
Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5791

Implementation and Evaluation of Static Code Analysis to Identify Security and Code

Quality Issues in Academic Information Systems

Cecep Muhamad Sidik Ramdani*1, Rahmi Nur Shofa2, Muhammad Adi Khairul Anshary3, Acep

Irham Gufroni4, Aria Priawan Yahya5, Wan Mohd Amir Fazamin Bin Wan Hamzah6

1,2,4Department of Information Systems, Siliwangi University, Indonesia

3,5Department of Informatics, Siliwangi University, Indonesia
6Faculty of Informatics and Computing, Sultan Zainal Abidin University, Malaysia

Email: 1cecepmuhamad@unsil.ac.id

Received : Oct 14, 2025; Revised : Nov 19, 2025; Accepted : Nov 18, 2025; Published : Dec 23, 2025

Abstract

In today's digital era, websites have become a key component of various digital services, from government and

education to business. However, many security incidents occur due to undetected source code vulnerabilities, such

as vulnerabilities, bugs, and code smells, which can degrade system performance and reliability. Therefore, a

systematic approach is needed to detect and prevent these issues as early as possible. This study aims to implement

and evaluate the effectiveness of the Static Code Analysis (SCA) method in identifying security and code quality

issues in web applications. The tool used was SonarQube, which was then implemented in the SIMAK Universitas

Siliwangi. Evaluation and testing were conducted on the tool's ability to detect various types of problems, its level of

accuracy, and its ease of integration into the software development process. In this study, the evaluated aspects were

bugs, code smells, and vulnerabilities. The results of this study found 23,241 issues, consisting of 2,356 bugs and

20,885 code smells, without any vulnerabilities found. With a problem ratio of 3.84% of the total code lines of

605,130, and a severity classification dominated by issues at the Critical and Major levels, these results provide an

overview of the technical condition of the code used in SIMAK Universitas Siliwangi. This research is expected to

provide practical contributions for software developers and security teams in continuously improving the quality and

security of web applications. The outcomes of this study are expected to offer substantial and actionable contributions

toward advancing the overall quality, robustness, and security of software systems. By strengthening these

foundational aspects, the research is projected to positively influence the reliability, continuity, and long-term

sustainability of academic service delivery within higher-education environments.

Keywords : Bugs, Code Smells, SonarQube, Static Code Analysis (SCA), Source code, Vulnerabilities.

This work is an open access article licensed under a Creative Commons Attribution 4.0 International License.

1. INTRODUCTION

Digitalisasi proses akademik di perguruan tinggi menuntut Sistem Informasi Akademik (SIMAK)

yang andal, aman, dan berkualitas, karena sistem ini memproses data berisiko tinggi seperti identitas

mahasiswa, nilai, keuangan, serta pelaporan terintegrasi ke Pangkalan Data Pendidikan Tinggi

(PDDIKTI) [1], [2]. Dalam praktik, SIMAK umumnya berwujud aplikasi web yang mengotomasi proses

KRS, penjadwalan, penilaian, hingga pelaporan dan integrasi sehingga kualitas kode dan keamanan

aplikasi web menjadi faktor penentu keberhasilan layanan akademik [3], [4].

Di sisi lain, lanskap ancaman siber terhadap layanan publik Indonesia, termasuk sektor

pendidikan semakin meningkat. Laporan beberapa tahun terakhir menunjukkan insiden kebocoran data

berskala besar dan gangguan layanan, termasuk peristiwa terkait Pusat Data Nasional dan data institusi

pemerintah [5], [6]. Secara global, Verizon DBIR 2025 menganalisis lebih dari 12 ribu pelanggaran data

terkonfirmasi dan menyoroti eksploitasi kerentanan serta kesalahan aplikasi begitu meningkat sangat

signifikan [7].

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371
mailto:cecepmuhamad@unsil.ac.id
http://creativecommons.org/licenses/by/4.0/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5792

Pada tahap pembangunan, permasalahan yang sering muncul pada SIMAK adalah kualitas kode

yang kurang terstandar dan dokumentasi yang minim. Banyak pengembang hanya berfokus pada

fungsionalitas utama tanpa memperhatikan praktik terbaik seperti code review, modularitas, dan standar

pengembangan perangkat lunak. Kondisi ini membuat sistem sulit dipelihara dan dikembangkan di

kemudian hari. Selain itu, aspek keamanan sering kali belum menjadi prioritas sejak awal. Akibatnya,

kode yang dihasilkan rentan terhadap kerentanan umum seperti SQL Injection, Cross-Site Scripting

(XSS), maupun Broken Access Control. Kurangnya integrasi praktik pengembangan aman, seperti

penerapan Static Code Analysis (SCA) dan security testing otomatis dalam pipeline pengembangan,

turut memperbesar risiko keamanan yang tersembunyi di dalam kode.

Permasalahan juga muncul pada tahap implementasi. Salah satu masalah utama adalah beban

akses yang tinggi pada periode krusial, yang sering menyebabkan sistem melambat bahkan down. Selain

itu, resistensi pengguna juga menjadi kendala, di mana dosen, staf, maupun mahasiswa kadang enggan

beradaptasi dengan sistem baru sehingga penggunaan sistem menjadi tidak konsisten. Dari sisi data,

input manual yang masih dominan menimbulkan kesalahan, duplikasi, dan inkonsistensi yang dapat

berimplikasi pada ketidakakuratan laporan ke PDDIKTI. Aspek keamanan operasional pun menjadi

masalah serius, mengingat banyak SIMAK yang tidak rutin diperbarui atau dipantau sehingga rawan

kebocoran data.

Untuk menjawab kebutuhan tersebut, kerangka NIST Secure Software Development Framework

(SSDF) SP 800-218 mendorong integrasi praktik keamanan dalam seluruh siklus pengembangan

(DevSecOps), termasuk otomatisasi pengujian statik/dinamik [8], [9]. Dalam konteks DevSecOps untuk

aplikasi web seperti SIMAK, penerapan SCA sebagai kontrol preventif pada kualitas kode diakui

sebagai praktik efektif untuk menekan risiko sejak dini [10], [11]. SCA memungkinkan pendeteksian

dini suatu bugs, code smells, serta Vulnerability tanpa mengeksekusi program, sehingga mengurangi

biaya perbaikan dan menstandarkan kualitas kode secara menyeluruh [12].

Penelitian ini memiliki kontribusi penting dalam memperkuat praktik secure software

development di lingkungan pendidikan tinggi melalui penerapan SCA berbasis SonarQube pada

SIMAK. Kebaruan penelitian ini terletak pada penerapan evaluasi kualitas dan keamanan kode secara

menyeluruh terhadap sistem yang telah digunakan secara nyata oleh civitas akademika, bukan hanya

pada skenario uji coba atau kode simulasi. Selain itu, penelitian ini mengintegrasikan hasil analisis SCA

dengan klasifikasi tingkat keparahan (severity) untuk memberikan gambaran komprehensif mengenai

kondisi teknis perangkat lunak akademik dan rekomendasi perbaikannya. Temuan ini diharapkan

menjadi referensi bagi institusi pendidikan dalam membangun model pengujian keamanan dan kualitas

kode yang berkelanjutan, sekaligus memperkuat tata kelola keamanan informasi di sektor akademik.

2. METHOD

Pendekatan penelitian ini menggunakan metode kuantitatif-deskriptif dengan fokus pada evaluasi

teknis kualitas kode. Analisis dilakukan melalui penerapan SCA menggunakan SonarQube yang

dikonfigurasikan secara khusus untuk mendeteksi tiga kategori utama permasalahan, yaitu bugs, code

smells, dan vulnerabilities. Setiap hasil temuan kemudian diklasifikasikan berdasarkan tingkat

keparahan (severity levels): Blocker, Critical, Major, dan Minor. Proses ini memungkinkan identifikasi

dan pengukuran tingkat kualitas perangkat lunak secara terukur, sekaligus memberikan dasar kuantitatif

bagi penyusunan rekomendasi peningkatan mutu kode.

Selain itu, metode ini juga memanfaatkan pendekatan validasi berlapis, di mana sebagian hasil

deteksi dianalisis ulang secara manual untuk memastikan akurasi dan mengurangi potensi false positive

dari hasil pemindaian otomatis. Tahapan ini penting untuk menjamin validitas hasil serta memastikan

bahwa rekomendasi perbaikan benar-benar merefleksikan kondisi aktual dari sistem yang dianalisis.

Dengan desain metodologis ini, penelitian tidak hanya menghasilkan data statistik, tetapi juga

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5793

memberikan panduan aplikatif bagi pengembang dalam menerapkan SCA secara efektif pada proyek

perangkat lunak nyata.

Prosedur penelitian yang dilakukan terdiri dari beberapa tahapan seperti yang terlihat pada

Gambar 1 berikut ini.

Gambar 1. Prosedur Penelitian.

2.1. Tahap Studi Literatur

Pada tahap ini dilakukan dua kegiatan utama:

a. Kajian SCA & tools: Kajian sistem dilakukan terhadap konsep SCA, metode, dan alat (tools) yang

tersedia. Beberapa penelitian sebelumnya menunjukkan bahwa SCA dapat membantu mendeteksi

kelemahan perangkat lunak lebih awal dalam siklus hidup pengembangan [13], [14].

b. Penentuan Kriteria: Setelah memahami karakteristik alat SCA, dilakukan penentuan kriteria seperti

cakupan sistem pemrograman, dukungan framework, akurasi deteksi, serta integrasi dengan CI [15].

2.2. Tahap Seleksi Dataset

Pada tahap seleksi dataset, kegiatan yang dilakukan adalah sebagai berikut:

a. Kumpulkan source code web OSS: Dataset berupa kode sumber aplikasi web open source dipilih

karena menyediakan variasi sistem dan kerangka kerja yang cukup luas serta mudah diakses [16].

b. Klasifikasi berdasarkan sistem & framework: Kode yang dikumpulkan dikelompokkan sesuai

sistem pemrograman (misalnya PHP, Java, Python) serta framework (Laravel, Spring, Django). Hal

ini penting karena akurasi alat SCA dapat bervariasi tergantung sistem yang dianalisis [17].

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5794

2.3. Tahap Implementasi SCA

Pada tahap implementasi SCA, ada tiga kegiatan yang dilakukan, yaitu:

a. Konfigurasi: Peneliti melakukan konfigurasi pada alat SCA yang dipilih agar sesuai dengan dataset

[18], [19].

b. Jalankan analisis: Analisis statis dijalankan untuk mendeteksi potensi kerentanan, bugs, dan code

smells pada kode sumber tanpa mengeksekusi aplikasi [20].

c. Dokumentasi hasil: Hasil berupa laporan kelemahan, kualitas kode, dan rekomendasi perbaikan

didokumentasikan untuk analisis selanjutnya [21].

2.4. Tahap Evaluasi Kinerja

Pada tahap ini, kegiatan yang dilakukan adalah:

a. Bandingkan hasil & akurasi: Hasil dari alat SCA dibandingkan berdasarkan jumlah temuan,

cakupan kelemahan (misalnya OWASP Top 10, CWE Top 25), dan akurasi deteksi [22], [23].

b. Validasi manual: Beberapa temuan diverifikasi secara manual dengan membaca kode dan

melakukan uji reproduksi untuk membedakan true positive dan false positive [24], [25].

2.5. Tahap Rekomendasi dan Penyusunan Laporan

Pada tahap rekomendasi dan penyusunan laporan, kegiatan yang dilakukan yaitu sistem

rekomendasi terkait efektivitas SCA dalam mendeteksi kelemahan dan meningkatkan kualitas kode pada

SIMAK. Hasil penelitian kemudian disusun dalam laporan akademik yang memuat metodologi, hasil,

evaluasi, serta rekomendasi praktis untuk pengembangan perangkat lunak yang lebih aman dan

berkualitas [26].

3. RESULT

3.1. Studi Literatur

Dari kajian yang dilakukan, pada penelitian ini digunakan tools SCA dengan Sonarqube ntuk

mengevaluasi kualitas kode. SonarQube yang digunakan dalam pengujian adalah versi 25.1.0.102122,

yang dilisensikan menggunakan LGPL v3. Dalam implementasinya, SonarQube dikonfigurasi dengan

menggunakan database PostgreSQL versi 8.14. Pemilihan PostgreSQL sebagai database dilakukan

karena SonarQube secara resmi merekomendasikan PostgreSQL untuk penyimpanan data dan

pengelolaan proyek. Parameter yang digunakan dalam menganalisis kualitas kode, yaitu mengevaluasi

bugs, code smells, dan Vulnerability.

3.2. Seleksi Dataset

Pada tahap ini ditemukan sebanyak 605 ribu baris kode yang berasal dari beberapa sistem

pemgrograman, diantaranya adalah PHP, Java, Javascript, dan CSS, seperti terlihat pada Tabel 1 dan

Gambar 2 berikut ini.

Tabel 1. Pembagian Dataset.

Bahasa Pemrograman Jumlah Baris Code

PHP 285.000

Java 54.000

Javascript 2.000

CSS 256.000

Tidak Terdefinisi 8.000

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5795

Gambar 2. Diagram Pembagian Dataset Bahasa Pemrograman.

3.3. Implementasi SCA

Untuk seluruh kode yang dihasilkan dari dataset pada tahapan sebelumnya, dilakukan pengujian

terhadap kualitas kode, dengan menggunakan alat bantu analisis statis, yaitu SonarQube. Pengujian

dilakukan untuk memperoleh informasi terkait kualitas kode dari aspek bugs, code smells, dan

vulnerabilities atau potensi kerentanan keamanan, seperti terlihat pada Gambar 3 berikut ini.

Gambar 3. Postgree SQL.

Proses integrasi database yang dilakukan mencakup pembuatan user dan password yang

digunakan untuk login ke dalam sistem SonarQube sebagai admin, seperti yang terlihat pada Gambar 4

berikut ini.

Gambar 4. Generate Token SonarQube.

285

54 2

256

8
0

200

400

PHP Java Javascript CSS Tidak
Terdefinisi

Pembagian Dataset Bahasa
Pemrograman

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5796

Sebelum proses analisis dilakukan, langkah awal adalah membuat sebuah proyek baru di

SonarQube yang disesuaikan seperti pada Gambar 4. Setelah konfigurasi proyek selesai, sistem akan

memberikan opsi untuk melakukan generate token yang digunakan sebagai autentikasi selama proses

analisis berjalan. Karena sistem operasi yang digunakan adalah Windows, maka token disesuaikan

dengan environment tersebut, seperti terlihat pada Gambar 5 berikut.

Gambar 5. Integrasi dengan VS Code.

Token yang telah di-generate SonarQube kemudian dimasukkan ke dalam terminal Visual Studio

Code pada proyek hasil generate dari plugin Dualite. Pada gambar 5 diatas, terlihat bahwa proses

dilakukan melalui integrasi penghubung antara SonarQube dan VS Code agar proses analisis dapat

berjalan secara otomatis melalui perintah pada terminal. Selanjutnya SonarQube akan melakukan

pemindaian menyeluruh terhadap semua file, yang dapat dilihat pada Gambar 6 berikut ini.

Gambar 6. Hasil analisi SonarQube.

Hasil analisis yang ditampilkan pada Gambar 6 diatas, menunjukkan hasil pemeriksaan kualitas

kode menggunakan SonarQube. Dari seluruh kode yang dianalisis, ditemukan sebanyak 2.400 bugs,

21.000 code smells, serta 0 vulnerabilities. Selain itu, SonarQube juga mendeteksi adanya 272 security

hotspots yang berpotensi menjadi celah keamanan. Hasil analisis yang telah dilakukan turut mencatat

bahwa tingkat duplikasi kode mencapai 52,8% pada sekitar 605 ribu baris kode, sementara nilai

coverage tercatat 0%. Data kuantitatif ini memberikan gambaran bahwa permasalahan utama pada

proyek terletak pada tingginya jumlah code smells dan duplications, yang kemudian akan dianalisis

lebih lanjut pada Tabel 2, dengan hasil analisis kode yang dapat dilihat pada Gambar 7.

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5797

Tabel 2. Hasil Analisis Kode Menggunakan SonarQube.

Jenis Masalah Jumlah Temuan

Bugs 2.356

Code Smells 20.885

Vulnerabilities 0

Lines of Code 605.130

`

Gambar 7. Diagram Hasil Analisis Kode.

Pada Gambar 7 diatas, SonarQube mengelompokkan hasil temuannya ke dalam beberapa kategori

berdasarkan jenis masalah, yaitu bugs, code smells, dan vulnerabilities. Dari hasil analisis, jumlah bugs

yang terdeteksi mencapai 2.356 isu, sedangkan pada kategori code smells ditemukan sebanyak 20.885

isu. Adapun pada kategori vulnerabilities tidak ditemukan adanya permasalahan. Secara keseluruhan,

kode yang dianalisis berjumlah 605.130 baris, sehingga data ini memberikan gambaran awal mengenai

tingkat kualitas perangkat lunak yang diuji sebelum masuk ke klasifikasi lebih lanjut berdasarkan tingkat

keparahan (severity) seperti terlihat pada Tabel 3.

Tabel 3. Klasifikasi Severity Hasil Analisis Kode.

Jenis Masalah Blocker Critical Major Minor Total

Bugs 28 90 2.100 130 2.348

Code Smells 24 11.509 6.028 3.211 20.772

Vulnerabilities 0 0 0 0 0

Total Jenis Masalah 52 11.599 8.128 3.341 23.120

Dari Tabel 3 diatas, terlihat bahwa SonarQube mengklasifikasikan setiap temuan berdasarkan

tingkat keparahan (severity), yang terdiri dari empat kategori, yaitu Blocker, Critical, Major, dan Minor.

Berdasarkan hasil analisis, temuan pada kategori bugs didominasi oleh tingkat Major sebanyak 2.100

isu, sedangkan pada kategori code smells sebagian besar berada pada tingkat Critical dengan 11.509

isu., sementara itu tidak ditemukan adanya vulnerabilities pada sistem yang diuji.

3.4. Evaluasi

Studi kasus pada tahap ini dilakukan untuk mendokumentasikan hasil analisis kualitas kode dari

SIMAK Universitas Siliwangi yang digunakan secara nyata oleh mahasiswa dan civitas akademika.

Analisis dilakukan dengan memanfaatkan SonarQube sebagai alat bantu static code analysis, dengan

fokus pada tiga jenis temuan utama, yaitu: bugs, code smells, dan vulnerabilities. Data kuantitatif yang

2,356

20,885

0
0

5,000

10,000

15,000

20,000

25,000

Bugs Code Smells Vulnerabilities

Hasil Analisis Kode Menggunakan
SonarQube

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5798

diperoleh kemudian diolah lebih lanjut untuk menggambarkan kondisi kualitas perangkat lunak pada

SIMAK, serta dikelompokkan berdasarkan tingkat keparahan (severity), meliputi Blocker, Critical,

Major, dan Minor, seperti terlihat pada Tabel 4.

Tabel 4. Kriteria Kelayakan Kode.

Kategori Persentase Masalah (%) Kelayakan

A 0 - 5% Layak

B 6 - 10% Cukup Layak

C 11 - 20% Kurang Layak

D 21 - 50% Tidak Layak

Kelayakan kualitas kode dalam penelitian ini mengacu pada standar kategori yang telah

ditentukan oleh SonarQube. Data kuantitatif yang diperoleh dari hasil pemindaian SonarQube kemudian

diolah lebih lanjut guna memberikan gambaran menyeluruh mengenai kualitas kode yang mendasari

SIMAK. Selain itu, setiap temuan juga dikelompokkan berdasarkan tingkat keparahan (severity),

meliputi Blocker, Critical, Major, dan Minor, sehingga memudahkan proses evaluasi serta penyusunan

rekomendasi perbaikan.

a. Total Masalah yang Ditemukan

Tabel 5. Total Masalah yang Ditemukan.

Jenis Masalah Jumlah

Bugs 2.356

Code Smells 20.885

Vulnerabilities 0

Total Masalah 23.241

Lines of Code (LoC) 605.130

Pada Tabel 5 diatas dapat dilihat bahwa berdasarkan hasil pemindaian menggunakan SonarQube,

ditemukan bahwa terdapat sejumlah:

• 2.356 bugs

• 20.885 code smells

• 0 vulnerabilities

dengan Total masalah:

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑎𝑙𝑎ℎ = 2.356 + 20.885 + 0 = 23.241 (1)

Total keseluruhan masalah dalam proyek kode SIMAK Universitas Siliwangi adalah sebanyak

23.241 isu seperti terlihat pada Tabel 5 diatas. Untuk mengetahui sejauh mana jumlah masalah ini

mempengaruhi kualitas keseluruhan kode, maka dilakukan perhitungan rasio masalah terhadap total

baris kode (lines of code/LOC). Perhitungan ini mengacu pada rumus:

Rasio Masalah = (
𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑎𝑙𝑎ℎ

𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑟𝑖𝑠 𝑘𝑜𝑑𝑒
) 𝑥 100 (2)

Dengan total 23.241 masalah dari 605.130 baris kode, maka:

Rasio Masalah = (
23.241

605.130
) 𝑥 100 = 3,84% (3)

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5799

Berdasarkan kriteria kelayakan kode yang digunakan dalam penelitian ini, dapat dilihat pada

Tabel 4 sebelumnya, nilai 3,84% berada dalam kategori A (0–5%). Dengan demikian, kualitas kode

SIMAK Universitas Siliwangi dinilai masuk kategori Layak.

b. Persentase Setiap Jenis Masalah

Persentase setiap jenis masalah dihitung untuk mengetahui proporsi masing-masing jenis masalah

(Bugs, Code Smell, dan Vulnerability) terhadap total jumlah masalah yang ditemukan. Meskipun

dokumentasi resmi SonarQube tidak secara eksplisit mencantumkan rumus perhitungan ini, pendekatan

yang dilakukan merupakan metode statistik umum yang digunakan untuk menganalisis distribusi data

berdasarkan kategorinya. Rumus yang digunakan adalah sebagai berikut:

Persentase Jenis Masalah = (
𝐽𝑢𝑚𝑙𝑎ℎ 𝐽𝑒𝑛𝑖𝑠 𝑀𝑎𝑠𝑎𝑙𝑎ℎ

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑎𝑙𝑎ℎ
) 𝑥 10 (4)

• Bug

Presentase Bug = (
2.356

23.241
) 𝑥 100 = 10,13% (5)

• Code Smells

Presentase Code Smells = (
20.885

23.241
) 𝑥 100 = 89,87% (6)

• Vulnerabilities

Presentase Vulnerabilities = (
0

23.241
) 𝑥 100 = 0% (7)

Maka, hasil perhitungannya dapat dilihat pada tabel 6 berikut ini.

Tabel 6. Hasil Persentase Setiap Masalah.

Jenis Masalah Jumlah Persentase

Bugs 2.356 10,13%

Code Smells 20.885 89,87%

Vulnerabilities 0 0%

Total 23.241 100%

Dari Tabel 6 diatas, dapat dilihat bahwa mayoritas masalah berada pada kategori Code Smells

sebesar 89,87%, sedangkan masalah pada kategori Bugs hanya sebesar 10,13%, dan tidak ditemukan

adanya masalah pada kategori Vulnerabilities.

c. Persentase Kategori Severity (Critical, Major, Minor)

Setelah presentase jenis masalah di hitung, tahapan selanjutnya adalah menghitung persentase untuk

setiap level severity berdasarkan jumlah temuan dalam kategori Bugs, Code Smells, dan Vulnerabilities.

Rumus yang digunakan pada tahap ini merupakan penyesuaian dari persentase jenis masalah, yaitu:

Persentase Severity = (
𝐽𝑢𝑚𝑙𝑎ℎ 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑎𝑙𝑎ℎ
) 𝑥 100 (8)

1. Bug

Jumlah total masalah Bugs: 2.356

• Blocker :

Persentase Critical = (
28

2.356
) 𝑥 100 = 1,19% (9)

• Critical:

Persentase Critical = (
90

2.356
) 𝑥 100 = 3,82% (10)

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5800

• Major

Persentase Major = (
2.100

2.356
) 𝑥 100 = 89,14% (11)

• Minor

Persentase Minor = (
130

2.356
) 𝑥 100 = 5,52% (12)

2. Code Smells

Jumlah total masalah Code Smells: 20.885

• Blocker:

Persentase Blocker = (
24

20.885
) 𝑥 100 = 0,11% (13)

• Critical:

Persentase Critical = (
11.509

20.885
) 𝑥 100 = 55,13% (14)

• Major:

Persentase Critical = (
6.028

20.885
) 𝑥 100 = 28,87% (15)

• Minor:

Persentase Minor = (
3.211

20.885
) 𝑥 100 = 15,38% (16)

3. Vulnerabilities

Karena tidak ditemukan kerentanan (vulnerability), maka persentase untuk semua kategori

severity adalah:

• Blocker: 0%

• Critical: 0%

Major: 0%

• Minor: 0%

Dari seluruh rangkaian hasil diatas, maka perhitungannya dapat dilihat pada Tabel 7 berikut ini.

Tabel 7. Hasil persentase Kategori Severity

Jenis Masalah Blocker Critical Major Minor

Bugs 1,19% 3,82% 89,14% 5,52%

Code Smells 0,11% 55,13% 28,87% 15,38%

Vulnerabilities 0% 0% 0% 0%

Dari Tabel 7 diatas, dapat diketahui bahwa pada kategori Bugs, mayoritas isu berada pada tingkat

severity Major sebesar 89,14%, sedangkan sisanya terdiri dari Blocker sebesar 1,19%, Critical sebesar

3,82%, dan Minor sebesar 5,52%. Pada kategori Code Smells, sebagian besar masalah berada pada

tingkat severity Critical sebesar 55,13%, diikuti oleh Major sebesar 28,87%, serta Minor sebesar

15,38%, sementara Blocker hanya sebesar 0,11%. Adapun pada kategori Vulnerabilities tidak ditemukan

masalah, sehingga tidak ada distribusi severity yang dapat dianalisis lebih lanjut.

Berdasarkan hasil analisis menggunakan SonarQube yang telah dilakukan, secara keseluruhan

ditemukan sejumlah 23.241 isu, yang terdiri dari 2.356 bugs dan 20.885 code smells, tanpa adanya

temuan vulnerabilities. Dengan rasio masalah sebesar 3,84% terhadap total baris kode sebanyak

605.130, serta klasifikasi severity yang didominasi oleh isu pada tingkat Critical dan Major, hasil ini

memberikan gambaran mengenai kondisi teknis dari kode yang digunakan dalam SIMAK Universitas

Siliwangi.

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5801

3.5. Rekomendasi

a. Integrasi Static Code Analysis (SCA) ke dalam Proses DevOps

Dari hasil penelitian yang menunjukkan adanya temuan signifikan pada code smells (±89,87%)

dan bugs (±10,13%) dengan total 23.241 isu, disarankan agar institusi pengembang SIMAK

mengintegrasikan SCA seperti SonarQube ke dalam pipeline pengembangan perangkat lunak. Dengan

integrasi otomatis, deteksi dini dapat dilakukan sebelum kode masuk ke tahap produksi, sehingga risiko

keamanan dan biaya perbaikan dapat ditekan.

b. Prioritasi Perbaikan pada Code Smells Kritis

Mayoritas masalah berada pada kategori Critical (55,13%) yang berpotensi memengaruhi

maintainability dan keamanan sistem di masa depan. Oleh karena itu, pengembang perlu menyusun

roadmap perbaikan bertahap, dimulai dari temuan Critical dan Major, sebelum menindaklanjuti masalah

Minor dan Blocker, hal ini akan meningkatkan kualitas perangkat lunak secara signifikan.

c. Standarisasi Kualitas Kode melalui Panduan Teknis

Hasil penelitian menunjukkan pentingnya adanya coding standard dan panduan teknis yang

mengacu pada OWASP Top 10 dan best practices pemrograman aman. Dengan adanya pedoman

internal, pengembang dapat lebih konsisten dalam menulis kode yang aman dan berkualitas.

d. Pelatihan dan Capacity Building bagi Tim Pengembang

Ditemukan bahwa sebagian besar masalah bersifat berulang (duplikasi kode hingga 52,8%). Hal

ini menunjukkan perlunya peningkatan kapasitas SDM, baik melalui pelatihan penggunaan tool SCA

maupun workshop tentang secure coding. Dengan demikian, kompetensi tim dalam pencegahan

terjadinya bugs dan kerentanan system dapat meningkat.

e. Ekspansi Penelitian ke Tools dan Teknologi Lain

Penelitian yang dilakukan berfokus pada SonarQube, untuk kedepannya perlu dilakukan evaluasi

komparatif dengan tools lain seperti Semgrep atau Bandit agar dapat memberikan rekomendasi yang

lebih komprehensif terkait kelebihan dan kekurangan setiap tools sesuai jenis proyek (PHP, JS, Python).

f. Pengembangan Dashboard Monitoring Kualitas Kode

Untuk mendukung keberlanjutan, disarankan dibuat dashboard internal yang menyajikan metrik

kualitas kode (bugs, vulnerabilities, code smells, severity) secara real-time. Dashboard ini dapat menjadi

media monitoring dan evaluasi rutin bagi manajemen serta pengembang.

g. Publikasi Ilmiah dan Diseminasi Praktik Baik

Mengingat penelitian ini menghasilkan temuan yang signifikan dan komprehensif, maka

publikasi di jurnal nasional maupun internasional perlu terus ditingkatkan. Selain itu, hasil penelitian

dapat didiseminasikan kepada komunitas akademik dan pengembang lokal agar memberikan kontribusi

luas terhadap praktik secure software development di Indonesia.

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5802

4. DISCUSSIONS

Hasil penelitian ini menunjukkan bahwa penerapan SCA menggunakan SonarQube mampu

memberikan gambaran yang komprehensif terhadap kualitas dan keamanan kode pada SIMAK

Universitas Siliwangi. Temuan sebanyak 23.241 isu yang terdiri dari bugs dan code smells menunjukkan

adanya kebutuhan peningkatan praktik pengembangan perangkat lunak yang lebih terstandar dan

berorientasi pada keamanan. Meskipun rasio masalah terhadap total baris kode hanya sebesar 3,84%

dan dikategorikan “layak”, tingginya jumlah code smells dan duplikasi kode menandakan potensi risiko

terhadap maintainability dan efisiensi sistem di masa mendatang. Dengan demikian, penelitian ini

memberikan kontribusi nyata dalam membuktikan efektivitas SCA sebagai instrumen deteksi dini untuk

menjaga mutu perangkat lunak di lingkungan akademik. Selain memberikan evaluasi teknis terhadap

kondisi kode yang ada, hasil penelitian ini juga menghasilkan rekomendasi strategis berupa integrasi

SCA ke dalam proses DevOps, pengembangan dashboard monitoring kualitas kode, serta peningkatan

kapasitas pengembang melalui pelatihan secure coding. Secara keseluruhan, penelitian ini berdampak

pada penguatan tata kelola keamanan perangkat lunak di perguruan tinggi dan dapat menjadi acuan

dalam membangun model evaluasi kualitas kode yang berkelanjutan dan terukur.

Beberapa penelitian sebelumnya juga telah menyoroti efektivitas penerapan SCA dalam

mendeteksi kelemahan perangkat lunak, terutama di sektor publik dan pendidikan. Berbeda dengan

penelitian-penelitian sebelumnya yang umumnya dilakukan pada sistem uji coba atau proyek

eksperimental, penelitian ini memiliki kebaruan dalam penerapannya langsung pada sistem yang telah

digunakan secara aktif oleh civitas akademika, yakni SIMAK Universitas Siliwangi. Pendekatan ini

memungkinkan analisis kualitas dan keamanan kode dilakukan dalam konteks operasional nyata,

sehingga hasil yang diperoleh merefleksikan kondisi teknis aktual dan tantangan implementatif di

lingkungan pendidikan tinggi. Selain itu, penelitian ini tidak hanya berfokus pada jumlah temuan atau

tingkat keparahan, tetapi juga mengintegrasikan hasil analisis dengan klasifikasi kelayakan kode dan

rekomendasi strategis yang dapat diterapkan secara langsung untuk memperkuat secure software

governance. Dengan demikian, penelitian ini memperluas perspektif SCA dari hanya sekedar alat

deteksi teknis menjadi instrumen evaluasi berkelanjutan yang mendukung peningkatan kualitas tata

kelola dan keamanan perangkat lunak akademik.

5. CONCLUSION

Penelitian ini menegaskan bahwa SCA merupakan pendekatan efektif untuk deteksi dini masalah

keamanan dan kualitas perangkat lunak. Implementasi berkelanjutan melalui integrasi ke dalam pipeline

DevOps, penyusunan pedoman secure coding, serta peningkatan kapasitas tim pengembang menjadi

langkah penting untuk meningkatkan kualitas dan keamanan sistem informasi akademik secara

berkesinambungan. Secara umum, penelitian ini memberikan kontribusi penting terhadap

pengembangan ilmu pengetahuan di bidang Informatika dan Ilmu Komputer, khususnya pada ranah

software quality assurance dan secure software engineering. Penelitian ini memperluas pemahaman

tentang bagaimana metode analisis statis dapat diimplementasikan secara efektif di lingkungan

akademik nyata, bukan hanya dalam konteks eksperimental atau laboratorium.

Namun demikian, penelitian ini masih memiliki keterbatasan pada penggunaan satu alat analisis,

yaitu SonarQube, dan satu studi kasus utama, sehingga terbuka peluang bagi penelitian selanjutnya

untuk memperluas cakupan objek, melakukan validasi lintas platform, serta mengkaji integrasi SCA

dengan pendekatan keamanan berbasis kecerdasan buatan untuk hasil yang lebih adaptif dan

komprehensif.

Beberapa arah pengembangan dapat dilakukan untuk penelitian selanjutnya. Pertama, perlu

dilakukan studi komparatif terhadap berbagai alat Static Analysis seperti Semgrep, Bandit, atau

SonarLint untuk mengukur efektivitas relatif dan tingkat akurasi antar platform. Kedua, integrasi hasil

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5803

analisis ke dalam dashboard pemantauan kualitas kode berbasis real-time analytics dapat dikembangkan

guna mendukung pengambilan keputusan manajerial dan teknis dalam tata kelola perangkat lunak.

Ketiga, penelitian selanjutnya dapat menggabungkan metode Static Analysis dengan Dynamic Analysis

untuk memperoleh hasil evaluasi yang lebih menyeluruh terhadap performa dan keamanan sistem.

Terakhir, secara praktis, hasil penelitian ini dapat dijadikan dasar bagi penyusunan kebijakan secure

coding standard dan panduan implementasi Green and Secure Software Development di lingkungan

pendidikan tinggi maupun lembaga pemerintah yang mengelola sistem informasi publik.

CONFLICT OF INTEREST

Dalam penelitian ini penulis menyatakan tidak ada konflik kepentingan terkait hasil penelitian

yang dibahas dalam artikel ini.

ACKNOWLEDGEMENT

Ucapan terima kasih yang sebanyak-banyaknya kepada LPPM Uiversitas Siliwangi yang

memberikan dana terhadap penelitian ini.

REFERENCES

[1] LLDIKTI Wilayah XVII, Buku Pedoman Penilaian Maturitas Pengelola PDDIKTI 2024, Jan.

2025.

[2] LLDIKTI3, “Pengelolaan pelaporan PDDIKTI di ITPLN,” Materi Sosialisasi, Aug. 2024.

[3] SEVIMA, “Apa itu Sistem Informasi Akademik (SIAKAD)?,” Jun. 2023.

[4] Quipper, “Sistem Informasi Akademik (SIAKAD) - definisi dan fitur,” May. 2024.

[5] Katadata, “Pemerintahan, sektor paling rentan insiden siber,” Jul. 2024.

[6] Naval-CSIRT, “5,6 juta data Kemendikbudristek dibobol,” Oct. 2024.

[7] Verizon, “2025 Data Breach Investigations Report,” May. 2025.

[8] K. Souppaya and K. Scarfone, “NIST SP 800-218: Secure Software Development Framework

(SSDF) v1.1,” Gaithersburg: NIST, 2022.

[9] K. Rokis and M. Kirikova, “Exploring Low-Code Development: A Comprehensive Literature

Review,” Complex Systems Informatics and Modeling Quarterly, vol. 2023, no. 36, pp. 68–86,

2023.

[10] Practical DevSecOps, “Comprehensive guide to SAST implementation,” 2023.

[11] D. Patten, “Application security testing in CI/CD pipelines,” 2025.

[12] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. Zaidman, “How developers

engage with static analysis tools in different contexts,” Empir Softw Eng, vol. 25, no. 2, pp. 1419–

1457, Mar. 2020.

[13] W. Charoenwet, S. Charoenwet, and N. Yoshida, “An empirical study of static analysis tools for

secure code review,” arXiv, 2024.

[14] A. Murali et al., “FuzzSlice: Pruning false positives in static analysis warnings,” ICSE, 2024.

[15] Practical DevSecOps, “Comprehensive guide to SAST implementation,” 2023.

[16] M. F. Santoso, “Implementation Of UI/UX Concepts And Techniques In Web Layout Design

With Figma,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 2, pp. 279–285, Apr.

2024.

[17] J. Park, J. Kim, and H. Choi, “Reduction of false positives for runtime errors in C/C++ static

analysis,” Electronics, vol. 12, no. 16, p. 3518, 2023.

[18] SonarSource Docs, “Quality gates (SonarQube 10.6),” Aug. 2025.

[19] GitHub Docs, “About code scanning with CodeQL,” Mar. 2023.

[20] Oligo Security Academy, “Static code analysis: Methods, pros/cons,” Jul. 2025.

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

5804

[21] ISO, “ISO/IEC 25010:2011—System and software quality models,” Geneva: ISO, 2011.

[22] OWASP, OWASP Top 10: 2021, 2021.

[23] MITRE, “CWE Top 25 Most Dangerous Software Weaknesses,” 2024.

[24] Z. Wadhams, “Barriers to using SAST tools: A literature review,” Montana State Univ., 2024.

[25] G. Liargkovas, M. Papadakis, and A. Zeller, “A study of static analysis alert suppressions,” arXiv,

2023.

[26] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. Zaidman, “How developers

engage with static analysis tools in different contexts,” Empir Softw Eng, vol. 25, no. 2, pp. 1419–

1457, Mar. 2020.

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

