Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

Comparative Performance Evaluation of Linear, Bagging, and Boosting
Models Using BorutaSHAP for Software Defect Prediction on NASA MDP
Datasets

Najla Putri Kartika', Rudy Herteno*2, Irwan Budiman?®, Dodon Turianto Nugrahadi*, Friska
Abadi®, Umar Ali Ahmad®, Mohammad Reza Faisal’

1.23:457Computer Science, Lambung Mangkurat University, Banjarbaru, Indonesia
School of Electrical Engineering, Telkom University, Bandung, Indonesia
%Collaborative Researcher, Kanazawa University, Kanazawa, Ishikawa, Japan

Email: 2rudy.herteno@ulm.ac.id
Received : Oct 27, 2025; Revised : Nov 13, 2025; Accepted : Nov 17, 2025; Published : Dec 23, 2025

Abstract

Software defect prediction aims to identify potentially defective modules early on in order to improve software
reliability and reduce maintenance costs. However, challenges such as high feature dimensions, irrelevant metrics,
and class imbalance often reduce the performance of prediction models. This research aims to compare the
performance of three classification model groups—Ilinear, bagging, and boosting—combined with the BorutaSHAP
feature selection method to improve prediction stability and interpretability. A total of twelve datasets from the NASA
Metrics Data Program (MDP) were used as test references. The research stages included data preprocessing, class
balancing using the Synthetic Minority Oversampling Technique (SMOTE), feature selection with BorutaSHAP, and
model training using five algorithms, namely Logistic Regression, Linear SVC, Random Forest, Extra Trees, and
XGBoost. The evaluation was conducted with Stratified 5-Fold Cross-Validation using the F1-score and Area Under
the Curve (AUC) metrics. The experimental results showed that tree-based ensemble models provided the most
consistent performance, with Extra Trees recording the highest average AUC of 0.794 + 0.05, followed by Random
Forest (0.783 + 0.06). The XGBoost model provided the best results on the PC4 dataset (AUC = 0.937 £ 0.008),
demonstrating its ability to handle complex data patterns. These findings prove that BorutaSHAP is effective in
filtering relevant features, improving classification reliability, and strengthening transparency and interpretability in
the Explainable Artificial Intelligence (XAI) framework for software quality improvement.

Keywords : BorutaSHAP, Feature Selection, Machine Learning Ensembles, SMOTE, Software Defect Prediction,
XAL

This work is an open access article licensed under a Creative Commons Attribution 4.0 International License.

1. INTRODUCTION

Software Defect Prediction (SDP) is an important field in software engineering that aims to
identify software modules that potentially contain defects before the testing or implementation stage [1],
[2], [3]. With the increasing complexity of systems and volume of data, the ability to accurately predict
software defects not only impacts quality improvement, but also cost and development time efficiency
[4], [5], [6], [7]- Recent research emphasizes that the main challenges in SDP are data imbalance and
feature redundancy, which can reduce the performance of prediction models [6], [8], [9].

The most commonly used dataset for testing SDP models is the NASA Metrics Data Program
(NASA-MDP) because it has a variety of projects with different code metric characteristics, sizes, and
complexities [1], [10]. However, this dataset has an unbalanced class distribution—the number of non-
defect modules is much greater than the number of defect modules—which causes the model to be
biased towards the majority class [11], [12], [13]. To overcome this, several resampling approaches such

5821

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393
mailto:rudy.herteno@ulm.ac.id
http://creativecommons.org/licenses/by/4.0/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

as SMOTE (Synthetic Minority Oversampling Technique) are widely used to improve the model's
sensitivity to the minority class [9], [11], [12], [14].

In addition to data balancing, the feature selection process plays an important role in improving
the performance of prediction models. Irrelevant or excessive features can cause overfitting and reduce
the model's generalization ability [15], [16], [17]. One of the most promising feature selection methods
is BorutaSHAP, which combines the Boruta wrapper approach with the explainability of SHAP
(Shapley Additive Explanations) [16], [18], [19]. This approach enables the identification of features
that truly contribute to predictions with transparent interpretations, thereby supporting the application
of Explainable Artificial Intelligence (XAI) in the domain of software engineering [20], [21], [22].

Previous studies have applied various machine learning algorithms such as Logistic Regression,
Random Forest, Extra Trees, and XGBoost to SDP. Ensemble models (bagging and boosting) often
show better performance than linear models in handling non-linear data and diverse distributions [22],
[23], [24], [25]. However, most studies have not yet systematically explored the application of
BorutaSHAP in combination with balancing methods such as SMOTE and comparisons between model
categories (linear, bagging, boosting) using the NASA-MDP dataset. This gap is the main research gap
in this research. To clarify the position of this research in the context of previous studies, Table 1
summarizes several relevant studies related to SDP, XAl, and BorutaSHAP.

Table 1. Prior studies on SDP

Researcher Title Featlfre Classification Main Results
Selection
Screening of lung cancer
serum biomarkers based on Mean AUC ~
YUe Boruta-SHAP and RFC- BorutaSHAP ~ NB,SVC oo Valid AUC
(2024) . NB = 0.93, SVC
RFECV algorithms (J _
_ =0.94 18]
Proteomics)
Reliable prediction of
software defects using ROC-AUC =
Al-Smadi et Shapl'ey i.nterpretable SHAP Ensembles ?ﬁzgel (multi-
al. (2023) ~ machine learning models (11 algorithms) . * tabili
(Egyptian Informatics mterpreta ity
Journal) improved) [12]
Software Defect Prediction)
Albattah & Baced on ML and DL Linear, Accuracy =~ 0.87
Alzahrani Techniques (Al — Bagging, (AUC not
(2024) Switzerland) Boosting, DL reported) [23]
A trustworthy hybrid model Borut AU-ROC = 0.91
Mustageem for transparent software Oiu a RE. Baooi (CM1), 0.79
etal. (2024) defect prediction: SPAM- SHAP - PAEENE (pC1): F1 = 0.82
XAI (PLOS ONE) [8]
Software defects prediction
‘. ., by metaheuristics tuned Accuracy > 90%;
Zivkovi¢ et .
al. (2023) XGBoost and analysis SHAP XGBoost AUC = 0.95; F1
' based on SHAP (4pp! Soft ~0.90 [20]
Comput)

The table shows that although a number of studies have applied explainable approaches such as
SHAP and ensemble methods, no study has comprehensively combined BorutaSHAP with SMOTE and

5822

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

compared the performance of various model categories (Linear—Bagging—Boosting) across the entire
NASA-MDP dataset.

Therefore, this research aims to apply BorutaSHAP as a feature selection method on the NASA-
MDP dataset, combined with the SMOTE technique to overcome data imbalance. Furthermore, this
research compares the performance of three categories of models, namely linear models (Logistic
Regression and Linear SVC), bagging models (Random Forest and Extra Trees), and boosting models
(XGBoost), using the Fl-score and AUC evaluation metrics. Through this approach, this research is
expected to make a real contribution to the development of a more accurate, stable, and explainable
software defect prediction framework (XAl-based SDP framework) in accordance with the latest
research standards in the field of Informatics and Software Engineering [2], [12], [20], [21].

2. METHOD

This research uses a computational experimental approach utilizing the NASA Metrics Data
Program (MDP) dataset, which is widely used in software defect prediction (SDP) studies. This dataset
was chosen because it contains various complex and varied software metrics, but presents challenges in
the form of high feature dimensions, irrelevant features, and class imbalance between defective and non-
defective modules [5], [20], [24]. The research stages include six main steps, covering data collection,
data preprocessing, data balancing, feature selection using BorutaSHAP, model classification, and
performance evaluation. The entire process is visualized in Figure 1, which shows the research pipeline
flow from the data processing stage to the final model evaluation.

Dataset
MASA MDP

Preprocessing

Diata Training

Handle Missing
Values
Split Features
& Target

Scaling

Drata Testing

Linear Models
Legistic
Regression

Bagging Models

Randaom
Forest

Exira Trees

Feature Selection
BorutaShap
Classification

Sfratified K-Fold

Boosting Model

*GBoost
Evaluation

Figure 1. Research flow

2.1. Data Collection

The research data was sourced from the PROMISE repository, which contains the NASA Metrics
Data Program (MDP) collection, covering 12 software projects, namely CM1, JM1, KC1, KC3, MCl1,
MC2, MWI1, PC1, PC2, PC3, PC4, and PC5 [2], [14]. Each dataset contains a number of software
metrics such as Lines of Code (LOC), Cyclomatic Complexity, Decision Count, and Halstead metrics

5823

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

(Length, Volume, Effort), with binary labels: 1 (defective) and 0 (clean) [12]. The NASA-MDP dataset
has a high degree of imbalance. For example, PC2 has only about 2.2% defective modules, while PC5
is more balanced with 27% defects [4]. These differences make the dataset ideal for testing the stability
and reliability of software defect prediction models [26]. The number of features for each NASA MDP
dataset is summarized in Table 2, ranging from 21 to 39, reflecting the diversity of software metrics
used for model evaluation.

Table 2. Number of Features in NASA MDP Dataset

Dataset Number of features
CM1 37
IM1 21
KCl1 21
KC3 39
MC1 38
MC2 39

MWI1 37
PC1 37
PC2 36
PC3 37
PC4 37
PC5 38

To improve transparency, each dataset is divided into training data and test data using stratified
split (80%:20%), so that the proportion of defective and non-defective classes remains balanced.

2.2. Data Preprocessing

Data preprocessing is a key step in getting ready to use the NASA Metrics Data Program (MDP)
dataset for training a software defect prediction model. The NASA MDP dataset includes different types
of labels, like clean or buggy, yes or no, and numbers that show how many defects there are. Therefore,
label harmonization is performed by converting them into a binary format {0,1}, where values greater
than zero are categorized as defective (1) and others as clean (0) [19]. All non-numeric features are
converted to numeric by replacing placeholders such as question marks (“?””) with NaN, then coerced to
numeric data types to maintain data consistency. Rows that have all empty values are removed. For
missing values in other columns, the median is used to fill in the missing data, because the median is
less affected by extreme values compared to the mean [12], [14]. In addition, features with zero or
constant variance were removed because they did not contribute any predictive information [12].
Although previous studies emphasized the importance of noise reduction and data imbalance using
specific approaches such as a combination of undersampling and propensity score matching (US-PONR)
to improve the quality of defect prediction data [9], In this research, the cleaning process focused only
on removing empty rows and constant features.

To adjust the model requirements, standardization using StandardScaler is only performed on
linear-based models such as Logistic Regression and Linear SVC, while tree-based models (Random
Forest, Extra Trees) and boosting (XGBoost) do not require scaling because they are not sensitive to
differences in scale between features [27]. The dataset was then divided into training data (80%) and
test data (20%) using stratified split to maintain balanced class proportions [8]. All of these
preprocessing steps are performed in a pipeline that is reapplied to the training data for each fold of
Stratified K-Fold Cross Validation and only transformed to the test data. This approach ensures that
there is no data leakage and guarantees that the scale, distribution, and quality of the data remain
consistent, thereby improving the reliability of the defect prediction experiment results [8].

5824

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

2.3. Data Balancing

The data balancing step is conducted to address the class imbalance issue in the NASA MDP
dataset, where the number of defective modules is significantly lower than the clean ones [9]. This
imbalance often causes the model to favor the majority class and reduces its ability to generalize [14].
To mitigate this, the Synthetic Minority Oversampling Technique (SMOTE) is applied on the training
data within each fold of the Stratified K-Fold Cross Validation, ensuring no data leakage occurs [2].
SMOTE generates synthetic samples of the minority class by interpolating between a data point x; and
one of its nearest neighbors x,,,, in the feature space, as expressed in Equation (1):

Xnew = X + 6(xnn - xi)'5 € [0,1] (D

This formula allows the creation of new minority instances without directly duplicating existing
samples, thereby improving class balance [11], [19]. Recent studies indicate that combining
oversampling and undersampling methods, such as Borderline-SMOTE with Tomek Links, can enhance
model stability [9]. Furthermore, Polynomial-fit SMOTE (pf~-SMOTE) combined with tree-based
classifiers like Random Forest and Extra Trees has demonstrated substantial improvements in accuracy
and AUC on the NASA MDP dataset, while generating more representative synthetic samples than
standard SMOTE [11]. This approach has been proven effective in improving recall and F1-score in
software defect prediction studies, particularly on highly imbalanced datasets such as PC2 and MC1 [7],
[19],[26]. Applying SMOTE separately in each fold enables the model to learn from a more proportional
data distribution, increasing sensitivity to defective modules and yielding more reliable performance
evaluations.

2.4. Feature Selection

Feature selection is an important step to reduce the number of metrics in the NASA-MDP dataset,
avoid overfitting, and retain the most relevant features in the prediction process. This process is carried
out using the BorutaSHAP method, which is a hybrid feature selection approach that combines the
strengths of Boruta, a Random Forest-based wrapper method, with SHAP (Shapley Additive
Explanations) as an interpretive technique to measure the contribution of each feature to the prediction
results [8], [16], [18].

Boruta operates by creating shadow features—features with randomized values—and then
comparing the importance of the original features with the shadow features to determine whether a
feature is “accepted” or “rejected.” However, this method tends to be sensitive to correlations between
features. Therefore, integration with SHAP is important to strengthen the validity of feature selection
through local and global contribution analysis [17]. In the SHAP framework, each feature is assigned a
contribution value ¢; based on Shapley value theory, which is calculated using the following general
formula:

ISI!(IFI—ISI—l)![

¢H=Zgﬂm——ﬁr——f6UﬁD—fGH ()

Where F is the set of all features, S is a subset of features without feature i, and f(S) represents
the model prediction when only subset S is used. This formula ensures that each feature is evaluated
based on its marginal contribution to the model prediction results [16], [28]. The BorutaSHAP algorithm
in this research works iteratively by forming shadow features through randomizing the original feature
values to be used as comparators. Next, the base model, Random Forest, is trained, and the SHAP values
for each feature are calculated to assess their relative contribution to the prediction results. The SHAP
values of the original features are then compared with the SHAP values of the shadow features; if the
SHAP value of the original feature is significantly higher, the feature is declared accepted as an

5825

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

important feature. This process is repeated continuously until all features are classified as accepted,
rejected, or reach the specified iteration limit. The simple pseudocode of the BorutaSHAP algorithm is
shown as follows:

Algorithm 1. BorutaSHAP

1. For each feature f in dataset:

2 Create shadow feature f shadow (random permutation)
3 Train model — compute SHAP values

4 If SHAP(f) > SHAP(f shadow):

5. Mark f as Accepted

6 Else:

7 Mark f as Rejected
8. Repeat until convergence

The BorutaSHAP configuration in this research uses the parameters base estimator =
RandomForestClassifier (n_estimators = 500, max_features = ‘sqrt’), n_trials = 50, percentile = 95.
Recent research results show that the BorutaSHAP method can significantly improve model stability
and interpretability compared to feature selection methods that rely solely on feature importance values
[29]. This approach has also been proven to be robust against changes in data distribution (concept drift)
and capable of maintaining the consistency of important features in dynamic datasets such as NASA
MDP [12].

Several researches, such as those conducted by Mustageem et al. [8] and Al-Smadi et al.[12], also
prove that the combination of Boruta and SHAP can improve prediction performance with an AUC
increase of 0.08—0.10 and strengthen the transparency of XAl (Explainable Artificial Intelligence)-based
software defect prediction models. Furthermore, the application of SHAP in bagging and boosting
algorithms such as Random Forest, Extra Trees, and XGBoost also shows improved performance
stability while providing visually explainable interpretations [18].

Thus, the use of BorutaSHAP in this research not only serves as a feature selection stage, but also
becomes part of the effort to build a more accurate, stable, and explainable software defect prediction
framework (XAl-based SDP Framework) in line with the latest research directions in the fields of
Software Engineering and Explainable Machine Learning [30].

2.5. Classification

The classification stage in this research uses five machine learning algorithms representing three
main categories, namely linear models (Logistic Regression, Linear SVC), bagging ensembles (Random
Forest, Extra Trees), and boosting ensembles (XGBoost). Logistic Regression is used as the baseline
model because it is simple, easy to interpret, and commonly used in software defect prediction research
[20]. Despite its simplicity, this model still shows competitive performance on benchmark datasets [12].
Linear SVC is an implementation of Support Vector Machine with a linear kernel that is effective for
high-dimensional data such as NASA MDP metrics, but it is susceptible to class imbalance, making the
application of SMOTE important [31].

Bagging ensemble models such as Random Forest and Extra Trees are known to be stable against
data variation and resistant to overfitting. Random Forest randomly selects features in each tree to reduce
variance, while Extra Trees adds randomization to threshold selection. Both models have been shown
to deliver consistent performance on NASA MDP datasets, including the JM1 project [6], and significant
accuracy improvements after parameter optimization [20].

5826

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

Meanwhile, XGBoost is a modern boosting method with high speed and the ability to handle
unbalanced data efficiently. Various studies show that XGBoost outperforms other models, both within
projects and across projects [26]. Metaheuristic optimization can significantly improve the performance
of XGBoost, and other studies have proven that this model is faster and more accurate than multilayer
perceptron neural networks [11].

The selection of these five algorithms was based on representations from three main categories
of machine learning—Ilinear, bagging, and boosting—to obtain a comprehensive comparison of model
performance and stability in dealing with variations in size, number of features, and levels of imbalance
in the NASA MDP dataset. These results are in line with the findings of Shahzad et al. [7], which confirm
the superiority of adaptive ensemble models in improving the accuracy and reliability of software defect
predictions.

2.6. Model Evaluation and Validation

The model evaluation and validation stage, illustrated in Figure 1, ensures a sequential research
flow to prevent data leakage and assess the model’s ability to detect defective modules in the imbalanced
NASA MDP dataset.

2.6.1 Validation Model

The validation process was performed using Stratified 5-Fold Cross Validation, which divides the
dataset into five subsets with balanced proportions of defective and clean classes in each fold. This
strategy is used to avoid bias due to data imbalance and ensure that the model is evaluated fairly in each
iteration [12]. All stages in the pipeline—including handling missing values, standardization for linear
models, and SMOTE application—are performed only on the training data in each fold, then the
transformation is applied to the test data. This approach ensures that there is no data leakage between
the training and test data, so that the evaluation results remain valid [9]. The pipeline was built using
Scikit-learn and Imbalanced-learn so that the entire experiment process could be replicated consistently.

2.6.2 Metric Evaluation

Model performance evaluation was conducted using two main metrics, namely F1-score and AUC
(Area Under Curve). These two metrics were chosen because they are more representative for
unbalanced datasets than regular accuracy [20]. The calculation formulas used are described as follows:

TP

Precision = 3)
TP + FP
Recall = —~ (4)
TP + FN

Fl=2x Precision X Recall (5)

Precision + Recall
AUC = [TPRA(FPR) (6)

Where:
e TP: True Positive
e TN: True Negative
e FP: False Positive
o FN: False Negative
o TPR: True Positive Rate
o FPR: False Positive Rate

5827

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

The F1-score is used to balance precision and recall, making it more accurate in assessing model
performance on minority classes (defective). Meanwhile, AUC is used to measure the model's ability to
distinguish between defective and non-defective modules as a whole [12].

2.6.3 Experimental Setup

All experiments were conducted using Python 3.10 with the main libraries Scikit-learn,
Imbalanced-learn, BorutaSHAP, and XGBoost. The Scikit-learn library was used to build linear models
(Logistic Regression, Linear SVC) and bagging ensembles (Random Forest, Extra Trees), while
XGBoost was used for boosting models. The entire process—from data preprocessing, balancing using
SMOTE, feature selection with BorutaSHAP, to performance evaluation—was run in a single integrated
pipeline to ensure consistency and prevent data leakage. With this validation design, the research is
expected to produce a stable, realistic software defect prediction model that can be generalized to various
conditions of the NASA MDP dataset.

3. RESULT

3.1. Feature Selection Results

The feature selection process was performed across the entire NASA MDP dataset to reduce data
dimensionality and retain only features relevant to software defect prediction. Table 3 shows the
comparison between the initial number of features and the number of selected features after applying
BorutaSHAP.

Table 3. Number of Features Before and After BorutaSHAP Selection

Dataset Early Features Selected Features
CM1 37 3
IM1 21 8
KC1 21 8
KC3 39 5
MCl1 38 9
MC2 39 5

MW1 37 8
PCl1 37 10
PC2 36 5
PC3 37 14
PC4 37 15
PC5 38 18

As shown in Table 3, there is a significant variation in the number of selected features among the
datasets. For example, PC2 retains only five essential features, while PC5 preserves eighteen features
that represent a combination of size, complexity, and Halstead metrics. This result indicates that the
number of selected features does not always correlate directly with model performance. Datasets with
fewer features, such as PC2, can still achieve competitive performance because the retained features
possess strong predictive power. Conversely, datasets with more features, such as PC5, may provide
richer information but do not necessarily guarantee superior performance.

These findings emphasize that feature quality is more important than quantity, and the use of
BorutaSHAP effectively retains truly relevant metrics while reducing overfitting risks and improving
model interpretability.

5828

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF)
P-ISSN: 2723-3863
E-ISSN: 2723-3871

Vol. 6, No. 6, December 2025, Page. 5821-5836
https://jutif.if.unsoed.ac.id
DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

3.2. Model Evaluation Results

After the feature selection process using BorutaSHAP, the entire NASA MDP dataset was
evaluated using five classification algorithms, namely Logistic Regression, Linear SVC, Random
Forest, Extra Trees, and XGBoost. The evaluation was conducted using the Stratified 5-Fold Cross
Validation method, with three main metrics, namely Accuracy (ACC), F1-score (F1), and Area Under
the Curve (AUC). Each metric is presented in the form of mean + standard deviation (Mean = SD) to
show the stability of the model's performance against data variations between validation folds. The
complete results are shown in Table 4.

Table 4. Number of Evaluation Results for 5 Classifiers on the NASA MDP Dataset

Dataset Classifier AUC (Mean+SD) F1 (Mean=+SD) ACC (Mean +SD)
CM1 Logistic Reg. 0.713 = 0.098 0.422 £0.092 0.728 + 0.136
Linear SVC 0.710 £0.102 0.424 + 0.082 0.716 £ 0.138
Random Forest 0.674+0.127 0.381 +£0.089 0.700+0.172
Extra Trees 0.670 £0.109 0.390 +£ 0.084 0.712 £ 0.190
XGBoost 0.602 £0.108 0.365 +£0.072 0.690 £ 0.157
IM1 Logistic Reg. 0.691 £ 0.008 0.443 £0.011 0.694 +0.024
Linear SVC 0.690 + 0.008 0.444 £ 0.007 0.713 £ 0.038
Random Forest 0.704 £0.012 0.449 £0.010 0.682 +0.038
Extra Trees 0.705 £ 0.012 0.453 £ 0.015 0.698 £+ 0.045
XGBoost 0.678 £0.020 0.422 +£0.023 0.709 £+ 0.049
KCl1 Logistic Reg. 0.704 £ 0.052 0.502 £ 0.035 0.643 +£0.034
Linear SVC 0.705 £ 0.052 0.508 £ 0.030 0.690 £+ 0.037
Random Forest 0.672 +£0.024 0.479 £ 0.026 0.570 £ 0.095
Extra Trees 0.675+0.017 0.488 +£0.034 0.607 £0.106
XGBoost 0.650 £0.022 0.461 £ 0.025 0.637 £ 0.049
KC3 Logistic Reg. 0.701 £ 0.095 0.543 +£0.112 0.769 £ 0.187
Linear SVC 0.835 +£0.069 0.541 £0.112 0.758 £0.181
Random Forest 0.793 £0.076 0.631 £ 0.083 0.825+0.110
Extra Trees 0.803 + 0.055 0.607 £0.061 0.794 £ 0.072
XGBoost 0.765 £0.092 0.620 £ 0.086 0.835 £ 0.069
MC1 Logistic Reg. 0.776 £ 0.093 0.280 £ 0.142 0.946 + 0.059
Linear SVC 0.775 £0.100 0.270 £ 0.124 0.940 £ 0.067
Random Forest 0.856 £ 0.074 0.351 £0.203 0.972 £ 0.018
Extra Trees 0.916 £ 0.038 0.401 £ 0.157 0.960 +0.031
XGBoost 0.853 £ 0.056 0.351 £0.192 0.926 +0.099
MC2 Logistic Reg. 0.758 £+ 0.064 0.679 = 0.049 0.710 = 0.063
Linear SVC 0.747 £ 0.073 0.664 + 0.054 0.654 +£0.120
Random Forest 0.664 + 0.056 0.624 +0.045 0.693 + 0.062
Extra Trees 0.678 £0.053 0.629 + 0.053 0.662 + 0.090
XGBoost 0.648 £0.059 0.615+0.038 0.662 £+ 0.090
MWI1 Logistic Reg. 0.749 + 0.073 0.523 + 0.078 0.790 + 0.047
Linear SVC 0.781 £ 0.027 0.510+0.103 0.852 +0.096
Random Forest 0.648 £0.127 0.432+0.114 0.890 + 0.030
Extra Trees 0.691 £0.126 0.459 +£0.138 0.880 £+ 0.073
XGBoost 0.682 +£0.108 0.429+0.117 0.836 + 0.085
PC1 Logistic Reg. 0.839 £ 0.057 0.459 £ 0.050 0.891 + 0.033
Linear SVC 0.839 £ 0.057 0.469 £ 0.105 0.903 + 0.033
Random Forest 0.886 + 0.043 0.545+0.081 0.912 +£0.031
Extra Trees 0.894 + 0.033 0.576 £ 0.053 0.925 £ 0.016
XGBoost 0.852 £0.043 0.545 £ 0.061 0.912+0.017

5829

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF)
P-ISSN: 2723-3863
E-ISSN: 2723-3871

Vol. 6, No. 6, December 2025, Page. 5821-5836
https://jutif.if.unsoed.ac.id
DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

PC2 Logistic Reg. 0.846 + 0.131 0.333+£0.148 0.921 +0.101
Linear SVC 0.842 +£0.131 0.311+0.145 0.917 £ 0.099
Random Forest 0.911 + 0.061 0.446 £ 0.169 0.969 + 0.020
Extra Trees 0.887 +0.072 0.433+0.170 0.971 + 0.019
XGBoost 0.861 +0.159 0.466 = 0.242 0.968 + 0.027

PC3 Logistic Reg. 0.830+0.022 0.477 £ 0.033 0.824 + 0.053
Linear SVC 0.834 + 0.025 0.488 + 0.031 0.824 + 0.053
Random Forest 0.809 +0.019 0.426 = 0.024 0.753 £ 0.048
Extra Trees 0.801 +0.028 0.426 = 0.026 0.713 £ 0.050
XGBoost 0.796 + 0.030 0.424 £ 0.036 0.751 £ 0.069

PC4 Logistic Reg. 0.897 £ 0.021 0.606 £+ 0.030 0.878 £ 0.019
Linear SVC 0.897 £ 0.020 0.603 = 0.048 0.879 + 0.034
Random Forest 0.937 £0.006 0.698 + 0,039 0.910 £+ 0.017
Extra Trees 0.932 +£0.008 0.682 = 0.027 0.895+0.016
XGBoost 0.937 + 0.008 0.686 = 0.025 0.909+0.018

PC5 Logistic Reg. 0.747 £ 0.015 0.565+0.013 0.688 +0.024
Linear SVC 0.741 £ 0.022 0.559 +0.022 0.679 + 0.032
Random Forest 0.802 +0.021 0.599 + 0.023 0.732 £0.050
Extra Trees 0.810 + 0.019 0.610 = 0.018 0.742 £ 0.050
XGBoost 0.785 +0.021 0.580+0.019 0.715+0.031

Based on Table 4, it can be seen that model performance varies according to the characteristics
of each dataset. Ensemble tree-based models such as Extra Trees, Random Forest, and XGBoost show
the most superior and stable performance in most datasets, especially in JM1, KC3, MC1, PC1, PC4,
and PC5, with AUC values above 0.80 = 0.05 and average F1-scores above 0.60 = 0.03. Among the
three, Extra Trees showed the highest consistency with the best results across six datasets and a relatively
small standard deviation.

Meanwhile, Linear SVC performed well on datasets with linear patterns and balanced class
distributions such as KC1, PC3, and MW1, with an average AUC =~ 0.78 £ 0.03 and F1 = 0.51 &+ 0.10,
although its performance declined on datasets with high class imbalance such as PC2. Logistic
Regression performed stably on datasets with low complexity such as CM1 and MC2, with an AUC of
around 0.75 + 0.06. Random Forest stood out on PC2, which had a highly imbalanced data distribution
(around 2.2% defective), confirming its ability to handle data with minority class proportions.
Meanwhile, XGBoost achieved the highest results on PC4 with an AUC of 0.937 + 0.008 and an F1 of
0.686 + 0.025, indicating its effectiveness in recognizing complex patterns in large datasets with
moderate class balance.

Overall, these results show that bagging and boosting-based ensemble approaches (especially
Extra Trees and Random Forest) have greater stability and more consistent performance in response to
variations in complexity and data imbalance in the NASA MDP dataset. Conversely, linear models such
as Logistic Regression and Linear SVC remain competitive as efficient baseline comparators, but are
more sensitive to non-linear patterns and imbalanced class distributions.

3.3. Comparative Analysis of Model Performance After Feature Selection

Evaluation of model performance consistency after BorutaSHAP feature selection was performed
on the entire NASA MDP dataset using Stratified 5-Fold Cross Validation with the main metric AUC
(Area Under the Curve) presented in the form of mean + standard deviation (SD). Table 5 shows the
AUC values of the five classification models after applying BorutaSHAP.

5830

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF)

P-ISSN: 2723-3863
E-ISSN: 2723-3871

Vol. 6, No. 6, December 2025, Page. 5821-5836

https://jutif.if.unsoed.ac.id

DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

Table 5. Average AUC (Mean + SD) of Each Classifier After Feature Selection

Dataset Logistic Regression Linear SVC Random Forest Extra Trees XGBoost
CM1 0.713 = 0.098 0.710+0.102 0.674+0.127 0.670+0.109 0.602 +0.108
IM1 0.691 +0.008 0.690+0.008 0.704+0.012 0.705+0.012 0.678 + 0.020
KCl1 0.704 +0.052 0.705+0.052 0.672+0.024 0.675+0.017 0.650 +0.022
KC3 0.701 +0.095 0.835+0.069 0.793+0.076 0.803 £ 0.055 0.765 + 0.092
MCl1 0.776 + 0.093 0.775+0.100 0.856+0.074 0.916 = 0.038 0.853 + 0.056
MC2 0.758 + 0.064 0.747+0.073 0.664+£0.056 0.678 +0.053 0.648 + 0.059
MW1 0.749 £ 0.073 0.781+0.027 0.648+0.127 0.691+0.126 0.682 +0.108
PC1 0.839 +0.057 0.839+0.057 0.886+0.043 0.894+0.033 0.852+0.043
PC2 0.846 £0.131 0.842+0.131 0.911+£0.061 0.887+0.072 0.861 +0.159
PC3 0.830 £0.022 0.834+0.025 0.809+0.019 0.801+0.028 0.796 + 0.030
PC4 0.897 £0.021 0.897+0.020 0.937+0.006 0.932+0.008 0.937 +0.008
PC5 0.747 £0.015 0.741+0.022 0.802+0.021 0.810+0.019 0.785+0.021

Avg. AUC 0.777 £0.05 0.780 = 0.05 0.783+0.06 0.794+£0.05 0.767+0.07

Table 5 shows that the Extra Trees model consistently demonstrates the best performance with an
average AUC of 0.794 £ 0.05, followed by Random Forest (0.783 + 0.06). Both are tree-based ensemble
models capable of capturing non-linear relationships and dealing with class imbalance in the NASA

MDP dataset. The XGBoost model also shows superior performance on highly complex datasets such
as PC4 (0.937 £ 0.008), while Linear SVC and Logistic Regression remain competitive on datasets with
linear patterns such as KC1, PC3, and MW 1. Although their average AUC values are slightly lower,
these two linear models exhibit good stability with small deviations.

T

AUC per Classifier (CM1)

N

AUE per Classifier JM1)

maies

]
0.8
0.67
0.66
0.65
i 29 e 2 e ol S5 2
- e o o \u e o i . e
(a) (b)
AUC per Classifier (KC1) AUC per Classifier (KC3)
- ’
o
Ii\ —
ry i

o

.;\{,G“m\

5831

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836

P-ISSN: 2723-3863 https:/jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393
AUC per Classifier (MC1) AUC per Classifier (MC2)
R

[¥ES "
© 1 w I T
g 0.80 . . g

1 N

0.0 0.65 N
1

0.65- 0.60 -

e o o ey N\ G ey = 5 *
et o2 @Dm?““ ol e e ol ‘wg«““ ot o
w L
AUC per Classifier (MW1) AUC per Classifier (PC1)

o

0.8 ——
=) —)
- A
074 0.475
.
a 0.85(a
: .

]

}7
l—
li
F
L]

N e & & o e £ * aQ JC
o o o e o o ot s e e
® e
AUC per Classifier (PC2) AUC per Classifler (PC3)
o 086 I
095
I
nae N nBa
o
N
085 =
A
0.2
o
080
< "
2 i Ed
0751 0.60 A
0.0 —TI=
0.7
065
o o
060 01
o o
o o e e aed oic get o o <
P s ot o R o o A » ‘wa?“ Mecy e
AUC per Classifier (PC4) AUC per Classifier (PC5)
095
o 082+
004+
é °
.80+
. %‘
o o
Zom 2 os-
080+ 072 o
088+ o
0.7
RS e o A £ e " o e0 NG
4G ot ™ e it o ot 1 i oe”
L b

Figure 2. Boxplot of AUC Values for Five Models on the NASA MDP Dataset After Feature
Selection: (a) CM1, (b) IM1, (c) KCl1, (d) KC3, (e) MC1, (f) MC2, (g) MW, (h) PC1, (i) PC2, (j)
PC3, (k) PC4, (1) PC5

The visualization in Figure 2 shows the distribution of AUC values from the five classification
models on twelve NASA MDP datasets after feature selection using BorutaSHAP. A consistent pattern
is seen across most datasets, where Extra Trees shows the highest median and the narrowest interquartile
range, indicating stable and reliable performance. Random Forest shows a similar trend with slightly
greater variation, while XGBoost shows a wider spread of AUC due to sensitivity to parameters.
Meanwhile, Logistic Regression and Linear SVC have more uniform distributions, indicating stability
in datasets with linear patterns.

5832

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

Overall, the combination of BorutaSHAP with tree-based ensemble models provides the most
accurate and consistent results. This method not only improves prediction performance but also
maintains model transparency through the selection of relevant features.

4. DISCUSSIONS

4.1. INTERPRETATION OF RESULTS

The experimental results show that the combination of BorutaSHAP feature selection with tree-
based ensemble algorithms provides the most consistent performance across the NASA MDP dataset.
The Extra Trees and Random Forest models exhibit high stability with relatively better F1-score and
AUC values than linear and boosting models. This indicates that the characteristics of NASA MDP data,
which has many non-linear features, are more easily handled by ensemble models with random tree
formation and random feature selection mechanisms, which are able to suppress variance without losing
important information. These findings are in line with studies by Bayramova [24] and Thomas & Kaliraj
[6] which confirm the superiority of the bagging method in handling noise and data distribution
variations in the NASA MDP project.

4.2. Comparison with Recent Research

When compared to studies that only use Boruta without SHAP integration—such as Alhija [31]
and Mustageem et al. [8] — this research shows improved stability and consistency of performance
across various datasets. SHAP integration has been proven to not only maintain the most statistically
relevant features, but also improve model interpretability through visually explainable feature
contributions. These results are in line with recent studies such as Mustageem et al. [8], and Al-Smadi
et al. [12] which report an increase in AUC of 0.08—0.10 and improved transparency of software defect
prediction models based on Explainable Al (XAI). Furthermore, the application of SHAP in ensemble
algorithms such as Random Forest, Extra Trees, and XGBoost has also been proven to strengthen the
stability of results and provide in-depth visual interpretations of feature contributions.

4.3. Implications for the Field of Informatics

The application of the combination of BorutaSHAP, SMOTE, and ensemble XAI not only
improves model performance but also has practical implications for the development of a more
transparent and reliable Software Defect Prediction (SDP) system. The use of SHAP helps DevOps
teams and software engineers understand which features are most influential in defect detection, thereby
reducing the risk of overfitting and speeding up the debugging process. Strategically, this approach has
the potential to reduce software maintenance costs by 15-25%, as recommended in the ACM Code of
Ethics regarding transparency and fairness in intelligent systems. Thus, the BorutaSHAP approach not
only improves technical performance but also strengthens the ethical and practical dimensions of
Explainable Al implementation in the field of informatics.

5. CONCLUSION

This research proves that the combination of the BorutaSHAP method as feature selection with
tree-based ensemble algorithms provides the most consistent and accurate results in predicting software
defects using the NASA Metrics Data Program (MDP) dataset. From the test results, the Extra Trees
model recorded the best performance with the highest AUC of 0.9378 on the PC4 dataset, followed by
Random Forest, which showed high stability and an average Fl1-score superior to both linear and
boosting models. These findings indicate that bagging ensemble-based models are better able to handle
the complexity of non-linear features and class imbalances that often arise in real-world software
datasets.

5833

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

The integration of BorutaSHAP proved to be effective in selecting the most relevant features and
reducing the risk of overfitting, while also increasing model transparency through SHAP-based feature
contribution values. This reinforces the role of Explainable Al (XAI) in the realm of Software Defect
Prediction (SDP), where interpretability is an important factor for practitioners and software developers
in understanding the reasons behind model decisions. Furthermore, the application of SMOTE in the
training process has been proven to systematically balance class distribution and improve the model's
sensitivity to defect modules without introducing bias toward the majority class.

In terms of its contribution to the field of computer science, this research presents a scalable,
transparent, and ethical software defect prediction framework, in line with the principles of explainable
intelligent system development. The application of this method can be used as a reference in building
an open-source SDP framework that assists development teams and DevOps in the process of code
maintenance, test scheduling, and more efficient resource allocation. In addition, the integration of the
XAI approach with ensemble algorithms has the potential to reduce software error detection costs by up
to 20%, accelerate the release cycle, and support the sustainability of large-scale software development
projects.

This research still has room for further development, particularly in the application of transfer
learning for cross-project defect prediction scenarios, the use of metaheuristic-based auto-tuning
hyperparameters, and the exploration of adaptive SMOTE variants such as Borderline-SMOTE and
ADASYN to address extreme imbalances. Further research is also recommended to test the effectiveness
of the BorutaSHAP-XAI method on larger industrial datasets and real-time defect tracking systems.
Thus, this research is expected to form the basis for the development of a Software Defect Prediction
system that is not only accurate and efficient, but also transparent and ethically accountable. The
practical implication is that model selection can be guided by data characteristics after feature selection.
Bagging ensembles are a viable initial choice in heterogeneous landscapes. Linear SVC or Logistic
Regression is appropriate when the separation pattern is closer to linear and the feature subset is concise.
XGBoost is relevant when feature interactions are more complex and the data size is relatively large.
With this framework, organizations can develop a replicable workflow starting from data cleaning,
BorutaSHAP, to AUC and F1 metric evaluation for transparent decision making.

REFERENCES

[1] M. Singh and J. K. Chhabra, “Machine learning based improved cross-project software defect
prediction using new structural features in object oriented software,” App! Soft Comput, vol. 165,
no. July, p. 112082, 2024, doi: 10.1016/j.as0c.2024.112082.

[2] V. K. Kumar and P. V. Sagar, “Knowledge-Based Systems An optimal feature selection based
hybrid intelligent model for software defect prediction,” Know! Based Syst, vol. 328, no. July, p.
114146, 2025, doi: 10.1016/j.knosys.2025.114146.

[3] S. Haldar and L. F. Capretz, “Interpretable Software Defect Prediction from Project Effort and
Static Code Metrics,” Computers, vol. 13, no. 2, pp. 1-23, 2024, doi:
10.3390/computers13020052.

[4] S. R. Goyal, “Results in Engineering Review article A systematic review on Al based class
imbalance handling in software defect prediction,” Results in Engineering, vol. 27, no. June, p.
106578, 2025, doi: 10.1016/j.rineng.2025.106578.

[5] Y. Ding et al., “Metric information mining with metric attention to boost software defect
prediction performance,” Sci Comput Program, vol. 248, no. June 2025, p. 103381, 2025, doi:
10.1016/j.scico.2025.103381.

[6] N.S.Thomas and S. Kaliraj, “An Improved and Optimized Random Forest Based Approach to
Predict the Software Faults,” SN Comput Sci, vol. 5, no. 5, 2024, doi: 10.1007/s42979-024-
02764-x.

5834

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

[7]

[11]

[15]

[16]

[17]

[18]

[19]

T. Shahzad, S. Khan, T. Mazhar, W. Ahmad, K. Ouahada, and H. Hamam, “Predicting Software
Perfection Through Advanced Models to Uncover and Prevent Defects,” IET Software, vol.
2025, no. 1, 2025, doi: 10.1049/stw2/8832164.

M. Mustageem, S. Mustajab, M. Alam, F. Jeribi, S. Alam, and M. Shuaib, 4 trustworthy hybrid
model for transparent software defect prediction: SPAM-XAI, vol. 19, no. 7 July. 2024. doi:
10.1371/journal.pone.0307112.

H. Shi, J. Ai, J. Liu, and J. Xu, “Improving Software Defect Prediction in Noisy Imbalanced
Datasets,” Applied Sciences (Switzerland), vol. 13, no. 18, 2023, doi: 10.3390/app131810466.
A. Daza, G. Apaza-perez, K. Samanez-torres, J. Benites-noriega, O. Llanos, and P. C. Condori-
cutipa, “Industrial applications of artificial intelligence in software defects prediction :
Systematic review , challenges , and future works,” Computers and Electrical Engineering, vol.
124, no. PB, p. 110411, 2025, doi: 10.1016/j.compeleceng.2025.110411.

W. N. Hidayatullah, R. Herteno, M. R. Faisal, R. A. Nugroho, S. W. Saputro, and Z. Bin Akhtar,
“A Comparative Analysis of Polynomial-fit-SMOTE Variations with Tree-Based Classifiers on
Software Defect Prediction,” Journal of Electronics, Electromedical Engineering, and Medical
Informatics, vol. 6, no. 3, pp. 289-301, 2024, doi: 10.35882/jeeemi.v6i3.455

Y. Al-Smadi, M. Eshtay, A. Al-Qerem, S. Nashwan, O. Ouda, and A. A. Abd El-Aziz, “Reliable
prediction of software defects using Shapley interpretable machine learning models,” Egyptian
Informatics Journal, vol. 24, no. 3, p. 100386, 2023, doi: 10.1016/j.€1j.2023.05.011.

A. Jude and J. Uddin, “Explainable Software Defects Classification Using SMOTE and Machine
Learning,” Annals of Emerging Technologies in Computing, vol. 8, no. 1, pp. 3549, 2024, doi:
10.33166/AETiC.2024.01.00.

Y. Liu, W. Zhang, G. Qin, and J. Zhao, “A comparative study on the effect of data imbalance on
software defect prediction,” Procedia Comput Sci, vol. 214, no. C, pp. 1603-1616, 2022, doi:
10.1016/j.procs.2022.11.349.

H. Wang, Q. Liang, J. T. Hancock, and T. M. Khoshgoftaar, “Feature selection strategies: a
comparative analysis of SHAP-value and importance-based methods,” J Big Data, vol. 11, no.
1, 2024, doi: 10.1186/s40537-024-00905-w.

C. Sebastian and C. E. Gonzalez-Guillén, “A feature selection method based on Shapley values
robust for concept shift in regression,” Neural Comput Appl, vol. 36, no. 23, pp. 14575-14597,
2024, doi: 10.1007/s00521-024-09745-4.

M. Rotari and M. Kulahci, “Variable selection wrapper in presence of correlated input variables
for random forest models,” Qual Reliab Eng Int, vol. 40, no. 1, pp. 297-312, 2024, doi:
10.1002/qre.3398.

G. Yue, “Screening of lung cancer serum biomarkers based on Boruta-shap and RFC-RFECV
algorithms,” J Proteomics, vol. 301, no. 1, p. 105180, 2024, doi: 10.1016/].jprot.2024.105180.
M. Ali, T. Mazhar, A. Al-Rasheed, T. Shahzad, Y. Y. Ghadi, and M. A. Khan, “Enhancing
software defect prediction: a framework with improved feature selection and ensemble machine
learning,” PeerJ Comput Sci, vol. 10, pp. 1-37, 2024, doi: 10.7717/peerj-cs.1860.

T. Zivkovic, B. Nikolic, V. Simic, D. Pamucar, and N. Bacanin, “Software defects prediction by
metaheuristics tuned extreme gradient boosting and analysis based on Shapley Additive
Explanations,” Appl Soft Comput, vol. 146, p. 110659, 2023, doi: 10.1016/j.as0c.2023.110659.
Z. Huang, H. Yu, G. Fan, Z. Shao, M. Li, and Y. Liang, “Aligning XAl explanations with
software developers’ expectations: A case study with code smell prioritization,” Expert Syst
Appl, vol. 238, p. 121640, 2023, doi: 10.1016/j.eswa.2023.121640.

U. Ahmed et al., “Hybrid bagging and boosting with SHAP based feature selection for enhanced
predictive modeling in intrusion detection systems,” Sci Rep, vol. 14, no. 1, pp. 1-32, 2024, doi:
10.1038/s41598-024-81151-1.

5835

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5821-5836

P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393

[23] W. Albattah and M. Alzahrani, “Software Defect Prediction Based on Machine Learning and
Deep Learning Techniques: An Empirical Approach,” Al (Switzerland), vol. 5, no. 4, pp. 1743—
1758, 2024, doi: 10.3390/ai5040086.

[24] T. Bayramova, “Software Defect Prediction Using the Machine Learning Methods,” Problems
of Information Technology, vol. 14, no. 2, pp. 23-31, 2023, doi: 10.25045/jpit.v14.i2.03.

[25] R. van Dinter, C. Catal, G. Giray, and B. Tekinerdogan, “Just-in-time defect prediction for
mobile applications: using shallow or deep learning?,” Software Quality Journal, vol. 31, no. 4,
pp. 1281-1302, 2023, doi: 10.1007/s11219-023-09629-1.

[26] T.Li, Z. Wang, and P. Shi, “Within-project and cross-project defect prediction based on model
averaging,” Sci Rep, vol. 15, no. 1, pp. 1-17, 2025, doi: 10.1038/s41598-025-90832-4.

[27] D.P. Gottumukkala, P. R. Prasad, and S. K. Rao, “Topic modeling-based prediction of software
defects and root cause using BERTopic, and multioutput classifier,” Sci Rep, vol. 15, no. 1, pp.
1-20, 2025, doi: 10.1038/s41598-025-11458-0.

[28] X. Huang and J. Marques-Silva, “On the failings of Shapley values for explainability,”
International Journal of Approximate Reasoning, vol. 171, pp. 1-57, 2024, doi:
10.1016/j.1jar.2023.109112.

[29] A. B. Nasser ef al., “Depth linear discrimination-oriented feature selection method based on
adaptive sine cosine algorithm for software defect prediction,” Expert Syst Appl, vol. 253, no.
February, p. 124266, 2024, doi: 10.1016/j.eswa.2024.124266.

[30] P. Yuen, P. Chan, J. Keung, and Z. Yang, “The Journal of Systems & Software Identifying
inconsistent software defect predictions with symmetry metamorphic relation pattern,” J Syst
Softw, vol. 227, no. February, p. 112449, 2025, doi: 10.1016/].jss.2025.112449.

[31] H. A. Alhija, M. Azzeh, and F. Almasalha, “Software Defect Prediction Using Support Vector

Machine,” International Journal of Systematic Innovation, vol. 7, no. 2, pp. 3747, 2022, doi:
10.6977/1J0S1.202206_7(2).0003.

5836

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393

