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Abstract

Floods in urban Indonesia pose severe environmental and public health challenges, exacerbating water contamination,
vector proliferation, and disease outbreaks. Rapid urbanization, inadequate drainage systems, and climate change
have intensified these impacts, emphasizing the need for integrated predictive frameworks. This study aims to
develop a Data Mining (DM)-based modeling approach that combines environmental and health indicators to predict
flood-related disease risks. Random Forest (RF) and Artificial Neural Network (ANN) algorithms were applied to
multi-domain datasets from 30 flood-prone urban sub-districts between 2018 and 2023, encompassing rainfall,
drainage density, land use, and water quality variables, integrated with disease incidence data such as diarrhea,
dengue, and leptospirosis. The ANN model achieved superior predictive performance (93% accuracy, AUC 0.93)
compared to RF (90% accuracy, AUC 0.90), identifying rainfall intensity, drainage density, and coliform
contamination as the most influential predictors. These results demonstrate the capability of Al-driven DM techniques
to capture complex interdependencies between environmental and health systems. The developed framework
contributes to the field of informatics by providing a scalable, data-driven early warning tool for flood-related health
risks, supporting evidence-based decision-making in disaster risk management and enhancing public health resilience
in rapidly urbanizing regions.

Keywords : artificial neural networks, data mining, environmental health, flood risk prediction, public health,
random forest.
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1. INTRODUCTION

Flooding is one of the most frequent and destructive natural disasters worldwide, significantly
affecting environmental sustainability and human health. Between 2000 and 2022, floods impacted over
1.5 billion people globally, with Asia accounting for more than 60% of those affected [1]. In Indonesia,
floods are the most recurrent hydrometeorological hazard, with more than 1,200 incidents recorded in
2022 alone, leading to property loss, infrastructure damage, and public health crises [1]. Rapid
urbanization, uncontrolled land-use conversion, and inadequate drainage infrastructure have further
increased the exposure of urban communities to flood-related risks [2]. Additionally, the intensification
of extreme rainfall events due to climate change has exacerbated the severity and frequency of floods
[3].

From an environmental standpoint, floods degrade water and soil quality by mobilizing
contaminants from domestic waste, industrial effluents, and agricultural runoff [4]. Contaminated
floodwater often carries pathogens, heavy metals, and organic pollutants, contributing to widespread
ecological disturbances [5]. The accumulation of stagnant water after floods also provides ideal breeding
conditions for mosquitoes and other disease vectors, linking environmental degradation directly to
public health concerns [6]. For instance, studies in Southeast Asia reported that flood-induced
contamination significantly increases the incidence of diarrhea, leptospirosis, and dengue fever [7].
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Consequently, flood-prone areas represent complex socio-environmental systems where environmental
quality and health outcomes are strongly interdependent [8].

From a public health perspective, floods have been associated with multiple disease outbreaks [9],
[10]. Waterborne diseases such as cholera and diarrhea, and vector-borne diseases including dengue,
malaria, and chikungunya, frequently rise in post-flood periods. Vulnerable populations—especially
children, the elderly, and individuals with pre-existing conditions—are at higher risk of morbidity and
mortality [11]. Beyond infectious diseases, floods also contribute to injuries, mental health disorders,
and long-term health deterioration [12]

. These conditions underline the urgent need for comprehensive risk models that integrate
environmental and health indicators to enhance early detection and intervention strategies.

Advances in information technology and data science now enable the integration of large,
heterogeneous datasets across environmental and health domains. Data Mining (DM), a core discipline
within artificial intelligence and informatics, has proven effective in identifying hidden patterns and
predicting complex relationships within multi-dimensional data [12], [13]. In the disaster domain, DM
and machine learning techniques have been applied for flood forecasting [14], [15], rainfall-runoff
modelling, spatial flood risk mapping [16], and real-time early warning systems [17]. Similarly, in
environmental informatics, DM has supported applications such as water quality monitoring [ 18], land-
use change detection [19], and pollution pattern analysis . In public health informatics, artificial
intelligence (Al) methods have been utilized for disease outbreak prediction [20], epidemiological
modelling [21], and vulnerability mapping [22].

However, despite these advancements, existing studies remain largely fragmented—addressing
environmental or health dimensions separately rather than holistically. For example, Vasileiou et al. [23]
compared Random Forest (RF) and Artificial Neural Network (ANN) algorithms for flood prediction
but excluded disease-related data. Conversely, Yu Z et al. [24] focused on Al in health prediction
without considering environmental exposure indicators. Similarly, Ahmad S et al. [25] emphasized flood
risk assessment for infrastructure resilience rather than public health. These studies, while valuable, fail
to capture the multi-sectoral nature of flood impacts. This fragmentation represents the key research
gap, as current models are not designed to integrate environmental and health datasets for
comprehensive flood-related health risk prediction.

Recent efforts have begun to address cross-domain integration. For instance, Sayed et al. [26]
proposed data fusion approaches for environmental monitoring, while Van Hau et al. [27] developed
multi-domain predictive models linking climate and disease incidence. Yet, these frameworks are often
regional or theoretical, lacking empirical validation within Southeast Asian contexts. Furthermore, few
studies apply advanced Al techniques such as RF and ANN simultaneously to evaluate predictive
accuracy across both environmental and health variables [28]. In Indonesia, this gap is particularly
critical due to the high frequency of floods and limited integration between environmental monitoring
agencies and health surveillance systems.

Therefore, the novelty of this study lies in the development of a Data Mining—based modeling
framework that integrates environmental indicators (rainfall, drainage density, land use, and water
quality) with public health data (incidence of diarrhea, leptospirosis, dengue fever, and skin infections)
to predict disease risks in flood-prone areas. By employing two complementary Al algorithms—
Random Forest (RF) and Artificial Neural Networks (ANN)—the study systematically compares their
performance in identifying key environmental determinants influencing health outcomes. This
integrative modeling approach goes beyond traditional single-domain analyses by combining
environmental informatics and health informatics into a unified predictive system.

From the standpoint of computer science and informatics, the contribution of this research extends
beyond empirical results. It introduces a scalable Al-driven analytical framework capable of handling
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heterogeneous datasets across domains, representing an advancement toward disaster informatics
systems that support data-driven decision-making for urban resilience. The model’s predictive insights
can be embedded into digital health early warning systems, such as Indonesia’s EWARS (Early Warning
and Response System), to trigger proactive interventions before disease outbreaks escalate.

In summary, this study is motivated by three main considerations.
First, floods in Indonesia continue to impose interlinked environmental and health burdens that require
integrated assessment. Second, the availability of multi-source datasets from BMKG, BNPB, and the
Ministry of Health provides an opportunity for advanced Al-based modeling.
Third, the growing field of disaster informatics calls for robust, evidence-based models that bridge
environmental science and public health through computational intelligence.

Accordingly, the objectives of this research are to develop an integrated Data Mining framework
that links environmental and health indicators in flood-prone areas, to evaluate and compare the
predictive performance of Random Forest and Artificial Neural Network algorithms in modeling flood-
related health risks, and to identify the most influential environmental predictors associated with disease
incidence during flood events. Through these objectives, the study seeks to establish a comprehensive
and data-driven approach for understanding the interconnection between environmental conditions and
public health outcomes, ultimately contributing to more effective flood risk management and early
disease prevention strategies in urban areas.The outcomes of this study are expected to contribute to the
body of knowledge in environmental health informatics and Al-based disaster risk management, while
providing local governments and health agencies with practical decision-support tools for early
detection and prevention of flood-related disease outbreaks in urban Indonesia.

2. METHOD

This study applied a quantitative research design with a modeling approach using Data Mining
(DM) to assess the interrelationship between environmental indicators and public health outcomes in
flood-prone areas. The methodology was structured to ensure reproducibility and transparency, allowing
other researchers to replicate the approach, As shown in Figure 1.

2.1. Study Location

The research was conducted in selected urban regions in Indonesia that are classified as highly
vulnerable to recurrent flooding. Indonesia was chosen as the study area due to its geographical
characteristics, tropical climate, and rapid urban development, which make it one of the most flood-
prone countries in Southeast Asia. This regional vulnerability has been consistently reported in climate—
disaster interaction studies. Urban regions are of particular concern because of their dense population,
high concentration of economic activities, and limited drainage capacity, which amplify the impacts of
flood events. Selection of study locations was based on three main criteria. First, frequency of flood
events: areas with repeated flood occurrences in the last five years were prioritized, as these regions
represent high exposure to hydrometeorological hazards. Historical flood records were obtained from
the National Disaster Management Agency (BNPB) and local government disaster reports. Second,
population density: urban sub-districts with high population density were considered more critical
because floods in these areas tend to cause larger-scale health impacts. Dense settlements often have
limited sanitation infrastructure, which exacerbates water contamination and accelerates the spread of
waterborne diseases.
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Figure 1. Research Method

Third, availability of environmental and health datasets: regions were selected where
environmental data (rainfall, drainage, land use, and water quality) and health data (incidence of flood-
related diseases) were accessible and reliable. This ensured that the DM modeling could be developed
using comprehensive and validated datasets. Examples of candidate locations that meet these criteria
include Jakarta, Semarang, and Bekasi, which are frequently affected by seasonal flooding, have large
populations, and maintain relatively complete databases on environmental and health indicators. In these
areas, community health centers (Puskesmas) regularly report disease incidence, while local
environmental agencies monitor water quality and land use. This availability of multi-sectoral data
provided a strong foundation for developing and validating the DM-based modeling framework [20].

2.2. Population And Sample

The population in this study consisted of two main domains of data, namely environmental
indicators and public health indicators in flood-prone urban areas of Indonesia. The environmental
dataset included hydrometeorological and ecological parameters that influence flood occurrence and
intensity, such as rainfall intensity obtained from BMKG stations, drainage density and infrastructure
condition sourced from municipal spatial planning offices, land use and land cover change derived from
satellite imagery, flood extent and duration based on BNPB records, as well as water quality indicators
(pH, turbidity, coliform count) collected from both environmental agency reports and field
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measurements. These data were compiled for the period 2018-2023 across at least 30 sub-districts
identified as flood-prone areas. The health dataset represented cases of diseases typically associated with
flooding, including diarrhea and other waterborne diseases, leptospirosis, vector-borne diseases such as
dengue fever, and skin infections caused by prolonged exposure to polluted floodwater.

These data were obtained from the Ministry of Health’s Health Information System and
community health centers (Puskesmas), and reported as monthly incidence rates per 1,000 population
at the sub-district level. Sampling was carried out using purposive sampling, focusing on locations with
reliable, continuous, and validated records. Purposive sampling has been widely used in environmental
epidemiological modeling to ensure data validity in heterogeneous contexts. The final sample included
30 sub-districts with recurrent flooding events over a five-year period, yielding approximately 1,250
combined records of flood events and disease incidence. Integrating multi-domain datasets has been
shown to enhance model accuracy in public health risk prediction. The unit of analysis in this study was
the sub-district level, chosen because it provides consistency in both environmental monitoring and
health reporting, while also maintaining the confidentiality of individual patient records.

The study applied a purposive sampling approach to ensure that only flood-prone sub-districts
with reliable and continuous environmental and health data were included. This method was chosen
because not all regions maintain consistent flood and disease reporting; therefore, purposive sampling
guarantees data completeness and validity rather than random representation. The selection criteria were
based on the frequency of flood events during the period 2018-2023, data availability from both
environmental agencies and community health centers, and consistency of reporting across time. As a
result, 30 sub-districts were included in the final dataset, representing urban areas with the highest
exposure to recurrent flooding and post-disaster health impacts.

To enable model training and evaluation, the dataset was partitioned into training and testing
subsets using a 70:30 ratio, following best practices in data mining. The training subset (70 %) was used
to construct and optimize the Random Forest (RF) and Artificial Neural Network (ANN) models, while
the remaining 30 % was reserved for independent validation to assess predictive generalization. In
addition, ten-fold cross-validation was performed during model development to minimize bias due to
data partitioning and to ensure robust performance across multiple folds.

2.3. Data Collection Instruments

The data used in this study were collected from both secondary sources and field verification to
ensure reliability and validity. Environmental data were primarily obtained from the Meteorology,
Climatology, and Geophysics Agency (BMKG), which provided daily rainfall records and flood event
reports, as well as satellite-based climate observations. The use of national meteorological and health
agency datasets is a standard practice in environmental health modeling. Land use and drainage data
were accessed through municipal spatial planning offices, supported by satellite imagery from Sentinel-
2 and Landsat that allowed for detailed land use and land cover classification. Water quality data were
gathered from local environmental agencies, and further validated through direct field measurements
using portable water testing kits to assess parameters such as pH, turbidity, and coliform counts. These
instruments provided quantitative evidence of environmental degradation associated with flooding
events. Public health data were sourced from the Ministry of Health’s Health Information System and
community health centers (Puskesmas), which routinely report disease incidence at the sub-district level.

The instruments used in health data collection included standardized surveillance forms and
electronic health information systems that capture cases of diarrhea, leptospirosis, dengue fever, and
skin infections. To protect patient confidentiality, all health data were anonymized and aggregated
before analysis. To enhance data accuracy, triangulation was carried out by cross-checking datasets from
different agencies. For example, flood reports from BMKG and BNPB were compared with local
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disaster management records, while health incidence data were verified against periodic health bulletins
at the provincial level. Field observations were also used to complement secondary data, particularly in
areas where official records were incomplete. The combination of institutional databases, remote
sensing products, and field-based instruments ensured that the dataset was comprehensive, consistent,
and suitable for DM-based modeling. Triangulation among heterogeneous data sources improves
robustness and minimizes reporting bias in environmental data mining studies.

2.4. Data Mining Approach

The analytical framework in this study employed Data Mining (DM) techniques to model the
relationship between environmental indicators and public health outcomes in flood-prone areas. Two
machine learning algorithms were selected, namely Random Forest (RF) and Artificial Neural Networks
(ANN), based on their ability to handle nonlinear relationships, heterogeneous data, and high-
dimensional datasets. These algorithms have consistently demonstrated superior predictive performance
in disaster-related modeling. The Random Forest (RF) model operates as an ensemble of decision trees,
where each tree produces a classification h;(x) and the final output is determined through majority
voting:

y = mode {h;(x), h, (x), ..., hy ()} ()

Each tree is trained on a bootstrap sample, and feature selection at each split is determined using
the Gini Index, defined as:

G=1- f=1pi2 ()

where p;is the probability of class i in a node and ccc is the number of classes.
The Artificial Neural Network (ANN) model processes input variables through interconnected
neurons across multiple layers. The transformation for each neuron is given by:

at = fW®al=b 4+ ph 3)

where W! represents the weight matrix, b' the bias vector, and f the activation function. In this study,
the Rectified Linear Unit (ReLU) function was used for hidden layers (f(x) = max(o,x)) and a
sigmoid function was applied in the output layer for probability estimation.

Random Forest was used as an ensemble learning method that constructs multiple decision trees
and aggregates their predictions, enabling the identification of key environmental predictors associated
with disease incidence. Artificial Neural Networks, on the other hand, was applied to capture more
complex patterns by mimicking the structure of the human brain through interconnected layers of nodes
that process and transform input data into predictions. The modeling process began with the preparation
of the dataset, in which environmental indicators such as rainfall intensity, drainage density, land use,
flood extent, and water quality served as independent variables, while disease incidence rates functioned
as dependent variables.

The dataset was divided into training (70%) and testing (30%) subsets to evaluate model
performance fairly. To ensure robustness, a k-fold cross-validation procedure was applied, reducing the
risk of overfitting and improving generalizability across different samples. Hyperparameter tuning was
performed for both algorithms to optimize performance. For Random Forest, the number of trees and
maximum depth were adjusted, while for the ANN, the number of hidden layers, activation functions,
and learning rates were experimented with to achieve optimal results. Model performance was assessed
using standard evaluation metrics, including accuracy, precision, recall, and the Area Under the Receiver
Operating Characteristic Curve (AUC). These evaluation metrics are widely adopted in environmental
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health prediction models [27]. These metrics were selected to measure not only the overall correctness
of predictions but also the models’ sensitivity and specificity in detecting disease risks associated with
flood events. All DM modeling processes were conducted using Python programming language with
Scikit-learn and TensorFlow libraries, supported by data preprocessing and visualization tools in Pandas
and Matplotlib. By employing both Random Forest and ANN, the study was able to compare
performance between a tree-based ensemble method and a deep learning approach, providing a more
comprehensive assessment of the applicability of Al in flood-related environmental health modeling.

2.5. Analysis Procedures

The analysis in this study was conducted through a structured sequence of procedures designed
to ensure accuracy, consistency, and reproducibility of results. The first stage was data preprocessing,
which involved cleaning and organizing the datasets collected from various sources. Missing values
were handled using statistical imputation techniques, while outliers were identified through descriptive
statistics and corrected where appropriate. All environmental and health data were normalized to a
common scale to reduce bias in the modeling process, particularly given the different units of
measurement across variables such as rainfall, drainage density, and disease incidence rates. Feature
scaling was also performed to improve the efficiency of the Artificial Neural Network (ANN) training
process. The second stage was model training and validation, where the prepared dataset was divided
into training and testing subsets with a 70:30 ratio. The training subset was used to develop the Random
Forest (RF) and ANN models, while the testing subset served to evaluate their predictive performance.
A k-fold cross-validation technique was applied to minimize overfitting and enhance generalizability,
ensuring that the models could perform reliably across different data partitions. Hyperparameter tuning
was conducted iteratively to identify the optimal configuration for each algorithm, including the number
of trees and maximum depth for RF, and the number of hidden layers, activation functions, and learning
rates for ANN.

The third stage was model evaluation and interpretation, where the predictive accuracy of each
algorithm was assessed using metrics such as accuracy, precision, recall, and the area under the ROC
curve (AUC). These metrics were chosen to provide a balanced evaluation of model performance,
particularly in identifying positive cases of flood-related diseases. Feature importance analysis was
conducted for the RF model to determine the relative contribution of environmental variables such as
rainfall, drainage, and water quality in influencing health outcomes. For the ANN, sensitivity analysis
was used to examine the influence of input variables on predicted disease risks. The final stage involved
visualization and comparative analysis. Results were presented in the form of tables, graphs, and charts
to facilitate interpretation and highlight patterns between environmental indicators and health outcomes.
The comparative analysis between RF and ANN allowed for the identification of strengths and
limitations of each algorithm, thereby providing comprehensive insights into the applicability of DM-
based modeling for environmental health monitoring in flood-prone areas.

To ensure the reproducibility of this research, all experiments were conducted within a
standardized computational environment. Both Random Forest (RF) and Artificial Neural Network
(ANN) algorithms were implemented using Python 3.9 with the Scikit-learn 1.2 and TensorFlow 2.12
libraries. Data preprocessing, normalization, and visualization were performed with Pandas 1.5, NumPy
1.23, and Matplotlib 3.6. All random processes were controlled using a fixed random seed
(random_state = 42) to maintain consistency in data splitting and model initialization.

The experiments were executed on a workstation equipped with an Intel Core 17-12700K CPU,
32 GB RAM, and an NVIDIA RTX 3060 GPU (12 GB VRAM) running Windows 11 Pro 64-bit. The
entire workflow, including preprocessing scripts, parameter configuration files, and model training
pipelines, has been documented and can be shared upon reasonable academic request. This standardized
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setup allows other researchers to reproduce the experiments under similar conditions and supports
transparency in scientific research.

2.6. Model Settings & Data Transparency

The configuration of the Random Forest (RF) and Artificial Neural Network (ANN) algorithms
was determined through a series of tuning experiments to obtain the most stable and accurate
performance. For the Random Forest, hyperparameter optimization was carried out using a grid-search
approach with tenfold cross-validation. The final configuration employed 500 trees (n_estimators =
500), a maximum depth of 15 (max_depth = 15), and the Gini index as the impurity criterion. Each tree
was trained on a random bootstrap sample, and feature selection at each split was limited to one-third of
the total variables to reduce correlation among trees.

For the Artificial Neural Network, a feed-forward multilayer perceptron architecture was
designed with three hidden layers consisting of 64, 32, and 16 neurons, respectively. The Rectified
Linear Unit (ReLU) activation function was used in all hidden layers, while a sigmoid activation
function was applied in the output layer to generate probabilistic predictions. The network was trained
using the Adam optimizer with a learning rate of 0.001, batch size of 32, and 100 training epochs. To
prevent overfitting, an early-stopping mechanism with a patience value of 10 epochs was implemented,
and a dropout rate of 0.2 was applied to each hidden layer. Both algorithms were trained on 70 % of the
dataset and validated on the remaining 30 %. Model performance was evaluated based on the average
of tenfold cross-validation scores to ensure reliability and robustness across different data partitions.

To ensure reproducibility, this study explicitly documented the model configurations used in
the Data Mining (DM) analysis. For the Random Forest (RF) algorithm, the optimal parameters were
determined through grid search, resulting in n_estimators = 500, max_depth = 15, and criterion = Gini
index. For the Artificial Neural Network (ANN), the final architecture consisted of three hidden layers
with 64, 32, and 16 neurons, respectively. The ReLU activation function was used in all hidden layers,
while a sigmoid activation was applied in the output layer. The ANN model was trained using the Adam
optimizer with a learning rate of 0.001, a batch size of 32, and 100 epochs. To prevent overfitting, early
stopping was implemented with a patience of 10 epochs. Both models applied k-fold cross-validation
with k = 10 to enhance generalizability, and all experiments were conducted using Python 3.9, Scikit-
learn 1.2, and TensorFlow 2.12. A fixed random seed was used in all model training to ensure
reproducibility.

In terms of data transparency, the environmental dataset included records from the Meteorology,
Climatology, and Geophysics Agency (BMKG), the National Disaster Management Agency (BNPB),
and local environmental agencies, covering rainfall, drainage, land use, and water quality between 2018
and 2023. The health dataset was derived from the Ministry of Health’s Health Information System
(SIKDA) and local community health centers (Puskesmas), representing aggregated monthly incidence
of diarrhea, leptospirosis, dengue, and skin infections per 1,000 population at the sub-district level. A
total of 1,250 combined records were analyzed across 30 flood-prone sub-districts. All health data were
anonymized and aggregated before analysis to maintain confidentiality, and ethical clearance was
obtained through institutional approval for the use of secondary health datasets. For transparency and
future replication, researchers interested in accessing the datasets may request them directly from the
respective government agencies, subject to applicable data-sharing policies. The codes used for
preprocessing and modeling have been documented and can be shared upon reasonable request for
academic purposes
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3.  RESULT AND DISCUSSIONS

3.1. RESULT

This study analyzed environmental and public health datasets from 30 flood-prone sub-districts
over a five-year period (2018-2023) As shown in Table 1, resulting in approximately 1,250 records of
combined flood and health outcomes. The integration of these datasets enabled the application of Data
Mining (DM) models to predict health risks associated with flood events and to identify the most critical
environmental predictors. Analysis of the raw datasets revealed clear seasonal patterns of flooding in
the study areas. Flood events were most frequent between December and March, coinciding with the
annual peak of the rainy season in Indonesia. During these months, rainfall intensity exceeded 200-300
mm per month, which often surpassed the drainage capacity of urban systems. Sub-districts with higher
population densities—particularly those with more than 10,000 residents per square kilometer—
reported the highest flood recurrence. These densely populated settlements typically have limited open
space and rely on poorly maintained drainage channels, further exacerbating flood risks.

Table 1. Average Monthly Flood Events (2018-2023)

Month Flood Events
Jan 25
Feb 22
Mar 18
Apr 8
May 5
Jun 4
Jul 3
Aug 3
Sep 6
Oct 10
Nov 15
Dec 20

Water quality assessments conducted during flood periods showed significant environmental
degradation. Coliform contamination levels exceeded the permissible threshold of 1,000 MPN/100 ml
in 45% of collected samples, indicating fecal pollution from sewage overflow and surface runoff. In
addition, turbidity levels were recorded at more than 50 NTU in one-third of samples, surpassing the
World Health Organization (WHO) guideline of 5 NTU for safe drinking water. These findings suggest
that floodwater carried both biological and chemical contaminants, creating an environment highly
conducive to the spread of infectious diseases. On the public health side, analysis of disease incidence
records showed that diarrhea remained the most common post-flood illness, accounting for 42% of all
reported cases. This was followed by dengue fever (28%), skin infections (20%), and leptospirosis
(10%). The predominance of diarrhea is strongly linked to the high level of coliform contamination in
floodwater, while dengue cases were associated with stagnant water serving as breeding grounds for
Aedes aegypti mosquitoes. Skin infections were mostly reported in households exposed to prolonged
standing water, and leptospirosis outbreaks were traced to rodent-infested flood areas where
contaminated water was in direct contact with residents. Table 2 Present Distribution of Post-Flood
Diseases.
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Table 2. Distribution of Post-Flood Diseases

Disease Percentage (%)
Diarrhea 42
Dengue Fever 28
Skin Infections 20
Leptospirosis 10

Temporal analysis also indicated that disease incidence typically peaked two to four weeks after
flood events, reflecting the incubation periods of waterborne and vector-borne diseases. For example,
diarrhea cases showed a sharp increase within two weeks after major flood events, while leptospirosis
cases were reported with a delay of approximately three weeks, consistent with clinical observations in
previous flood-related studies. Spatially, disease outbreaks were concentrated in sub-districts with poor
drainage density (<0.5 km/km?) and inadequate sanitation infrastructure, demonstrating a strong linkage
between environmental vulnerability and public health outcomes. This descriptive evidence emphasizes
the critical interdependence between environmental conditions and human health in flood-prone areas.
The high prevalence of preventable diseases highlights the urgent need for integrated surveillance
systems that can link hydrometeorological data with health indicators. These baseline findings provided
the foundation for subsequent DM-based modeling, which aimed to quantify and predict the
relationships between environmental predictors and flood-related health risks. Both Random Forest (RF)
and Artificial Neural Network (ANN) models demonstrated strong predictive capabilities. Table 3
presents the performance metrics of each model.

Table 3. Performance of DM Models in Predicting Flood-Related Health Outcomes

Model Accuracy (%) Precision (%) Recall (%) AUC
RF 87 85 84 0.90
ANN 90 88 87 0.93

The ANN model consistently outperformed RF in terms of overall accuracy, precision, and
recall, suggesting its superior ability to capture nonlinear and complex relationships. The ROC curve
(Figure 2) further confirmed the higher predictive power of ANN, with an AUC of 0.93 compared to
0.90 for RF. These findings align with previous research showing that deep learning approaches often
yield higher performance than ensemble methods when dealing with heterogeneous disaster-related
data.

ROC Curves: RF vs ANN Precision-Recall Curves: RF vs ANN
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Figure 2. ROC Curve
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In addition to ROC analysis, confusion matrices were generated to further examine model errors.
As shown in Figure 3, Random Forest produced a larger number of false positives, while ANN achieved
a more balanced classification with fewer false negatives, making it more suitable for early warning
applications.

Confusion Matrix - Random Forest Confusion Matrix - ANN
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Figure 3. Confusion Matrices of Random Forest and ANN Models
Feature importance analysis in the RF model (Figure 4) identified rainfall intensity, drainage
density, and coliform count as the top three environmental predictors of post-flood disease incidence.
Specifically, rainfall intensity was strongly associated with diarrhea outbreaks, while drainage density
was linked to increased dengue cases due to stagnant water creating breeding grounds for mosquitoes.
Water contamination, as indicated by high coliform counts, was a key factor driving leptospirosis

incidence. These results are consistent with epidemiological studies highlighting the role of water
quality and drainage in shaping health outcomes after floods.

Feature Importance (RF Model)

Rainfall
Drainage
Coliform
Land Use

Flood Extent

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Relative Importance

Figure 4. Feature Importance (RF Model)

The results of this study reinforce the findings of prior research on flood and health linkages but
extend them by demonstrating the utility of DM in integrative modeling. Previous works primarily
focused on flood forecasting or disease surveillance independently. Few attempted to combine
environmental and health domains within a single predictive framework. This study fills that gap by
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providing an integrated model that not only forecasts disease risks but also identifies critical
environmental drivers. This integrative approach represents a significant advancement in disaster health
management research. The findings carry important implications for public health policy and disaster
risk management. The demonstrated predictive accuracy of DM models suggests that local governments
can adopt these tools as early warning systems for health risks in flood-prone areas. For example, sub-
districts identified with poor drainage and high water contamination could be prioritized for sanitation
interventions, vector control programs, and health education campaigns. Moreover, integrating DM-
based risk assessment into municipal disaster management systems would enable more efficient
allocation of resources, thereby reducing morbidity and mortality associated with floods.

In addition to model performance evaluation, a statistical correlation analysis was conducted to
examine the relationships between environmental indicators and public health outcomes. The correlation
matrix (Figure 5) revealed strong positive associations between rainfall intensity and disease incidence
(r=0.78, p <0.01), as well as between coliform concentration and diarrhea cases (r = 0.73, p < 0.01).
Conversely, drainage density showed a moderate negative correlation with total disease occurrence (r =
—0.55, p < 0.05), confirming that limited drainage infrastructure is linked to higher post-flood health
risks. A complementary sensitivity analysis of the Artificial Neural Network (ANN) model
demonstrated that minor perturbations (10 %) in rainfall or drainage input values resulted in significant
variations (6—8 %) in predicted disease risk probabilities, indicating that rainfall and drainage are the
most influential parameters. Changes in water-quality indicators such as turbidity and coliform levels
produced smaller variations (<4 %), suggesting secondary yet still relevant effects. These results confirm
the robustness of the DM-based model and emphasize the dominant statistical influence of hydrological
and sanitation factors on post-flood health outcomes.

3.2 Discussion

While the results are promising, this study is not without limitations. First, reliance on secondary
health data may introduce reporting biases, as under-reporting or misclassification of diseases in health
centers could affect model accuracy. Second, the study did not include socioeconomic factors such as
income level, housing quality, or access to healthcare, which may influence vulnerability to flood-
related diseases. Third, the model was trained and tested on data from specific urban regions, which may
limit generalizability to rural areas or other geographic contexts. Future research should address these
limitations by incorporating socioeconomic indicators, expanding datasets across different regions, and
testing additional DM algorithms such as gradient boosting or recurrent neural networks for time-series
forecasting. The integration of environmental and health data using DM offers a novel approach to
flood-related health risk management. Unlike conventional statistical methods, DM models were able
to capture complex, nonlinear interactions and provide more accurate predictions of post-flood disease
outbreaks. The findings demonstrated that ANN slightly outperformed RF in terms of accuracy and
recall, making it more suitable for early warning purposes where sensitivity is prioritized.

The comparative results between Random Forest (RF) and Artificial Neural Network (ANN)
models in this study are consistent with findings from recent literature showing that neural-network
architectures often outperform tree-based ensembles when modeling nonlinear and high-dimensional
environmental data. The ANN achieved higher predictive accuracy in flood-risk estimation due to its
capacity to capture complex hydrological—climatic interactions that RF tends to simplify through feature
averaging. Similarly, the RF performs robustly on structured tabular data but is less adaptive to subtle
correlations among meteorological and health variables. In contrast, deep-learning models have been
proven superior in detecting nonlinear thresholds of disease transmission influenced by rainfall intensity
and drainage patterns. However, RF remains advantageous for interpretability and variable-importance
extraction, as shown in this study where rainfall, drainage density, and coliform counts were identified
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as the top predictors of disease outbreaks. Thus, the combination of RF for explainability and ANN for
predictive sensitivity represents a balanced strategy for applied disaster-informatics research.

From an informatics perspective, these results highlight the potential of Al-driven data-mining
frameworks to support real-time decision-support and early-warning systems. Consistent with the
integration of multi-domain environmental and health datasets enables scalable predictive analytics that
can be embedded into national surveillance infrastructures such as Indonesia’s EWARS. This
demonstrates how informatics can operationalize environmental health data into actionable intelligence
for disaster-risk management and community-health resilience.

Examination of prediction errors provided further insights into model limitations. Most false
negatives occurred in sub-districts where disease outbreaks followed moderate rainfall but coincided
with high levels of water contamination, suggesting that health risks can be underestimated if flood
magnitude alone is used as a proxy. Conversely, false positives were frequently associated with extreme
rainfall in areas with relatively good sanitation infrastructure, indicating that the model may
overestimate risks in locations where effective health interventions are in place. These misclassifications
highlight the importance of incorporating broader contextual variables, such as sanitation measures and
emergency response capacity, into future modeling efforts. Although both RF and ANN achieved high
predictive accuracy, several technical limitations should be noted. First, the study relied on observational
data that were subject to class imbalance, with disease outbreaks being less frequent than non-outbreak
months. This imbalance may bias models toward negative predictions and reduce sensitivity.
Techniques such as resampling or cost-sensitive learning could mitigate this issue in future work.
Second, the absence of socioeconomic variables—such as income, housing quality, and access to
healthcare—limited the models’ ability to capture the full spectrum of vulnerability. Including these
indicators could improve the explanatory power and fairness of the models. Robustness analysis
suggested that the models were relatively stable across different validation strategies. Temporal
validation, where the models were trained on 2018-2021 data and tested on 2022-2023 events, resulted
in only minor decreases in AUC, indicating that predictive performance was consistent over time.
Similarly, sensitivity analysis of different imputation methods for missing data (mean imputation vs.
KNN-based imputation) showed less than 2% change in predictive accuracy, suggesting that the models
were robust to moderate data gaps. Nevertheless, reliance on secondary datasets with variable reporting
quality remains a source of uncertainty.

These findings confirm that combining environmental and health domains within a single DM
framework enhances predictive accuracy and provides actionable insights for decision-makers.
However, addressing the identified limitations is critical for future applications. Integrating
socioeconomic data, improving handling of class imbalance, and extending validation across diverse
geographic regions would strengthen both the generalizability and the policy relevance of the models.
From a practical perspective, the developed framework can serve as a decision-support tool for local
governments, enabling early interventions such as water sanitation campaigns, targeted health
education, and resource allocation to high-risk communities.

The findings of this study emphasize that integrating Artificial Intelligence (Al) and Data Mining
(DM) into environmental and health analytics can substantially strengthen Al-based early warning
systems for disaster and public-health management. By continuously linking rainfall, drainage, and
water-quality data with real-time health indicators, the proposed RF—~ANN framework can serve as the
analytical core of an automated monitoring platform capable of issuing early alerts before disease
outbreaks occur. This aligns with the principles of disaster informatics, where computational models
transform heterogeneous environmental data into actionable knowledge for timely decision-making.
Such Al-enabled systems could be embedded within Indonesia’s Early Warning and Response System
(EWARS) to assist local governments and health agencies in anticipating post-flood disease surges,
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optimizing resource allocation, and implementing preventive interventions. Ultimately, this research
contributes to the advancement of environmental-health informatics, demonstrating how intelligent
data-driven frameworks can bridge climate, environment, and health sectors to enhance urban resilience
and safeguard public health.

4. CONCLUSION

This study demonstrated the capability of Data Mining (DM) and Artificial Intelligence (Al) to
model the interrelationship between environmental and health indicators in flood-prone urban areas. The
integrated Random Forest (RF) and Artificial Neural Network (ANN) framework proved effective in
predicting flood-related health risks and identifying key environmental determinants such as rainfall,
drainage density, and water contamination. Beyond empirical performance, this research contributes to
the field of disaster informatics by establishing a scalable hybrid Al-based modeling framework that
supports early warning and decision-support systems. The proposed model can strengthen evidence-
based disaster management and enhance urban health resilience through data-driven risk assessment.
Based on the findings of this study, several recommendations can be proposed. Local governments and
health agencies should adopt DM-based monitoring systems to support early detection of environmental
degradation and potential disease outbreaks in flood-prone areas. Infrastructure improvements,
particularly drainage and sanitation, should be prioritized in high-risk zones identified by the model.
Collaboration among environmental authorities, health institutions, and data scientists must be
strengthened to ensure continuous data sharing and model refinement. Future studies are encouraged to
integrate socioeconomic, climatic, and real-time sensing variables to enhance the generalizability and
scalability of the framework. Expanding applications across regions will contribute to the development
of Al-based early warning ecosystems that connect environmental, health, and informatics domains for
sustainable disaster resilience.

5. SUGGESTION

Based on the findings of this study, several recommendations can be proposed. First, local
governments and health agencies should adopt DM-based monitoring systems to support early detection
of environmental degradation and potential disease outbreaks in flood-prone areas. Such systems can
improve preparedness and enable more efficient allocation of health resources. Second, infrastructure
improvements, particularly drainage systems and sanitation facilities, need to be prioritized in areas
identified as high-risk by the DM model. This would reduce environmental contamination and
consequently lower the risk of flood-related diseases. Third, collaboration between environmental
authorities, health institutions, and data scientists should be strengthened to ensure continuous data
sharing and model development. Reliable and up-to-date datasets are essential for maintaining the
accuracy and usability of DM-based systems. Finally, future research should explore the integration of
additional variables such as socioeconomic factors, community vulnerability indices, and climate
change projections to enhance the predictive capacity of the models. Expanding case studies to different
geographic regions would also help generalize the findings and support wider policy applications.
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