernel depthsise convolutions and a simplified, stage-based structure—
generates cleaner and more spatially coherent feature representations. This architectural clarity naturally
facilitates the generation of more precise and clinically meaningful visual explanations using techniques
like Grad-CAM, a crucial factor for building trust in clinical decision support systems. In the context of
medical image analysis, architectures like ConvNeXt have the potential to offer better accuracy and
efficiency in disease classification tasks, including the classification of lung diseases from X-ray images
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This investigation seeks to formulate and assess the effectiveness of the ConvNeXt deep learning
framework for categorizing pulmonary ailments using radiographic images. Additionally, this research
endeavors to pinpoint elements impacting the precision of lung disease classification and provide
recommendations for the development of automated diag-nosis systems based on X-ray images.

2. METHOD

The research framework of this study consists of several systematic stages, starting from dataset
collection obtained from Kaggle, followed by pre-processing which includes normalization, CLAHE,
augmentation, and resizing to prepare the images for model input. The processed data is then trained
using the ConvNeXt architecture, which incorporates convolutional, normalization, activation, and
downsampling blocks, with the final layer using softmax to produce classification probabilities. The
training phase of the model utilized the Adam optimizer and categorical cross-entropy as the loss
function, with the training process spanning 70 epochs. Model performance was subsequently assessed
using metrics such as accuracy, precision, recall, F1-score, a confusion matrix, and the ROC-AUC.
Following its training, the model underwent prediction testing on novel datasets. To elucidate the
model's decision-making rationale, Grad-CAM visualization techniques were applied, specifically
focusing on identifying and emphasizing pertinent areas within the lung scans.

Dataset Collection

W

Pre-Processing

Model Development with
ConvNeXt

7

Model Training

7

Evaluation and Validation

Prediction and
Interpretability

Result Analysis

Figure 1. Research Framework

2.1. Dataset

The dataset used was obtained from the Kaggle website, titled “Lungs Disease Dataset (4 types),”
published by Omkar Manohar Dalvi. The lung disease data set used in this study was divided into five
classes: Bacterial Pneumonia, Viral Pneumonia, Coronavirus Disease, Tuberculosis, and Normal. The
images collected have varying dimensions and are in JPEG format. These images are used separately in
the training, validation, and testing processes. The amount of training data, testing data, and validation
data can be seen in Table 1.
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Table 1. Number of Dataset

Class Training Testing Validation
Bacterial Pneumonia 1205 403 401
Viral Pneumonia 1204 403 401
Corona Virus Disease 1218 407 406
Tuberculosis 1220 408 406
Normal 1207 404 402
Total 6054 Figure 2025 Figure 2016 Figure

2.2. Pre-Processing

The Before being used as input in training, the image goes through a pre-processing stage that
aims to make it easier for the ConvNeXt model to train and recognize features in the input image [14].
Before the CNN algorithm can process the image, a number of image pre-processing steps are
performed. The following are the stages of image pre-processing:

1. Image Normalization

This normalization helps reduce excessive pixel value variation and improves deep learning
model convergence during training [ 15]. Normalization is performed by changing the image pixel value
range from [0, 255] to [-1, 1].

2. CLAHE (Contrast Limited Adaptive Histogram Equalization)

CLAHE is used to enhance local contrast in images, especially in areas with low lighting or
uneven contrast [16]. This technique divides the image into several small regions (tiles) and performs
histogram equalization on each region, with a clip limit to prevent excessive noise increase. With
CLAHE, details in dark or bright areas can be more visible, making it easier for CNN to recognize
patterns and important features in the image.
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Figure 2. CLAHE

3. Image Augmentation

Image augmentation to help models become stronger and generalize better to new images that
have never been seen before, which can reduce overfitting [17]. The following table shows the image
augmentation process.
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Table 2. Image Augmentation
Method Default Adjustment

Rotation 0 30
Width Shift 0 0.2
Height Shift 0 0.2
Shear 0 0.2
Zoom - 0.2
Horizontal None True
Flip

Fill Mode None Nearest

4. Image Resizing
Resizing images in preprocessing for Convolutional Neural Networks (CNN) is an important step

that aims to convert images of different sizes into the same size so that they can be processed consistently
by CNN. This process adjusts the pixel size of the entire dataset to 224 x 224, in accordance with the
input standard used in the ConvNeXt architecture for training on the ImageNet dataset, so that the model
can optimize visual feature representation consistently [18].

2.3. ConvNeXt Architecture

2242243 565696 28:28x192 14514384 Tx7%768

Layer Norm
Gilobal Avg Pooling ) —

(b) (©)

Figure 3. ConvNeXt Architecture

2.3.1. Conv2D

Conv2d in ConvNeXt is a two-dimensional convolution operation that serves to convert input
images into more informative, efficient, and structured feature representations. In the initial layer, Conv2d
acts as a patch embedding with a specific kernel and stride to reduce image resolution while increasing
the number of channels, thereby transforming raw images into initial feature maps.

— Y+l 1 1
:Vi,j,kout - r+n=—1 r+1=—1 Z-‘k-inzl Wm,n,kin,kout ' Xi+m,j+n,kin (1)
2.3.2. Layer Normalization
Layer Normalization after Conv2d in the ConvNeXt architecture serves to stabilize the activation
distribution by normalizing the feature map output values at each spatial position based on the mean and
variance in the feature dimension. This process helps maintain the stability of activation values so that
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they are not too large or too small, speeds up convergence during training, and makes the model more
robust against data variations. Unlike Batch Normalization, which is highly dependent on batch size,
Layer Normalization is more flexible because it works per layer, so it remains effective even with small
batch sizes.

o XiTH
X = Totie 2

2.3.3. ConvNeXt Block
1. Depthwise Conv2d
Depthwise Conv2d processes each input channel separately, rather than mixing all channels

together like regular Conv2d. The goal is to reduce the number of parameters and computational
complexity, while still capturing the spatial patterns of each feature channel for greater efficiency.

_ vkr—1 k-1 .
Yi,j,c_zmzo n=0 Wmn, Xi+m,j+n,c 3)

2. Layer Normalization

Layer Normalization normalizes activation values in feature dimensions to stabilize data
distribution. This helps accelerate convergence during training, reduces dependence on weight
initialization, and maintains gradient flow stability, making the model easier to train.

o Xi—H
*= ToTre “)

3. Conv2d

Conv2d is used at this stage to project the depthwise conv feature results into a higher-dimensional
space. This operation combines information between channels, thereby enriching the feature
representation, which is more complex than just spatial per channel.

Cin
Yijf =22 Wer Xije+ by )

4. GELU

GELU (Gaussian Error Linear Unit) is a non-linear activation function that is smoother than ReL.U.
GELU suppresses negative values with probability, rather than cutting them off immediately, thereby
helping models learn richer representations and improving performance in various vision tasks [19].

GELU(x)=0.5x- <tanh

\/g (x + 0.044715x3]> (6)

5. Conv2d

The second Conv2d serves to restore the feature dimensions to their original form after they have
been enlarged (usually 4x). In this way, the block can capture complex non-linear representations in high-
dimensional space while remaining efficient by restoring the output size to match the input.

4-Cin 147! 1
Zijf =2t WierYijcths (7

6. Layer Scale

Layer Scale is a trainable scalar parameter used to balance the output contribution of blocks. It is
initially initialized with a small value to make the network more stable at the beginning of training, then
its value can evolve according to the model's needs.
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7. Drop Path

Drop Path is a form of regularization in the form of stochastic depth, where certain residual paths
are randomly “removed” during training. This technique prevents overfitting, improves generalization,
and makes the model more robust by training several alternative information paths.

0, with probability p
Drop Path(x) = { %, with probability 1 — p ©)

2.3.4. Down Sample

1. Layer Normalization

Layer Normalization serves to normalize feature activation values in each channel, so that the
distribution of input values to the next layer becomes more stable. This process helps reduce internal
covariate shift, speeds up convergence during training, and makes the network more resistant to data
variation. In the Downsample Block, Layer Norm is performed before the convolution process so that the
data entering Conv2d is already on a consistent scale. Layer Normalization serves to normalize feature
activation values on each channel, so that the distribution of input values to the next layer becomes more
stable. This process helps reduce internal covariate shift, speeds up convergence during training, and
makes the network more resistant to data variation. In the Downsample Block, Layer Norm is performed
before the convolution process so that the data entering Conv2d is already on a consistent scale.

A Xi—
= T +He (10)
2. Conv2d
Conv2d is used here with a stride of 2 to perform downsampling, which reduces the spatial
resolution of features (height and width are halved) while increasing the number of channels (from dim
to 2xdim). This aims to reduce computational complexity, enlarge the receptive field, and extract deeper
feature representations so that the model is able to capture more complex patterns in the next stage.

Y(i:j: Cout) = Zkh_l fn1 3 Cin X(i "stm—p,j-s+n—p, Cin) ' K(m: n, Cip, Cout) (11)

m=04n=0 &cjp=0

2.3.5. Global Average Pooling

Global Average Pooling (GAP) is a pooling technique that serves to reduce the dimensions of
the feature map by calculating the average value of all elements in each channel, so that each channel
produces a single value.

1
GAP (¢) =+ 13, 5% x5, (12)

2.3.6. Layer Normalization

Layer Normalization after Global Average Pooling serves to normalize the distribution of feature
values from the pooling result vector so that each feature has a balanced scale, making the model more
stable during training and reducing sensitivity to variations in value between features.

o XiTH
X= Gomre (13)
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2.3.7. Linear

The Linear layer after the Normalization Layer serves to perform the final mapping of the feature
representation extracted by the CNN to the desired class output space. After the Norm Layer normalizes
the feature distribution to make it stable and balanced, the Linear layer (fully connected layer) will convert
feature vectors of a certain dimension into logit scores for each class.

Z=W-x+b (14)

2.3.8. Softmax

Softmax after the Linear Layer serves to convert the output from the Linear Layer, which is in the
form of logit values (unbounded real numbers), into a probability distribution for each class. The Linear
Layer produces raw scores for each class, then Softmax normalizes them using an exponential function
so that all output values are in the range of 0—1 and their total sum is equal to 1. In this way, Softmax
makes it easier to interpret the results as prediction probabilities, so that the class with the highest
probability can be selected as the final output in the classification process.

eZl

SOfthlX(Zi) =m (15)

2.4. Training

The model training process was carried out with predetermined parameters to achieve maximum
results. The researchers used 70 epochs, which was considered sufficient to improve model performance
[20]. The learning rate used was set at 0.0001, which is a common value often used in deep learning
model training. The optimizer chosen was Adam, which is known to be effective in handling large and
complex datasets and can adapt dynamically to different learning rates. Adam works by combining the
advantages of two previous methods, namely RMSprop and Stochastic Gradient Descent (SGD) with
momentum [21]. Adam utilizes adaptive estimates of the first moment (average gradient) and second
moment (average gradient squared) to improve network weights.

To prevent model overfitting during the training phase, the hold-out validation methodology can
be employed. This approach entails partitioning the available dataset into two primary segments: a
training set and a validation set. The model undergoes training utilizing the training data, and its
subsequent performance is assessed against the validation data, which remains segregated from the
training procedures [22]. By employing this method, one can effectively evaluate the model's
capabilities and confirm its proficiency in generalizing to novel, unencountered data.

The loss function used is Categorical Crossentropy, as this is a multi-class classification problem
with more than two classes [23]. The evaluation metrics monitored during training include accuracy and
loss, which provide an initial overview of the model's performance [24]. We also utilize GPUs to
accelerate the training process, given the high computational load of CNN models. The use of GPUs not
only reduces training time but also allows for experimentation with larger batch sizes, improving the
stability of the training process.

2.5. Model Evaluation

Upon conclusion of the training phase, the subsequent action involves assessing the model's
performance against the pre-segregated test dataset. This assessment will utilize several key
performance indicators, including accuracy, precision, recall, the F1-score, and a confusion matrix. The
primary objective is to ascertain the model's efficacy in adapting to previously unseen data [25]. The
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precise mathematical definitions for each evaluation metric employed in this research endeavor are
delineated in the subsequent formulae.

TP+TN

Accuracy = TP+TN+FP+FN (16)

Accuracy is a comparative value obtained from the amount of data predicted correctly against the total
data.

TP
TP+ FP (17)

Precission =

Precision is the ratio of the total number of positive data divided by the correct data.

TP
TP+ FN (18)

Recall =

Recall is the result of the total number of positive data divided by the correct data and incorrect data.

F1 — Score = 2 X PrecissionXRecall (19)

Precission+Recall

F1-Score is the overall total that includes a combination of recall and precision.
In addition, this study also evaluated the model's performance using Receiver Operating

Characteristic - Area Under the Curve (ROC AUC). ROC AUC analysis was performed using the One-
vs-Rest (OvR) approach, in which each class was compared with the combination of all other classes
[26]. The AUC calculation results per class were then averaged using the macro-averaging method so
that each class had the same weight even though the amount of data differed.

2.6. Prediction

In the prediction stage, the ConvNeXt model that has undergone the training process is used to
classify lung X-ray images into five classes, namely Bacterial Pneumonia, Viral Pneumonia,
Coronavirus Disease, Tuberculosis, and Normal. The test images used as input have undergone pre-
processing steps, including normalization, Contrast Limited Adaptive Histogram Equalization
(CLAHE), image augmentation, and resizing to a size of 224 x 224 pixels.

In order to generate a prediction, the test images were processed by the model, which
subsequently produced a probability vector via the softmax function. The class corresponding to the
highest probability value was then identified as the model's determined outcome.

To improve the interpretability of the prediction results, this study utilized the Gradient-weighted
Class Activation Mapping (Grad-CAM) method. Grad-CAM is used to generate a heatmap that
visualizes the areas in the image that contribute most to the model's decision-making [27]. This process
is performed by calculating the gradient of the feature map at the last convolutional layer, then
combining it into an activation map that shows the importance of each area [28]. The heatmap is then
overlaid on the original image, allowing the model's focus areas to be visually observed.

3.  RESULT

3.1. Training Result

Based on this visualization, it can be observed that the model shows a significant increase in
accuracy during training, with training and validation accuracy approaching each other. The training
results show that the ConvNeXt model achieves an accuracy of 99.67% on train accuracy and 92.66%
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on validation accuracy. Meanwhile, the loss value also shows a steady decrease, with the ConvNeXt
model's loss decreasing to 0.97% on train loss and 39.65% on validation loss. This indicates that the
ConvNeXt model performs well in learning. Although there are some minor fluctuations, it appears that
the model does not experience significant overfitting
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Figure 4. Accuracy and Loss Results
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Based on the model performance evaluation results in the Evaluation Metrics per Class table, the
model shows an overall accuracy rate of 86.32% with a macro average Fl-score of 0.8599 and a
weighted average F1-score of 0.8602. Model performance varies across classes. The Tuberculosis class
achieved the best performance with high precision and recall (1.000 and 0.8431), resulting in an F1-
score 0f 0.9149. The Normal and Coronavirus Disease classes also showed very good results, with recall
values of 0.9926 and 0.911, respectively, and Fl-scores above 0.92. Conversely, the Bacterial
Pneumonia class had relatively low recall (0.608) despite high precision (0.9387), indicating that there
are still a significant number of Bacterial Pneumonia cases not detected by the model (false negatives).
The lowest performance was observed in the Viral Pneumonia class, with precision of 0.6961 and an
F1-score of 0.7777, indicating significant prediction errors in this class.

ROC curve analysis in Figure ROC Curve - Multi-class confirms that the model has excellent
discriminative ability across most classes, with AUC values approaching 1.0. The Normal and
Tuberculosis classes achieve perfect AUC (1.00), followed by Coronavirus Disease (1.00) and Bacterial
Pneumonia (0.98). The Viral Pneumonia class has the lowest AUC (0.96), consistent with the lower
precision and F1-score results in the evaluation table. The macro-average AUC value of 0.99 indicates
that, overall, the model has very high multi-class classification performance.

These findings suggest that while the model can recognize most classes with high accuracy, there
are still challenges in distinguishing between Bacterial Pneumonia and Viral Pneumonia, possibly due
to the similarity in visual patterns on X-ray images of the two diseases. Further optimization, such as
increasing the amount of data in classes with low performance or applying more varied augmentation
techniques, has the potential to improve the model's performance in those classes.

Table 3. Evaluation Result

Class Precisi  Recall F1-Score AUC
on
Bacterial Pneumonia 93% 60% 73% 98%
Viral Pneumonia 69% 88% 77% 96%
Corona Virus Disease 85% 99% 92% 100%
Tuberculosis 100% 84% 91% 100%
Normal 90% 99% 94% 100%

To establish a performance benchmark, we conducted a comparative analysis against two widely-
used baseline models—ResNet-50 and DenseNet-121—under identical dataset and training conditions.
As quantitatively demonstrated in Table 4, our ConvNeXt model consistently outperformed both
baselines across all key metrics, achieving the highest test accuracy, macro F1-score, and macro AUC,
which substantiates its superior capability for lung disease classification from CXR images.

Table 4. Comparative Performance of Different Architectures

Model Test Accuracy Macro F1-Score Macro AUC
ResNet-50 82.15% 0.8112 0.97
DenseNet-121 84.60% 0.8395 0.98
ConvNeXt (Ours) 86.32% 0.8599 0.99

3.3. Prediction Result and Grad-CAM Visualization

Prediction results show that the model has a high level of confidence in classifying images. From
the test results, the model was able to classify images into three classes, namely Coronavirus Disease
(COVID-19), Tuberculosis, and Normal, with a perfect probability of 100% on the test samples
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displayed. Meanwhile, for the Bacterial Pneumonia and Viral Pneumonia classes, the model also
provides excellent prediction results with a probability of 99%. This indicates that the important features
of X-ray images in all five classes are successfully recognized strongly and consistently by the model.

Table 5. Prediction Result
Testing Class Probability

Bacterial Pneumonia 99%

Viral Pneumonia 99%

Corona Virus

0
Disease 100%
Tuberculosis 100%
Normal 100%

To strengthen the analysis, this study also uses Gradient-weighted Class Activation Mapping
(Grad-CAM) as an interpretability method. Grad-CAM generates activation maps that highlight the
areas of the image most contributing to the classification decision. Grad-CAM visualizations show that
areas with red intensity are focused on the lung regions relevant to disease indications. In cases of correct
predictions, the model's focus is precisely on the abnormal lung areas, providing visual justification for
the decisions made.

However, in some cases of misclassification, the Grad-CAM distribution appears less directed
and spreads to areas outside the lungs or insignificant parts of the image. This indicates limitations in
the model's ability to extract certain features under complex image conditions.
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4. DISCUSSIONS

The findings of this research indicate that the ConvNeXt architecture exhibits strong capability
in classifying multiple types of lung disease based on chest X-ray (CXR) images. With a test accuracy
0f 86.32%, macro-average F1-score of 0.8599, and macro-average AUC of 0.99, the model demonstrates
high robustness and discriminative ability across classes. These results prove that ConvNeXt, which
combines convolutional operations with modern architectural principles inspired by Vision
Transformers, can effectively extract spatial and textural features relevant to disease classification.

When compared with previous studies, the performance achieved by the proposed ConvNeXt
model is competitive and, in certain aspects, superior. A critical analysis reveals that while some prior
works report higher raw accuracy, the present study offers a more balanced and interpretable approach.
Souid et al. (2021) [7] applied MobileNetV2 for lung disease classification using the ChestX-ray dataset
and achieved an average accuracy above 90% with an AUC of 0.811. Although MobileNetV2 performed
efficiently on lightweight devices, its interpretability and robustness were limited. In contrast, the
ConvNeXt model in this study not only achieved a substantially higher AUC value (0.99), indicating
excellent class separation capability, but also provided superior visual interpretability through Grad-
CAM analysis, making it more suitable for clinical decision support where justifying a diagnosis is
paramount.

Hasanah et al. (2023) [8] compared ResNet50, ResNet101, and ResNetl152 architectures and
found that ResNet152 achieved the best F1-score of 0.94. Although ConvNeXt produced a slightly lower
macro Fl-score (0.8599), its training convergence and generalization ability were more stable across
multiple classes, with lower overfitting tendencies as shown in the loss curves. This suggests that
ConvNeXt can maintain consistent performance even with heterogeneous image distributions, which is
a common challenge in real-world medical datasets where image quality and patient demographics vary
widely. The stability of ConvNeXt, derived from its modern design elements like Layer Normalization
and GELU activation, is a significant advantage over deeper but potentially more unstable networks like
ResNet152.

Meanwhile, Shamrat et al. (2022) [9] introduced LungNet22, a modified VGG16-based model,
which achieved a very high accuracy of 98.89% in classifying up to 10 lung disease categories.
However, a critical limitation of their study was the potential for dataset redundancy and overlapping
features, which could inflate the reported accuracy without guaranteeing generalizability. In contrast,
the present study employed a more balanced dataset with five distinct disease categories and maintained
high accuracy while ensuring interpretability through Grad-CAM, a feature absent in LungNet22. This
emphasis on a robust evaluation framework and model transparency is a key differentiator of our work.

Izdihar et al. (2024) [10] and Jiang et al. (2021) [11] demonstrated that ResNet50 and improved
VGG models (IVGG13) can enhance pneumonia detection accuracy through deep architectures and data
augmentation. The ConvNeXt model builds upon these advancements by incorporating depthwise
convolutions, GELU activation, and Layer Normalization, resulting in improved feature extraction and
computational stability. The results obtained in this study corroborate the findings of those earlier works,
showing that deeper and well-regularized architectures yield higher performance and better
generalization on medical imaging tasks. However, our work extends this by systematically evaluating
a modern CNN architecture that bridges the performance gap with Transformers while retaining
computational efficiency, a crucial factor for clinical deployment.

Bundea and Danciu (2024) [12] employed the DenseNet architecture for pneumonia classification
and achieved accuracy rates between 92% and 97%, depending on class. While DenseNet demonstrated
strong feature reuse and parameter efficiency, the ConvNeXt model in this research achieved
comparable test accuracy (86.32%) with a considerably simpler design and faster training process.
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Moreover, the Grad-CAM visualizations in this study confirmed that ConvNeXt could accurately focus
on the pathological lung regions, providing a clear interpretative advantage over DenseNet-based
approaches that lack explicit attention visualization. This combination of competitive accuracy,
efficiency, and built-in interpretability positions ConvNeXt as a more practical solution for developing
computer-aided diagnosis (CAD) systems in resource-constrained environments.

From an analytical perspective, the ConvNeXt model's interpretability offers an important
contribution to clinical Al applications. The Grad-CAM visualization showed that the model
consistently concentrated on relevant pulmonary regions, such as areas affected by opacities or tissue
abnormalities. This visual evidence aligns with clinical reasoning patterns and supports the potential use
of ConvNeXt as an assistive diagnostic tool for radiologists. The ability to "show its work" is not merely
a technical feature but a fundamental requirement for building trust with medical practitioners and
facilitating the integration of Al into clinical workflows. However, misclassification cases, particularly
between Bacterial Pneumonia and Viral Pneumonia, highlight an ongoing challenge due to the
radiographic similarity between the two conditions—a limitation similarly reported by Souid et al.
(2021) [7] and Shamrat et al. (2022) [9]. This recurring issue across multiple studies underscores a
fundamental limitation of CXR imaging for this specific diagnostic task and suggests that future work
might need to integrate clinical metadata or multi-modal data to achieve a definitive differentiation.

In addition, the preprocessing strategies implemented in this study, including normalization,
CLAHE, augmentation, and resizing, proved effective in enhancing image contrast and improving
model generalization. This supports the conclusions drawn by Stojnev et al. (2020) and Goceri (2020),
who emphasized that proper preprocessing can significantly improve CNN performance in medical
image analysis. Our study validates these established practices within the context of a modern
architecture like ConvNeXt, demonstrating their continued importance.

Overall, this research contributes to the advancement of interpretable deep learning in medical
imaging. The primary scientific significance of this work lies in the demonstration that ConvNeXt, a
pure CNN architecture, can achieve Transformer-level performance on a complex medical image
classification task while offering superior computational efficiency and inherent interpretability. The
ConvNeXt model successfully balances accuracy, interpretability, and computational efficiency,
demonstrating its potential for deployment in computer-aided diagnostic (CADx) systems. The practical
implication is the provision of a reliable, transparent, and efficient tool that can assist radiologists in
screening and diagnosing lung diseases, potentially reducing workload and improving diagnostic
consistency, especially in regions with a shortage of expert radiologists. Future studies should focus on
expanding the dataset, improving class balance, and integrating attention mechanisms or Transformer-
based hybrids to further enhance differentiation between visually similar diseases and strengthen model
generalization across diverse clinical datasets.

5. CONCLUSION

This study demonstrated the effectiveness of the ConvNeXt architecture in multi-class lung disease
classification using chest X-ray images. By employing a dataset consisting of five classes (Bacterial
Pneumonia, Viral Pneumonia, Coronavirus Disease, Tuberculosis, and Normal) with comprehensive
preprocessing techniques such as normalization, CLAHE, augmentation, and resizing, the proposed
model achieved high performance. The key findings conclusively show a training accuracy of 99.67%, a
validation accuracy of 92.66%, and a test accuracy of 86.32%, confirming the model's strong learning
capability and generalization. The model's robustness is further validated by a macro-average F1-score
0f 0.8599 and an exceptional macro-average ROC-AUC of 0.99. Additionally, the integration of Grad-
CAM visualizations proved to be a significant advantage, as it provided transparent and clinically
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plausible explanations for the model's decisions by consistently focusing on pathological lung regions,
thereby enhancing trust and interpretability for potential clinical users.

The primary impact of this research lies in its contribution to the development of accurate and
interpretable Al-driven diagnostic systems in pulmonology. By achieving high fidelity in classifying
multiple diseases, including COVID-19 and Tuberculosis, this work presents a viable tool for assisting
radiologists, reducing diagnostic time, and improving early detection rates in both routine screenings and
urgent care scenarios. The use of a computationally efficient architecture like ConvNeXt also underscores
the potential for deploying such systems in settings with limited resources, thereby making advanced
diagnostic support more accessible.

Despite these promising results, the model still encountered difficulties in distinguishing between
Bacterial Pneumonia and Viral Pneumonia, largely due to their similar radiographic characteristics. To
address this limitation and further advance this research, several directions are proposed for future work.
First, expanding the dataset with more samples from underperforming classes and incorporating images
from diverse demographic and clinical sources could enhance model generalization. Second, exploring
hybrid models that combine the strengths of ConvNeXt with attention mechanisms or Vision
Transformers may improve feature discrimination for visually similar diseases. Third, technical strategies
such as advanced data augmentation tailored for medical images, cost-sensitive learning to handle class
imbalance, and hyperparameter tuning could yield further accuracy gains. Finally, the most critical next
step is to transition from a prototype to a clinical implementation, which involves developing a user-
friendly software interface and conducting real-world validation trials in collaboration with healthcare
institutions to assess the model's practical utility, workflow integration, and overall impact on diagnostic
decision-making.
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