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Abstract 

Software defect prediction aims to identify potentially defective modules early on in order to improve software 

reliability and reduce maintenance costs. However, challenges such as high feature dimensions, irrelevant metrics, 

and class imbalance often reduce the performance of prediction models. This research aims to compare the 

performance of three classification model groups—linear, bagging, and boosting—combined with the BorutaSHAP 

feature selection method to improve prediction stability and interpretability. A total of twelve datasets from the NASA 

Metrics Data Program (MDP) were used as test references. The research stages included data preprocessing, class 

balancing using the Synthetic Minority Oversampling Technique (SMOTE), feature selection with BorutaSHAP, and 

model training using five algorithms, namely Logistic Regression, Linear SVC, Random Forest, Extra Trees, and 

XGBoost. The evaluation was conducted with Stratified 5-Fold Cross-Validation using the F1-score and Area Under 

the Curve (AUC) metrics. The experimental results showed that tree-based ensemble models provided the most 

consistent performance, with Extra Trees recording the highest average AUC of 0.794 ± 0.05, followed by Random 

Forest (0.783 ± 0.06). The XGBoost model provided the best results on the PC4 dataset (AUC = 0.937 ± 0.008), 

demonstrating its ability to handle complex data patterns. These findings prove that BorutaSHAP is effective in 

filtering relevant features, improving classification reliability, and strengthening transparency and interpretability in 

the Explainable Artificial Intelligence (XAI) framework for software quality improvement. 

 

Keywords : BorutaSHAP, Feature Selection, Machine Learning Ensembles, SMOTE, Software Defect Prediction, 

XAI. 
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1. INTRODUCTION 

Software Defect Prediction (SDP) is an important field in software engineering that aims to 

identify software modules that potentially contain defects before the testing or implementation stage [1], 

[2], [3]. With the increasing complexity of systems and volume of data, the ability to accurately predict 

software defects not only impacts quality improvement, but also cost and development time efficiency 

[4], [5], [6], [7]. Recent research emphasizes that the main challenges in SDP are data imbalance and 

feature redundancy, which can reduce the performance of prediction models  [6], [8], [9]. 

The most commonly used dataset for testing SDP models is the NASA Metrics Data Program 

(NASA-MDP) because it has a variety of projects with different code metric characteristics, sizes, and 

complexities [1], [10]. However, this dataset has an unbalanced class distribution—the number of non-

defect modules is much greater than the number of defect modules—which causes the model to be 

biased towards the majority class [11], [12], [13]. To overcome this, several resampling approaches such 
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as SMOTE (Synthetic Minority Oversampling Technique) are widely used to improve the model's 

sensitivity to the minority class [9], [11], [12], [14]. 

In addition to data balancing, the feature selection process plays an important role in improving 

the performance of prediction models. Irrelevant or excessive features can cause overfitting and reduce 

the model's generalization ability [15], [16], [17]. One of the most promising feature selection methods 

is BorutaSHAP, which combines the Boruta wrapper approach with the explainability of SHAP 

(Shapley Additive Explanations) [16], [18], [19]. This approach enables the identification of features 

that truly contribute to predictions with transparent interpretations, thereby supporting the application 

of Explainable Artificial Intelligence (XAI) in the domain of software engineering [20], [21], [22]. 

Previous studies have applied various machine learning algorithms such as Logistic Regression, 

Random Forest, Extra Trees, and XGBoost to SDP. Ensemble models (bagging and boosting) often 

show better performance than linear models in handling non-linear data and diverse distributions [22], 

[23], [24], [25]. However, most studies have not yet systematically explored the application of 

BorutaSHAP in combination with balancing methods such as SMOTE and comparisons between model 

categories (linear, bagging, boosting) using the NASA-MDP dataset. This gap is the main research gap 

in this research. To clarify the position of this research in the context of previous studies, Table 1 

summarizes several relevant studies related to SDP, XAI, and BorutaSHAP. 

 

Table 1. Prior studies on SDP 

Researcher Title 
Feature 

Selection 
Classification Main Results 

Yue  

(2024) 

Screening of lung cancer 

serum biomarkers based on 

Boruta-SHAP and RFC-

RFECV algorithms (J 

Proteomics) 

BorutaSHAP NB, SVC 

Mean AUC ≈ 

0.88; valid AUC 

NB = 0.93, SVC 

= 0.94 [18] 

Al-Smadi et 

al. (2023) 

Reliable prediction of 

software defects using 

Shapley interpretable 

machine learning models 

(Egyptian Informatics 

Journal) 

SHAP 
Ensembles  

(11 algorithms) 

ROC-AUC > 

0.90 (multi-

model, 

interpretability 

improved) [12] 

Albattah & 

Alzahrani 

(2024) 

Software Defect Prediction 

Based on ML and DL 

Techniques (AI 

Switzerland) 

– 

Linear, 

Bagging, 

Boosting, DL 

Accuracy ≈ 0.87 

(AUC not 

reported) [23] 

Mustaqeem 

et al. (2024) 

A trustworthy hybrid model 

for transparent software 

defect prediction: SPAM-

XAI (PLOS ONE) 

Boruta 

 +  

SHAP 

RF, Bagging 

AU-ROC = 0.91 

(CM1), 0.79 

(PC1); F1 ≈ 0.82 

[8] 

Živković et 

al. (2023) 

Software defects prediction 

by metaheuristics tuned 

XGBoost and analysis 

based on SHAP (Appl Soft 

Comput) 

SHAP XGBoost 

Accuracy > 90%; 

AUC ≈ 0.95; F1 

≈ 0.90 [20] 

 

The table shows that although a number of studies have applied explainable approaches such as 

SHAP and ensemble methods, no study has comprehensively combined BorutaSHAP with SMOTE and 
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compared the performance of various model categories (Linear–Bagging–Boosting) across the entire 

NASA-MDP dataset. 

Therefore, this research aims to apply BorutaSHAP as a feature selection method on the NASA-

MDP dataset, combined with the SMOTE technique to overcome data imbalance. Furthermore, this 

research compares the performance of three categories of models, namely linear models (Logistic 

Regression and Linear SVC), bagging models (Random Forest and Extra Trees), and boosting models 

(XGBoost), using the F1-score and AUC evaluation metrics. Through this approach, this research is 

expected to make a real contribution to the development of a more accurate, stable, and explainable 

software defect prediction framework (XAI-based SDP framework) in accordance with the latest 

research standards in the field of Informatics and Software Engineering [2], [12], [20], [21]. 

2. METHOD 

This research uses a computational experimental approach utilizing the NASA Metrics Data 

Program (MDP) dataset, which is widely used in software defect prediction (SDP) studies. This dataset 

was chosen because it contains various complex and varied software metrics, but presents challenges in 

the form of high feature dimensions, irrelevant features, and class imbalance between defective and non-

defective modules [5], [20], [24]. The research stages include six main steps, covering data collection, 

data preprocessing, data balancing, feature selection using BorutaSHAP, model classification, and 

performance evaluation. The entire process is visualized in Figure 1, which shows the research pipeline 

flow from the data processing stage to the final model evaluation. 

 

 
Figure 1. Research flow 

2.1. Data Collection 

The research data was sourced from the PROMISE repository, which contains the NASA Metrics 

Data Program (MDP) collection, covering 12 software projects, namely CM1, JM1, KC1, KC3, MC1, 

MC2, MW1, PC1, PC2, PC3, PC4, and PC5 [2], [14]. Each dataset contains a number of software 

metrics such as Lines of Code (LOC), Cyclomatic Complexity, Decision Count, and Halstead metrics 
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(Length, Volume, Effort), with binary labels: 1 (defective) and 0 (clean) [12]. The NASA-MDP dataset 

has a high degree of imbalance. For example, PC2 has only about 2.2% defective modules, while PC5 

is more balanced with 27% defects [4]. These differences make the dataset ideal for testing the stability 

and reliability of software defect prediction models [26]. The number of features for each NASA MDP 

dataset is summarized in Table 2, ranging from 21 to 39, reflecting the diversity of software metrics 

used for model evaluation. 

 

Table 2. Number of Features in NASA MDP Dataset 

Dataset Number of features 

CM1 37 

JM1 21 

KC1 21 

KC3 39 

MC1 38 

MC2 39 

MW1 37 

PC1 37 

PC2 36 

PC3 37 

PC4 37 

PC5 38 

 

To improve transparency, each dataset is divided into training data and test data using stratified 

split (80%:20%), so that the proportion of defective and non-defective classes remains balanced. 

2.2. Data Preprocessing 

Data preprocessing is a key step in getting ready to use the NASA Metrics Data Program (MDP) 

dataset for training a software defect prediction model. The NASA MDP dataset includes different types 

of labels, like clean or buggy, yes or no, and numbers that show how many defects there are. Therefore, 

label harmonization is performed by converting them into a binary format {0,1}, where values greater 

than zero are categorized as defective (1) and others as clean (0) [19]. All non-numeric features are 

converted to numeric by replacing placeholders such as question marks (“?”) with NaN, then coerced to 

numeric data types to maintain data consistency. Rows that have all empty values are removed. For 

missing values in other columns, the median is used to fill in the missing data, because the median is 

less affected by extreme values compared to the mean [12], [14]. In addition, features with zero or 

constant variance were removed because they did not contribute any predictive information [12]. 

Although previous studies emphasized the importance of noise reduction and data imbalance using 

specific approaches such as a combination of undersampling and propensity score matching (US-PONR) 

to improve the quality of defect prediction data [9], In this research, the cleaning process focused only 

on removing empty rows and constant features. 

To adjust the model requirements, standardization using StandardScaler is only performed on 

linear-based models such as Logistic Regression and Linear SVC, while tree-based models (Random 

Forest, Extra Trees) and boosting (XGBoost) do not require scaling because they are not sensitive to 

differences in scale between features [27]. The dataset was then divided into training data (80%) and 

test data (20%) using stratified split to maintain balanced class proportions [8]. All of these 

preprocessing steps are performed in a pipeline that is reapplied to the training data for each fold of 

Stratified K-Fold Cross Validation and only transformed to the test data. This approach ensures that 

there is no data leakage and guarantees that the scale, distribution, and quality of the data remain 

consistent, thereby improving the reliability of the defect prediction experiment results [8]. 
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2.3. Data Balancing 

The data balancing step is conducted to address the class imbalance issue in the NASA MDP 

dataset, where the number of defective modules is significantly lower than the clean ones [9]. This 

imbalance often causes the model to favor the majority class and reduces its ability to generalize [14]. 

To mitigate this, the Synthetic Minority Oversampling Technique (SMOTE) is applied on the training 

data within each fold of the Stratified K-Fold Cross Validation, ensuring no data leakage occurs [2]. 

SMOTE generates synthetic samples of the minority class by interpolating between a data point 𝑥𝑖 and 

one of its nearest neighbors 𝑥𝑛𝑛  in the feature space, as expressed in Equation (1): 

𝑥𝑛𝑒𝑤 =  𝑥𝑖 +  𝛿(𝑥𝑛𝑛 −  𝑥𝑖), 𝛿 ∈ [0,1]   (1) 

This formula allows the creation of new minority instances without directly duplicating existing 

samples, thereby improving class balance [11], [19]. Recent studies indicate that combining 

oversampling and undersampling methods, such as Borderline-SMOTE with Tomek Links, can enhance 

model stability [9]. Furthermore, Polynomial-fit SMOTE (pf-SMOTE) combined with tree-based 

classifiers like Random Forest and Extra Trees has demonstrated substantial improvements in accuracy 

and AUC on the NASA MDP dataset, while generating more representative synthetic samples than 

standard SMOTE [11]. This approach has been proven effective in improving recall and F1-score in 

software defect prediction studies, particularly on highly imbalanced datasets such as PC2 and MC1 [7], 

[19], [26]. Applying SMOTE separately in each fold enables the model to learn from a more proportional 

data distribution, increasing sensitivity to defective modules and yielding more reliable performance 

evaluations. 

2.4. Feature Selection 

Feature selection is an important step to reduce the number of metrics in the NASA-MDP dataset, 

avoid overfitting, and retain the most relevant features in the prediction process. This process is carried 

out using the BorutaSHAP method, which is a hybrid feature selection approach that combines the 

strengths of Boruta, a Random Forest-based wrapper method, with SHAP (Shapley Additive 

Explanations) as an interpretive technique to measure the contribution of each feature to the prediction 

results [8], [16], [18].  

Boruta operates by creating shadow features—features with randomized values—and then 

comparing the importance of the original features with the shadow features to determine whether a 

feature is “accepted” or “rejected.” However, this method tends to be sensitive to correlations between 

features. Therefore, integration with SHAP is important to strengthen the validity of feature selection 

through local and global contribution analysis [17]. In the SHAP framework, each feature is assigned a 

contribution value 𝜙𝑖 based on Shapley value theory, which is calculated using the following general 

formula: 

𝜙𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑖} [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]  (2) 

Where 𝐹 is the set of all features, 𝑆 is a subset of features without feature 𝑖, and 𝑓(𝑆) represents 

the model prediction when only subset 𝑆 is used. This formula ensures that each feature is evaluated 

based on its marginal contribution to the model prediction results [16], [28]. The BorutaSHAP algorithm 

in this research works iteratively by forming shadow features through randomizing the original feature 

values to be used as comparators. Next, the base model, Random Forest, is trained, and the SHAP values 

for each feature are calculated to assess their relative contribution to the prediction results. The SHAP 

values of the original features are then compared with the SHAP values of the shadow features; if the 

SHAP value of the original feature is significantly higher, the feature is declared accepted as an 
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important feature. This process is repeated continuously until all features are classified as accepted, 

rejected, or reach the specified iteration limit. The simple pseudocode of the BorutaSHAP algorithm is 

shown as follows: 

 

Algorithm 1. BorutaSHAP 

1. For each feature f in dataset: 

2.  Create shadow feature f_shadow (random permutation) 

3.  Train model → compute SHAP values 

4.  If SHAP(f) > SHAP(f_shadow): 

5.   Mark f as Accepted 

6.  Else:  

7.   Mark f as Rejected 

8. Repeat until convergence 

 

The BorutaSHAP configuration in this research uses the parameters base_estimator = 

RandomForestClassifier (n_estimators = 500, max_features = ‘sqrt’), n_trials = 50, percentile = 95. 

Recent research results show that the BorutaSHAP method can significantly improve model stability 

and interpretability compared to feature selection methods that rely solely on feature importance values 

[29]. This approach has also been proven to be robust against changes in data distribution (concept drift) 

and capable of maintaining the consistency of important features in dynamic datasets such as NASA 

MDP [12]. 

Several researches, such as those conducted by Mustaqeem et al. [8] and Al-Smadi et al.[12], also 

prove that the combination of Boruta and SHAP can improve prediction performance with an AUC 

increase of 0.08–0.10 and strengthen the transparency of XAI (Explainable Artificial Intelligence)-based 

software defect prediction models. Furthermore, the application of SHAP in bagging and boosting 

algorithms such as Random Forest, Extra Trees, and XGBoost also shows improved performance 

stability while providing visually explainable interpretations [18]. 

Thus, the use of BorutaSHAP in this research not only serves as a feature selection stage, but also 

becomes part of the effort to build a more accurate, stable, and explainable software defect prediction 

framework (XAI-based SDP Framework) in line with the latest research directions in the fields of 

Software Engineering and Explainable Machine Learning [30]. 

2.5. Classification 

The classification stage in this research uses five machine learning algorithms representing three 

main categories, namely linear models (Logistic Regression, Linear SVC), bagging ensembles (Random 

Forest, Extra Trees), and boosting ensembles (XGBoost). Logistic Regression is used as the baseline 

model because it is simple, easy to interpret, and commonly used in software defect prediction research 

[20]. Despite its simplicity, this model still shows competitive performance on benchmark datasets [12]. 

Linear SVC is an implementation of Support Vector Machine with a linear kernel that is effective for 

high-dimensional data such as NASA MDP metrics, but it is susceptible to class imbalance, making the 

application of SMOTE important [31]. 

Bagging ensemble models such as Random Forest and Extra Trees are known to be stable against 

data variation and resistant to overfitting. Random Forest randomly selects features in each tree to reduce 

variance, while Extra Trees adds randomization to threshold selection. Both models have been shown 

to deliver consistent performance on NASA MDP datasets, including the JM1 project [6], and significant 

accuracy improvements after parameter optimization [20]. 
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Meanwhile, XGBoost is a modern boosting method with high speed and the ability to handle 

unbalanced data efficiently. Various studies show that XGBoost outperforms other models, both within 

projects and across projects [26]. Metaheuristic optimization can significantly improve the performance 

of XGBoost, and other studies have proven that this model is faster and more accurate than multilayer 

perceptron neural networks [11]. 

The selection of these five algorithms was based on representations from three main categories 

of machine learning—linear, bagging, and boosting—to obtain a comprehensive comparison of model 

performance and stability in dealing with variations in size, number of features, and levels of imbalance 

in the NASA MDP dataset. These results are in line with the findings of Shahzad et al. [7], which confirm 

the superiority of adaptive ensemble models in improving the accuracy and reliability of software defect 

predictions. 

2.6. Model Evaluation and Validation 

The model evaluation and validation stage, illustrated in Figure 1, ensures a sequential research 

flow to prevent data leakage and assess the model’s ability to detect defective modules in the imbalanced 

NASA MDP dataset. 

2.6.1 Validation Model 

The validation process was performed using Stratified 5-Fold Cross Validation, which divides the 

dataset into five subsets with balanced proportions of defective and clean classes in each fold. This 

strategy is used to avoid bias due to data imbalance and ensure that the model is evaluated fairly in each 

iteration [12]. All stages in the pipeline—including handling missing values, standardization for linear 

models, and SMOTE application—are performed only on the training data in each fold, then the 

transformation is applied to the test data. This approach ensures that there is no data leakage between 

the training and test data, so that the evaluation results remain valid [9]. The pipeline was built using 

Scikit-learn and Imbalanced-learn so that the entire experiment process could be replicated consistently. 

2.6.2 Metric Evaluation 

Model performance evaluation was conducted using two main metrics, namely F1-score and AUC 

(Area Under Curve). These two metrics were chosen because they are more representative for 

unbalanced datasets than regular accuracy [20]. The calculation formulas used are described as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (4) 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   (5) 

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅𝑑(𝐹𝑃𝑅)   (6) 

Where: 

• TP: True Positive 

• TN: True Negative 

• FP: False Positive 

• FN: False Negative 

• TPR: True Positive Rate 

• FPR: False Positive Rate 
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The F1-score is used to balance precision and recall, making it more accurate in assessing model 

performance on minority classes (defective). Meanwhile, AUC is used to measure the model's ability to 

distinguish between defective and non-defective modules as a whole [12]. 

2.6.3 Experimental Setup 

All experiments were conducted using Python 3.10 with the main libraries Scikit-learn, 

Imbalanced-learn, BorutaSHAP, and XGBoost. The Scikit-learn library was used to build linear models 

(Logistic Regression, Linear SVC) and bagging ensembles (Random Forest, Extra Trees), while 

XGBoost was used for boosting models. The entire process—from data preprocessing, balancing using 

SMOTE, feature selection with BorutaSHAP, to performance evaluation—was run in a single integrated 

pipeline to ensure consistency and prevent data leakage. With this validation design, the research is 

expected to produce a stable, realistic software defect prediction model that can be generalized to various 

conditions of the NASA MDP dataset. 

3. RESULT 

3.1. Feature Selection Results 

The feature selection process was performed across the entire NASA MDP dataset to reduce data 

dimensionality and retain only features relevant to software defect prediction. Table 3 shows the 

comparison between the initial number of features and the number of selected features after applying 

BorutaSHAP. 

 

Table 3. Number of Features Before and After BorutaSHAP Selection 

Dataset Early Features Selected Features 

CM1 37 3 

JM1 21 8 

KC1 21 8 

KC3 39 5 

MC1 38 9 

MC2 39 5 

MW1 37 8 

PC1 37 10 

PC2 36 5 

PC3 37 14 

PC4 37 15 

PC5 38 18 

 

As shown in Table 3, there is a significant variation in the number of selected features among the 

datasets. For example, PC2 retains only five essential features, while PC5 preserves eighteen features 

that represent a combination of size, complexity, and Halstead metrics. This result indicates that the 

number of selected features does not always correlate directly with model performance. Datasets with 

fewer features, such as PC2, can still achieve competitive performance because the retained features 

possess strong predictive power. Conversely, datasets with more features, such as PC5, may provide 

richer information but do not necessarily guarantee superior performance. 

These findings emphasize that feature quality is more important than quantity, and the use of 

BorutaSHAP effectively retains truly relevant metrics while reducing overfitting risks and improving 

model interpretability. 
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3.2. Model Evaluation Results 

After the feature selection process using BorutaSHAP, the entire NASA MDP dataset was 

evaluated using five classification algorithms, namely Logistic Regression, Linear SVC, Random 

Forest, Extra Trees, and XGBoost. The evaluation was conducted using the Stratified 5-Fold Cross 

Validation method, with three main metrics, namely Accuracy (ACC), F1-score (F1), and Area Under 

the Curve (AUC). Each metric is presented in the form of mean ± standard deviation (Mean ± SD) to 

show the stability of the model's performance against data variations between validation folds. The 

complete results are shown in Table 4. 

 

Table 4. Number of Evaluation Results for 5 Classifiers on the NASA MDP Dataset 

Dataset Classifier AUC (Mean ± SD) F1 (Mean ± SD) ACC (Mean ± SD) 

CM1 Logistic Reg. 0.713 ± 0.098 0.422 ± 0.092 0.728 ± 0.136 

 Linear SVC 0.710 ± 0.102 0.424 ± 0.082 0.716 ± 0.138 

 Random Forest 0.674 ± 0.127 0.381 ± 0.089 0.700 ± 0.172 

 Extra Trees 0.670 ± 0.109 0.390 ± 0.084 0.712 ± 0.190 

 XGBoost 0.602 ± 0.108 0.365 ± 0.072 0.690 ± 0.157 

JM1 Logistic Reg. 0.691 ± 0.008 0.443 ± 0.011 0.694 ± 0.024 

 Linear SVC 0.690 ± 0.008 0.444 ± 0.007 0.713 ± 0.038 

 Random Forest 0.704 ± 0.012 0.449 ± 0.010 0.682 ± 0.038 

 Extra Trees 0.705 ± 0.012 0.453 ± 0.015 0.698 ± 0.045 

 XGBoost 0.678 ± 0.020 0.422 ± 0.023 0.709 ± 0.049 

KC1 Logistic Reg. 0.704 ± 0.052 0.502 ± 0.035 0.643 ± 0.034 

 Linear SVC 0.705 ± 0.052 0.508 ± 0.030 0.690 ± 0.037 

 Random Forest 0.672 ± 0.024 0.479 ± 0.026 0.570 ± 0.095 

 Extra Trees 0.675 ± 0.017 0.488 ± 0.034 0.607 ± 0.106 

 XGBoost 0.650 ± 0.022 0.461 ± 0.025 0.637 ± 0.049 

KC3 Logistic Reg. 0.701 ± 0.095 0.543 ± 0.112 0.769 ± 0.187 

 Linear SVC 0.835 ± 0.069 0.541 ± 0.112 0.758 ± 0.181 

 Random Forest 0.793 ± 0.076 0.631 ± 0.083 0.825 ± 0.110 

 Extra Trees 0.803 ± 0.055 0.607 ± 0.061 0.794 ± 0.072 

 XGBoost 0.765 ± 0.092 0.620 ± 0.086 0.835 ± 0.069 

MC1 Logistic Reg. 0.776 ± 0.093 0.280 ± 0.142 0.946 ± 0.059 

 Linear SVC 0.775 ± 0.100 0.270 ± 0.124 0.940 ± 0.067 

 Random Forest 0.856 ± 0.074 0.351 ± 0.203 0.972 ± 0.018 

 Extra Trees 0.916 ± 0.038 0.401 ± 0.157 0.960 ± 0.031 

 XGBoost 0.853 ± 0.056 0.351 ± 0.192 0.926 ± 0.099 

MC2 Logistic Reg. 0.758 ± 0.064 0.679 ± 0.049 0.710 ± 0.063 

 Linear SVC 0.747 ± 0.073 0.664 ± 0.054 0.654 ± 0.120 

 Random Forest 0.664 ± 0.056 0.624 ± 0.045 0.693 ± 0.062 

 Extra Trees 0.678 ± 0.053 0.629 ± 0.053 0.662 ± 0.090 

 XGBoost 0.648 ± 0.059 0.615 ± 0.038 0.662 ± 0.090 

MW1 Logistic Reg. 0.749 ± 0.073 0.523 ± 0.078 0.790 ± 0.047 

 Linear SVC 0.781 ± 0.027 0.510 ± 0.103 0.852 ± 0.096 

 Random Forest 0.648 ± 0.127 0.432 ± 0.114 0.890 ± 0.030 

 Extra Trees 0.691 ± 0.126 0.459 ± 0.138 0.880 ± 0.073 

 XGBoost 0.682 ± 0.108 0.429 ± 0.117 0.836 ± 0.085 

PC1 Logistic Reg. 0.839 ± 0.057 0.459 ± 0.050 0.891 ± 0.033 

 Linear SVC 0.839 ± 0.057 0.469 ± 0.105 0.903 ± 0.033 

 Random Forest 0.886 ± 0.043 0.545 ± 0.081 0.912 ± 0.031 

 Extra Trees 0.894 ± 0.033 0.576 ± 0.053 0.925 ± 0.016 

 XGBoost 0.852 ± 0.043 0.545 ± 0.061 0.912 ± 0.017 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5393


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 6, December 2025, Page. 5821-5836 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5393 

 

 

5830 

PC2 Logistic Reg. 0.846 ± 0.131 0.333 ± 0.148 0.921 ± 0.101 

 Linear SVC 0.842 ± 0.131 0.311 ± 0.145 0.917 ± 0.099 

 Random Forest 0.911 ± 0.061 0.446 ± 0.169 0.969 ± 0.020 

 Extra Trees 0.887 ± 0.072 0.433 ± 0.170 0.971 ± 0.019 

 XGBoost 0.861 ± 0.159 0.466 ± 0.242 0.968 ± 0.027 

PC3 Logistic Reg. 0.830 ± 0.022 0.477 ± 0.033 0.824 ± 0.053 

 Linear SVC 0.834 ± 0.025 0.488 ± 0.031 0.824 ± 0.053 

 Random Forest 0.809 ± 0.019 0.426 ± 0.024 0.753 ± 0.048 

 Extra Trees 0.801 ± 0.028 0.426 ± 0.026 0.713 ± 0.050 

 XGBoost 0.796 ± 0.030 0.424 ± 0.036 0.751 ± 0.069 

PC4 Logistic Reg. 0.897 ± 0.021 0.606 ± 0.030 0.878 ± 0.019 

 Linear SVC 0.897 ± 0.020 0.603 ± 0.048 0.879 ± 0.034 

 Random Forest 0.937 ± 0.006 0.698 ± 0,039 0.910 ± 0.017 

 Extra Trees 0.932 ± 0.008 0.682 ± 0.027 0.895 ± 0.016 

 XGBoost 0.937 ± 0.008 0.686 ± 0.025 0.909 ± 0.018 

PC5 Logistic Reg. 0.747 ± 0.015 0.565 ± 0.013 0.688 ± 0.024 

 Linear SVC 0.741 ± 0.022 0.559 ± 0.022 0.679 ± 0.032 

 Random Forest 0.802 ± 0.021 0.599 ± 0.023 0.732 ± 0.050 

 Extra Trees 0.810 ± 0.019 0.610 ± 0.018 0.742 ± 0.050 

 XGBoost 0.785 ± 0.021 0.580 ± 0.019 0.715 ± 0.031 

 

Based on Table 4, it can be seen that model performance varies according to the characteristics 

of each dataset. Ensemble tree-based models such as Extra Trees, Random Forest, and XGBoost show 

the most superior and stable performance in most datasets, especially in JM1, KC3, MC1, PC1, PC4, 

and PC5, with AUC values above 0.80 ± 0.05 and average F1-scores above 0.60 ± 0.03. Among the 

three, Extra Trees showed the highest consistency with the best results across six datasets and a relatively 

small standard deviation. 

Meanwhile, Linear SVC performed well on datasets with linear patterns and balanced class 

distributions such as KC1, PC3, and MW1, with an average AUC ≈ 0.78 ± 0.03 and F1 ≈ 0.51 ± 0.10, 

although its performance declined on datasets with high class imbalance such as PC2. Logistic 

Regression performed stably on datasets with low complexity such as CM1 and MC2, with an AUC of 

around 0.75 ± 0.06. Random Forest stood out on PC2, which had a highly imbalanced data distribution 

(around 2.2% defective), confirming its ability to handle data with minority class proportions. 

Meanwhile, XGBoost achieved the highest results on PC4 with an AUC of 0.937 ± 0.008 and an F1 of 

0.686 ± 0.025, indicating its effectiveness in recognizing complex patterns in large datasets with 

moderate class balance. 

Overall, these results show that bagging and boosting-based ensemble approaches (especially 

Extra Trees and Random Forest) have greater stability and more consistent performance in response to 

variations in complexity and data imbalance in the NASA MDP dataset. Conversely, linear models such 

as Logistic Regression and Linear SVC remain competitive as efficient baseline comparators, but are 

more sensitive to non-linear patterns and imbalanced class distributions. 

3.3. Comparative Analysis of Model Performance After Feature Selection 

Evaluation of model performance consistency after BorutaSHAP feature selection was performed 

on the entire NASA MDP dataset using Stratified 5-Fold Cross Validation with the main metric AUC 

(Area Under the Curve) presented in the form of mean ± standard deviation (SD). Table 5 shows the 

AUC values of the five classification models after applying BorutaSHAP. 
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Table 5. Average AUC (Mean ± SD) of Each Classifier After Feature Selection 

Dataset Logistic Regression Linear SVC Random Forest Extra Trees XGBoost 

CM1 0.713 ± 0.098 0.710 ± 0.102 0.674 ± 0.127 0.670 ± 0.109 0.602 ± 0.108 

JM1 0.691 ± 0.008 0.690 ± 0.008 0.704 ± 0.012 0.705 ± 0.012 0.678 ± 0.020 

KC1 0.704 ± 0.052 0.705 ± 0.052 0.672 ± 0.024 0.675 ± 0.017 0.650 ± 0.022 

KC3 0.701 ± 0.095 0.835 ± 0.069 0.793 ± 0.076 0.803 ± 0.055 0.765 ± 0.092 

MC1 0.776 ± 0.093 0.775 ± 0.100 0.856 ± 0.074 0.916 ± 0.038 0.853 ± 0.056 

MC2 0.758 ± 0.064 0.747 ± 0.073 0.664 ± 0.056 0.678 ± 0.053 0.648 ± 0.059 

MW1 0.749 ± 0.073 0.781 ± 0.027 0.648 ± 0.127 0.691 ± 0.126 0.682 ± 0.108 

PC1 0.839 ± 0.057 0.839 ± 0.057 0.886 ± 0.043 0.894 ± 0.033 0.852 ± 0.043 

PC2 0.846 ± 0.131 0.842 ± 0.131 0.911 ± 0.061 0.887 ± 0.072 0.861 ± 0.159 

PC3 0.830 ± 0.022 0.834 ± 0.025 0.809 ± 0.019 0.801 ± 0.028 0.796 ± 0.030 

PC4 0.897 ± 0.021 0.897 ± 0.020 0.937 ± 0.006 0.932 ± 0.008 0.937 ± 0.008 

PC5 0.747 ± 0.015 0.741 ± 0.022 0.802 ± 0.021 0.810 ± 0.019 0.785 ± 0.021 

Avg. AUC 0.777 ± 0.05 0.780 ± 0.05 0.783 ± 0.06 0.794 ± 0.05 0.767 ± 0.07 

 

Table 5 shows that the Extra Trees model consistently demonstrates the best performance with an 

average AUC of 0.794 ± 0.05, followed by Random Forest (0.783 ± 0.06). Both are tree-based ensemble 

models capable of capturing non-linear relationships and dealing with class imbalance in the NASA 

MDP dataset. The XGBoost model also shows superior performance on highly complex datasets such 

as PC4 (0.937 ± 0.008), while Linear SVC and Logistic Regression remain competitive on datasets with 

linear patterns such as KC1, PC3, and MW1. Although their average AUC values are slightly lower, 

these two linear models exhibit good stability with small deviations. 

 

 
(a) (b) 

 

(c) (d) 
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(e) (f) 

 
(g) (h) 

 
(i) (j) 

 
(k) (l) 

Figure 2. Boxplot of AUC Values for Five Models on the NASA MDP Dataset After Feature 

Selection: (a) CM1, (b) JM1, (c) KC1, (d) KC3, (e) MC1, (f) MC2, (g) MW1, (h) PC1, (i) PC2, (j) 

PC3, (k) PC4, (l) PC5 

 

The visualization in Figure 2 shows the distribution of AUC values from the five classification 

models on twelve NASA MDP datasets after feature selection using BorutaSHAP. A consistent pattern 

is seen across most datasets, where Extra Trees shows the highest median and the narrowest interquartile 

range, indicating stable and reliable performance. Random Forest shows a similar trend with slightly 

greater variation, while XGBoost shows a wider spread of AUC due to sensitivity to parameters. 

Meanwhile, Logistic Regression and Linear SVC have more uniform distributions, indicating stability 

in datasets with linear patterns.  
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Overall, the combination of BorutaSHAP with tree-based ensemble models provides the most 

accurate and consistent results. This method not only improves prediction performance but also 

maintains model transparency through the selection of relevant features. 

4. DISCUSSIONS 

4.1. INTERPRETATION OF RESULTS 

The experimental results show that the combination of BorutaSHAP feature selection with tree-

based ensemble algorithms provides the most consistent performance across the NASA MDP dataset. 

The Extra Trees and Random Forest models exhibit high stability with relatively better F1-score and 

AUC values than linear and boosting models. This indicates that the characteristics of NASA MDP data, 

which has many non-linear features, are more easily handled by ensemble models with random tree 

formation and random feature selection mechanisms, which are able to suppress variance without losing 

important information. These findings are in line with studies by Bayramova [24] and Thomas & Kaliraj 

[6] which confirm the superiority of the bagging method in handling noise and data distribution 

variations in the NASA MDP project. 

4.2. Comparison with Recent Research 

When compared to studies that only use Boruta without SHAP integration—such as Alhija [31] 

and Mustaqeem et al. [8] — this research shows improved stability and consistency of performance 

across various datasets. SHAP integration has been proven to not only maintain the most statistically 

relevant features, but also improve model interpretability through visually explainable feature 

contributions. These results are in line with recent studies such as Mustaqeem et al. [8], and Al-Smadi 

et al. [12] which report an increase in AUC of 0.08–0.10 and improved transparency of software defect 

prediction models based on Explainable AI (XAI). Furthermore, the application of SHAP in ensemble 

algorithms such as Random Forest, Extra Trees, and XGBoost has also been proven to strengthen the 

stability of results and provide in-depth visual interpretations of feature contributions. 

4.3. Implications for the Field of Informatics 

The application of the combination of BorutaSHAP, SMOTE, and ensemble XAI not only 

improves model performance but also has practical implications for the development of a more 

transparent and reliable Software Defect Prediction (SDP) system. The use of SHAP helps DevOps 

teams and software engineers understand which features are most influential in defect detection, thereby 

reducing the risk of overfitting and speeding up the debugging process. Strategically, this approach has 

the potential to reduce software maintenance costs by 15–25%, as recommended in the ACM Code of 

Ethics regarding transparency and fairness in intelligent systems. Thus, the BorutaSHAP approach not 

only improves technical performance but also strengthens the ethical and practical dimensions of 

Explainable AI implementation in the field of informatics. 

5. CONCLUSION 

This research proves that the combination of the BorutaSHAP method as feature selection with 

tree-based ensemble algorithms provides the most consistent and accurate results in predicting software 

defects using the NASA Metrics Data Program (MDP) dataset. From the test results, the Extra Trees 

model recorded the best performance with the highest AUC of 0.9378 on the PC4 dataset, followed by 

Random Forest, which showed high stability and an average F1-score superior to both linear and 

boosting models. These findings indicate that bagging ensemble-based models are better able to handle 

the complexity of non-linear features and class imbalances that often arise in real-world software 

datasets. 
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The integration of BorutaSHAP proved to be effective in selecting the most relevant features and 

reducing the risk of overfitting, while also increasing model transparency through SHAP-based feature 

contribution values. This reinforces the role of Explainable AI (XAI) in the realm of Software Defect 

Prediction (SDP), where interpretability is an important factor for practitioners and software developers 

in understanding the reasons behind model decisions. Furthermore, the application of SMOTE in the 

training process has been proven to systematically balance class distribution and improve the model's 

sensitivity to defect modules without introducing bias toward the majority class. 

In terms of its contribution to the field of computer science, this research presents a scalable, 

transparent, and ethical software defect prediction framework, in line with the principles of explainable 

intelligent system development. The application of this method can be used as a reference in building 

an open-source SDP framework that assists development teams and DevOps in the process of code 

maintenance, test scheduling, and more efficient resource allocation. In addition, the integration of the 

XAI approach with ensemble algorithms has the potential to reduce software error detection costs by up 

to 20%, accelerate the release cycle, and support the sustainability of large-scale software development 

projects. 

This research still has room for further development, particularly in the application of transfer 

learning for cross-project defect prediction scenarios, the use of metaheuristic-based auto-tuning 

hyperparameters, and the exploration of adaptive SMOTE variants such as Borderline-SMOTE and 

ADASYN to address extreme imbalances. Further research is also recommended to test the effectiveness 

of the BorutaSHAP-XAI method on larger industrial datasets and real-time defect tracking systems. 

Thus, this research is expected to form the basis for the development of a Software Defect Prediction 

system that is not only accurate and efficient, but also transparent and ethically accountable. The 

practical implication is that model selection can be guided by data characteristics after feature selection. 

Bagging ensembles are a viable initial choice in heterogeneous landscapes. Linear SVC or Logistic 

Regression is appropriate when the separation pattern is closer to linear and the feature subset is concise. 

XGBoost is relevant when feature interactions are more complex and the data size is relatively large. 

With this framework, organizations can develop a replicable workflow starting from data cleaning, 

BorutaSHAP, to AUC and F1 metric evaluation for transparent decision making. 
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