Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

Implementation and Evaluation of Static Code Analysis to Identify Security and Code
Quality Issues in Academic Information Systems

Cecep Muhamad Sidik Ramdani*!, Rahmi Nur Shofa?, Muhammad Adi Khairul Anshary?, Acep
Irham Gufroni‘, Aria Priawan Yahya®, Wan Mohd Amir Fazamin Bin Wan Hamzah®

124Department of Information Systems, Siliwangi University, Indonesia
3SDepartment of Informatics, Siliwangi University, Indonesia
SFaculty of Informatics and Computing, Sultan Zainal Abidin University, Malaysia

Email: 'cecepmuhamad@unsil.ac.id

Received : Oct 14, 2025; Revised : Nov 19, 2025; Accepted : Nov 18, 2025; Published : Dec 23, 2025

Abstract

In today's digital era, websites have become a key component of various digital services, from government and
education to business. However, many security incidents occur due to undetected source code vulnerabilities, such
as vulnerabilities, bugs, and code smells, which can degrade system performance and reliability. Therefore, a
systematic approach is needed to detect and prevent these issues as early as possible. This study aims to implement
and evaluate the effectiveness of the Static Code Analysis (SCA) method in identifying security and code quality
issues in web applications. The tool used was SonarQube, which was then implemented in the SIMAK Universitas
Siliwangi. Evaluation and testing were conducted on the tool's ability to detect various types of problems, its level of
accuracy, and its ease of integration into the software development process. In this study, the evaluated aspects were
bugs, code smells, and vulnerabilities. The results of this study found 23,241 issues, consisting of 2,356 bugs and
20,885 code smells, without any vulnerabilities found. With a problem ratio of 3.84% of the total code lines of
605,130, and a severity classification dominated by issues at the Critical and Major levels, these results provide an
overview of the technical condition of the code used in SIMAK Universitas Siliwangi. This research is expected to
provide practical contributions for software developers and security teams in continuously improving the quality and
security of web applications. The outcomes of this study are expected to offer substantial and actionable contributions
toward advancing the overall quality, robustness, and security of software systems. By strengthening these
foundational aspects, the research is projected to positively influence the reliability, continuity, and long-term
sustainability of academic service delivery within higher-education environments.

Keywords : Bugs, Code Smells, SonarQube, Static Code Analysis (SCA), Source code, Vulnerabilities.

This work is an open access article licensed under a Creative Commons Attribution 4.0 International License.

1. INTRODUCTION

Digitalisasi proses akademik di perguruan tinggi menuntut Sistem Informasi Akademik (SIMAK)
yang andal, aman, dan berkualitas, karena sistem ini memproses data berisiko tinggi seperti identitas
mahasiswa, nilai, keuangan, serta pelaporan terintegrasi ke Pangkalan Data Pendidikan Tinggi
(PDDIKTI) [1], [2]. Dalam praktik, SIMAK umumnya berwujud aplikasi web yang mengotomasi proses
KRS, penjadwalan, penilaian, hingga pelaporan dan integrasi sehingga kualitas kode dan keamanan
aplikasi web menjadi faktor penentu keberhasilan layanan akademik [3], [4].

Di sisi lain, lanskap ancaman siber terhadap layanan publik Indonesia, termasuk sektor
pendidikan semakin meningkat. Laporan beberapa tahun terakhir menunjukkan insiden kebocoran data
berskala besar dan gangguan layanan, termasuk peristiwa terkait Pusat Data Nasional dan data institusi
pemerintah [5], [6]. Secara global, Verizon DBIR 2025 menganalisis lebih dari 12 ribu pelanggaran data
terkonfirmasi dan menyoroti eksploitasi kerentanan serta kesalahan aplikasi begitu meningkat sangat
signifikan [7].

5791

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371
mailto:cecepmuhamad@unsil.ac.id
http://creativecommons.org/licenses/by/4.0/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

Pada tahap pembangunan, permasalahan yang sering muncul pada SIMAK adalah kualitas kode
yang kurang terstandar dan dokumentasi yang minim. Banyak pengembang hanya berfokus pada
fungsionalitas utama tanpa memperhatikan praktik terbaik seperti code review, modularitas, dan standar
pengembangan perangkat lunak. Kondisi ini membuat sistem sulit dipelihara dan dikembangkan di
kemudian hari. Selain itu, aspek keamanan sering kali belum menjadi prioritas sejak awal. Akibatnya,
kode yang dihasilkan rentan terhadap kerentanan umum seperti SQL Injection, Cross-Site Scripting
(XSS), maupun Broken Access Control. Kurangnya integrasi praktik pengembangan aman, seperti
penerapan Static Code Analysis (SCA) dan security testing otomatis dalam pipeline pengembangan,
turut memperbesar risiko keamanan yang tersembunyi di dalam kode.

Permasalahan juga muncul pada tahap implementasi. Salah satu masalah utama adalah beban
akses yang tinggi pada periode krusial, yang sering menyebabkan sistem melambat bahkan down. Selain
itu, resistensi pengguna juga menjadi kendala, di mana dosen, staf, maupun mahasiswa kadang enggan
beradaptasi dengan sistem baru sehingga penggunaan sistem menjadi tidak konsisten. Dari sisi data,
input manual yang masih dominan menimbulkan kesalahan, duplikasi, dan inkonsistensi yang dapat
berimplikasi pada ketidakakuratan laporan ke PDDIKTI. Aspek keamanan operasional pun menjadi
masalah serius, mengingat banyak SIMAK yang tidak rutin diperbarui atau dipantau sehingga rawan
kebocoran data.

Untuk menjawab kebutuhan tersebut, kerangka NIST Secure Software Development Framework
(SSDF) SP 800-218 mendorong integrasi praktik keamanan dalam seluruh siklus pengembangan
(DevSecOps), termasuk otomatisasi pengujian statik/dinamik [8], [9]. Dalam konteks DevSecOps untuk
aplikasi web seperti SIMAK, penerapan SCA sebagai kontrol preventif pada kualitas kode diakui
sebagai praktik efektif untuk menekan risiko sejak dini [10], [11]. SCA memungkinkan pendeteksian
dini suatu bugs, code smells, serta Vulnerability tanpa mengeksekusi program, sehingga mengurangi
biaya perbaikan dan menstandarkan kualitas kode secara menyeluruh [12].

Penelitian ini memiliki kontribusi penting dalam memperkuat praktik secure software
development di lingkungan pendidikan tinggi melalui penerapan SCA berbasis SonarQube pada
SIMAK. Kebaruan penelitian ini terletak pada penerapan evaluasi kualitas dan keamanan kode secara
menyeluruh terhadap sistem yang telah digunakan secara nyata oleh civitas akademika, bukan hanya
pada skenario uji coba atau kode simulasi. Selain itu, penelitian ini mengintegrasikan hasil analisis SCA
dengan klasifikasi tingkat keparahan (severity) untuk memberikan gambaran komprehensif mengenai
kondisi teknis perangkat lunak akademik dan rekomendasi perbaikannya. Temuan ini diharapkan
menjadi referensi bagi institusi pendidikan dalam membangun model pengujian keamanan dan kualitas
kode yang berkelanjutan, sekaligus memperkuat tata kelola keamanan informasi di sektor akademik.

2. METHOD

Pendekatan penelitian ini menggunakan metode kuantitatif-deskriptif dengan fokus pada evaluasi
teknis kualitas kode. Analisis dilakukan melalui penerapan SCA menggunakan SonarQube yang
dikonfigurasikan secara khusus untuk mendeteksi tiga kategori utama permasalahan, yaitu bugs, code
smells, dan vulnerabilities. Setiap hasil temuan kemudian diklasifikasikan berdasarkan tingkat
keparahan (severity levels): Blocker, Critical, Major, dan Minor. Proses ini memungkinkan identifikasi
dan pengukuran tingkat kualitas perangkat lunak secara terukur, sekaligus memberikan dasar kuantitatif
bagi penyusunan rekomendasi peningkatan mutu kode.

Selain itu, metode ini juga memanfaatkan pendekatan validasi berlapis, di mana sebagian hasil
deteksi dianalisis ulang secara manual untuk memastikan akurasi dan mengurangi potensi false positive
dari hasil pemindaian otomatis. Tahapan ini penting untuk menjamin validitas hasil serta memastikan
bahwa rekomendasi perbaikan benar-benar merefleksikan kondisi aktual dari sistem yang dianalisis.
Dengan desain metodologis ini, penelitian tidak hanya menghasilkan data statistik, tetapi juga

5792

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF)

P-ISSN: 2723-3863
E-ISSN: 2723-3871

Vol. 6, No. 6, December 2025, Page. 5791-5804
https://jutif.if unsoed.ac.id
DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

memberikan panduan aplikatif bagi pengembang dalam menerapkan SCA secara efektif pada proyek

perangkat lunak nyata.

Prosedur penelitian yang dilakukan terdiri dari beberapa tahapan seperti yang terlihat pada

Gambar 1 berikut ini.

2.1.

a.

Tahap Studi Literatur

Tahap Study Literatur
1. Kajian SCA & tools
2 Penentuan Kriteria

Tahap Seleksi Dataset
1. Kumpulkan sourcecode web 0SS
2. Klasifikasi berdasarkan bahasa & framework

Tahap Implementasi SCA
1. Konfigurasi
2. Jalankan analisis
3. Dokumentasi hasil

Tahap Evaluasi Kinerja
1. Bandingkan hasil & akurasi
2 Validasi manual

Tahap Rekomendasi & Penyusunan Laporan

[Selesai |

Gambar 1. Prosedur Penelitian.

Pada tahap ini dilakukan dua kegiatan utama:

2.2. Tahap Seleksi Dataset

Pada tahap seleksi dataset, kegiatan yang dilakukan adalah sebagai berikut:

Kumpulkan source code web OSS: Dataset berupa kode sumber aplikasi web open source dipilih
karena menyediakan variasi sistem dan kerangka kerja yang cukup luas serta mudah diakses [16].
Klasifikasi berdasarkan sistem & framework: Kode yang dikumpulkan dikelompokkan sesuai
sistem pemrograman (misalnya PHP, Java, Python) serta framework (Laravel, Spring, Django). Hal
ini penting karena akurasi alat SCA dapat bervariasi tergantung sistem yang dianalisis [17].

Kajian SCA & tools: Kajian sistem dilakukan terhadap konsep SCA, metode, dan alat (fools) yang
tersedia. Beberapa penelitian sebelumnya menunjukkan bahwa SCA dapat membantu mendeteksi
kelemahan perangkat lunak lebih awal dalam siklus hidup pengembangan [13], [14].

Penentuan Kriteria: Setelah memahami karakteristik alat SCA, dilakukan penentuan kriteria seperti
cakupan sistem pemrograman, dukungan framework, akurasi deteksi, serta integrasi dengan CI [15].

5793

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

2.3. Tahap Implementasi SCA

Pada tahap implementasi SCA, ada tiga kegiatan yang dilakukan, yaitu:
a. Konfigurasi: Peneliti melakukan konfigurasi pada alat SCA yang dipilih agar sesuai dengan dataset
[18], [19].
b. Jalankan analisis: Analisis statis dijalankan untuk mendeteksi potensi kerentanan, bugs, dan code
smells pada kode sumber tanpa mengeksekusi aplikasi [20].
c. Dokumentasi hasil: Hasil berupa laporan kelemahan, kualitas kode, dan rekomendasi perbaikan
didokumentasikan untuk analisis selanjutnya [21].

2.4. Tahap Evaluasi Kinerja

Pada tahap ini, kegiatan yang dilakukan adalah:

a. Bandingkan hasil & akurasi: Hasil dari alat SCA dibandingkan berdasarkan jumlah temuan,
cakupan kelemahan (misalnya OWASP Top 10, CWE Top 25), dan akurasi deteksi [22], [23].

b. Validasi manual: Beberapa temuan diverifikasi secara manual dengan membaca kode dan
melakukan uji reproduksi untuk membedakan true positive dan false positive [24], [25].

2.5. Tahap Rekomendasi dan Penyusunan Laporan

Pada tahap rekomendasi dan penyusunan laporan, kegiatan yang dilakukan yaitu sistem
rekomendasi terkait efektivitas SCA dalam mendeteksi kelemahan dan meningkatkan kualitas kode pada
SIMAK. Hasil penelitian kemudian disusun dalam laporan akademik yang memuat metodologi, hasil,
evaluasi, serta rekomendasi praktis untuk pengembangan perangkat lunak yang lebih aman dan
berkualitas [26].

3. RESULT
3.1. Studi Literatur

Dari kajian yang dilakukan, pada penelitian ini digunakan tools SCA dengan Sonarqube ntuk
mengevaluasi kualitas kode. SonarQube yang digunakan dalam pengujian adalah versi 25.1.0.102122,
yang dilisensikan menggunakan LGPL v3. Dalam implementasinya, SonarQube dikonfigurasi dengan
menggunakan database PostgreSQL versi 8.14. Pemilihan PostgreSQL sebagai database dilakukan
karena SonarQube secara resmi merekomendasikan PostgreSQL untuk penyimpanan data dan
pengelolaan proyek. Parameter yang digunakan dalam menganalisis kualitas kode, yaitu mengevaluasi
bugs, code smells, dan Vulnerability.

3.2. Seleksi Dataset

Pada tahap ini ditemukan sebanyak 605 ribu baris kode yang berasal dari beberapa sistem
pemgrograman, diantaranya adalah PHP, Java, Javascript, dan CSS, seperti terlihat pada Tabel 1 dan
Gambar 2 berikut ini.

Tabel 1. Pembagian Dataset.

Bahasa Pemrograman Jumlah Baris Code
PHP 285.000
Java 54.000
Javascript 2.000
CSS 256.000
Tidak Terdefinisi 8.000

5794

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

Pembagian Dataset Bahasa

Pemrograman
400 285 256
200 54 2 8
O - O
PHP Java Javascript CSS Tidak

Terdefinisi

Gambar 2. Diagram Pembagian Dataset Bahasa Pemrograman.

3.3. Implementasi SCA

Untuk seluruh kode yang dihasilkan dari dataset pada tahapan sebelumnya, dilakukan pengujian
terhadap kualitas kode, dengan menggunakan alat bantu analisis statis, yaitu SonarQube. Pengujian
dilakukan untuk memperoleh informasi terkait kualitas kode dari aspek bugs, code smells, dan
vulnerabilities atau potensi kerentanan keamanan, seperti terlihat pada Gambar 3 berikut ini.

Q, () Dashboard X Properties X SOL X Statistics X Dependencies X Dependents X Processes X

Configuration Logs System

Server seasions W Total [l Active [l 1die Transactions per second M Transactions [l Commiss [l Rollbacks

Tuples in W irserts [Updates [l Deletes Tuples out M Fetched [l Retumed Block /O W fiends 1l Hits

Gambar 3. Postgree SQL.

Proses integrasi database yang dilakukan mencakup pembuatan user dan password yang
digunakan untuk login ke dalam sistem SonarQube sebagai admin, seperti yang terlihat pada Gambar 4

berikut ini.

.\5\Son-arcl.l,~|_- Projects Issues Fules Quality Profiles Quality Gates Administration More

2 RAun analysis on your projoct

I thar {for J5, T3, Go, Pythen, FHP, | I

Windows
Download and unzip the Scanner for Windows

Execute the Scanner

Gambar 4. Generate Token SonarQube.

5795

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

Sebelum proses analisis dilakukan, langkah awal adalah membuat sebuah proyek baru di
SonarQube yang disesuaikan seperti pada Gambar 4. Setelah konfigurasi proyek selesai, sistem akan
memberikan opsi untuk melakukan generate token yang digunakan sebagai autentikasi selama proses
analisis berjalan. Karena sistem operasi yang digunakan adalah Windows, maka token disesuaikan
dengan environment tersebut, seperti terlihat pada Gambar 5 berikut.

Gambar 5. Integrasi dengan VS Code.

Token yang telah di-generate SonarQube kemudian dimasukkan ke dalam terminal Visual Studio
Code pada proyek hasil generate dari plugin Dualite. Pada gambar 5 diatas, terlihat bahwa proses
dilakukan melalui integrasi penghubung antara SonarQube dan VS Code agar proses analisis dapat
berjalan secara otomatis melalui perintah pada terminal. Selanjutnya SonarQube akan melakukan
pemindaian menyeluruh terhadap semua file, yang dapat dilihat pada Gambar 6 berikut ini.

Quality Gate Last analysis 6 days ago

¥ Passed

The last analysis has warnings. See details

New Code Overall Code

Vulnerabilities Bugs Code Smells

0 open issues A 2.4K open issues E 21K open issues A
Accepted issues Coverage Duplications

0 ® 00% O s528% D)
Valid issues that were not fixed On 127k lines to cove On 605k lines.

Security Hotspots

272 E

Gambar 6. Hasil analisi SonarQube.

Hasil analisis yang ditampilkan pada Gambar 6 diatas, menunjukkan hasil pemeriksaan kualitas
kode menggunakan SonarQube. Dari seluruh kode yang dianalisis, ditemukan sebanyak 2.400 bugs,
21.000 code smells, serta 0 vulnerabilities. Selain itu, SonarQube juga mendeteksi adanya 272 security
hotspots yang berpotensi menjadi celah keamanan. Hasil analisis yang telah dilakukan turut mencatat
bahwa tingkat duplikasi kode mencapai 52,8% pada sekitar 605 ribu baris kode, sementara nilai
coverage tercatat 0%. Data kuantitatif ini memberikan gambaran bahwa permasalahan utama pada
proyek terletak pada tingginya jumlah code smells dan duplications, yang kemudian akan dianalisis
lebih lanjut pada Tabel 2, dengan hasil analisis kode yang dapat dilihat pada Gambar 7.

5796

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804

P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

Tabel 2. Hasil Analisis Kode Menggunakan SonarQube.

Jenis Masalah Jumlah Temuan
Bugs 2.356
Code Smells 20.885
Vulnerabilities 0
Lines of Code 605.130

Hasil Analisis Kode Menggunakan

SonarQube
25,000 20,885
20,000
15,000
10,000
5,000 2,356 0
0 |
Bugs Code Smells Vulnerabilities

Gambar 7. Diagram Hasil Analisis Kode.

Pada Gambar 7 diatas, SonarQube mengelompokkan hasil temuannya ke dalam beberapa kategori
berdasarkan jenis masalah, yaitu bugs, code smells, dan vulnerabilities. Dari hasil analisis, jumlah bugs
yang terdeteksi mencapai 2.356 isu, sedangkan pada kategori code smells ditemukan sebanyak 20.885
isu. Adapun pada kategori vulnerabilities tidak ditemukan adanya permasalahan. Secara keseluruhan,
kode yang dianalisis berjumlah 605.130 baris, sehingga data ini memberikan gambaran awal mengenai
tingkat kualitas perangkat lunak yang diuji sebelum masuk ke klasifikasi lebih lanjut berdasarkan tingkat
keparahan (severity) seperti terlihat pada Tabel 3.

Tabel 3. Klasifikasi Severity Hasil Analisis Kode.

Jenis Masalah Blocker Critical Major Minor Total

Bugs 28 90 2.100 130 2.348

Code Smells 24 11.509 6.028 3.211 20.772
Vulnerabilities 0 0 0 0 0

Total Jenis Masalah 52 11.599 8.128 3.341 23.120

Dari Tabel 3 diatas, terlihat bahwa SonarQube mengklasifikasikan setiap temuan berdasarkan
tingkat keparahan (severity), yang terdiri dari empat kategori, yaitu Blocker, Critical, Major, dan Minor.
Berdasarkan hasil analisis, temuan pada kategori bugs didominasi oleh tingkat Major sebanyak 2.100
isu, sedangkan pada kategori code smells sebagian besar berada pada tingkat Critical dengan 11.509
isu., sementara itu tidak ditemukan adanya vulnerabilities pada sistem yang diuji.

3.4. Evaluasi

Studi kasus pada tahap ini dilakukan untuk mendokumentasikan hasil analisis kualitas kode dari
SIMAK Universitas Siliwangi yang digunakan secara nyata oleh mahasiswa dan civitas akademika.
Analisis dilakukan dengan memanfaatkan SonarQube sebagai alat bantu static code analysis, dengan
fokus pada tiga jenis temuan utama, yaitu: bugs, code smells, dan vulnerabilities. Data kuantitatif yang

5797

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

diperoleh kemudian diolah lebih lanjut untuk menggambarkan kondisi kualitas perangkat lunak pada
SIMAK, serta dikelompokkan berdasarkan tingkat keparahan (severity), meliputi Blocker, Critical,
Major, dan Minor, seperti terlihat pada Tabel 4.

Tabel 4. Kriteria Kelayakan Kode.

Kategori Persentase Masalah (%) Kelayakan
A 0-5% Layak
B 6-10% Cukup Layak
C 11-20% Kurang Layak
D 21 -50% Tidak Layak

Kelayakan kualitas kode dalam penelitian ini mengacu pada standar kategori yang telah
ditentukan oleh SonarQube. Data kuantitatif yang diperoleh dari hasil pemindaian SonarQube kemudian
diolah lebih lanjut guna memberikan gambaran menyeluruh mengenai kualitas kode yang mendasari
SIMAK. Selain itu, setiap temuan juga dikelompokkan berdasarkan tingkat keparahan (severity),
meliputi Blocker, Critical, Major, dan Minor, sehingga memudahkan proses evaluasi serta penyusunan
rekomendasi perbaikan.

a. Total Masalah yang Ditemukan

Tabel 5. Total Masalah yang Ditemukan.

Jenis Masalah Jumlah
Bugs 2.356
Code Smells 20.885
Vulnerabilities 0
Total Masalah 23.241
Lines of Code (LoC) 605.130

Pada Tabel 5 diatas dapat dilihat bahwa berdasarkan hasil pemindaian menggunakan SonarQube,
ditemukan bahwa terdapat sejumlah:
o 2.356 bugs
e 20.885 code smells
e 0 vulnerabilities

dengan Total masalah:
Total masalah = 2.356 + 20.885 + 0 = 23.241)

Total keseluruhan masalah dalam proyek kode SIMAK Universitas Siliwangi adalah sebanyak
23.241 isu seperti terlihat pada Tabel 5 diatas. Untuk mengetahui sejauh mana jumlah masalah ini
mempengaruhi kualitas keseluruhan kode, maka dilakukan perhitungan rasio masalah terhadap total
baris kode (/ines of code/LOC). Perhitungan ini mengacu pada rumus:

Total masalah

Rasio Masalah = () x 100 2)

Total baris kode

Dengan total 23.241 masalah dari 605.130 baris kode, maka:

23.241
605.130

Rasio Masalah =)x 100 = 3,84% 3)

5798

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

Berdasarkan kriteria kelayakan kode yang digunakan dalam penelitian ini, dapat dilihat pada
Tabel 4 sebelumnya, nilai 3,84% berada dalam kategori A (0-5%). Dengan demikian, kualitas kode
SIMAK Universitas Siliwangi dinilai masuk kategori Layak.

b. Persentase Setiap Jenis Masalah

Persentase setiap jenis masalah dihitung untuk mengetahui proporsi masing-masing jenis masalah
(Bugs, Code Smell, dan Vulnerability) terhadap total jumlah masalah yang ditemukan. Meskipun
dokumentasi resmi SonarQube tidak secara eksplisit mencantumkan rumus perhitungan ini, pendekatan
yang dilakukan merupakan metode statistik umum yang digunakan untuk menganalisis distribusi data
berdasarkan kategorinya. Rumus yang digunakan adalah sebagai berikut:

Persentase Jenis Masalah = (] umlah jenis Masalah) 10 4)
Total masalah
e Bug
Presentase Bug = (2===) x 100 = 10,13% (5)

o Code Smells

Presentase Code Smells = (%) x 100 = 89,87% (6)
o JVulnerabilities
Presentase Vulnerabilities = (23241) x 100 = 0% (7

Maka, hasil perhitungannya dapat dilihat pada tabel 6 berikut ini.

Tabel 6. Hasil Persentase Setiap Masalah.

Jenis Masalah Jumlah Persentase
Bugs 2.356 10,13%
Code Smells 20.885 89,87%
Vulnerabilities 0 0%
Total 23.241 100%

Dari Tabel 6 diatas, dapat dilihat bahwa mayoritas masalah berada pada kategori Code Smells
sebesar 89,87%, sedangkan masalah pada kategori Bugs hanya sebesar 10,13%, dan tidak ditemukan
adanya masalah pada kategori Vulnerabilities.

c. Persentase Kategori Severity (Critical, Major, Minor)

Setelah presentase jenis masalah di hitung, tahapan selanjutnya adalah menghitung persentase untuk
setiap level severity berdasarkan jumlah temuan dalam kategori Bugs, Code Smells, dan Vulnerabilities.
Rumus yang digunakan pada tahap ini merupakan penyesuaian dari persentase jenis masalah, yaitu:

Persentase Severity = (%) x 100 (8)
1. Bug
Jumlah total masalah Bugs: 2.356
e Blocker :
. 28
Persentase Critical = (ﬁ) x 100 = 1,19%)
o Critical:
.. 90
Persentase Critical = (ﬁ) x 100 = 3,82% (10)

5799

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804

P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371
e Major
Persentase Major = (%) x 100 = 89,14% (11)
e Minor
. 130
Persentase Minor = (ﬁ) x 100 = 5,52% (12)

2. Code Smells
Jumlah total masalah Code Smells: 20.885

e Blocker:

Persentase Blocker = (%) x100=0,11% (13)
e C(ritical:

Persentase Critical = (%) x 100 = 55,13% (14)
e Major:

Persentase Critical = (%) x 100 = 28,87% (15)
e Minor:

Persentase Minor = (236.281815) x 100 = 15,38% (16)

3. Vulnerabilities

Karena tidak ditemukan kerentanan (vulnerability), maka persentase untuk semua kategori
severity adalah:
e Blocker: 0%
o (Critical: 0%
Major: 0%
o Minor: 0%
Dari seluruh rangkaian hasil diatas, maka perhitungannya dapat dilihat pada Tabel 7 berikut ini.

Tabel 7. Hasil persentase Kategori Severity

Jenis Masalah Blocker Critical Major Minor

Bugs 1,19% 3,82% 89,14% 5,52%

Code Smells 0,11% 55,13% 28,87% 15,38%
Vulnerabilities 0% 0% 0% 0%

Dari Tabel 7 diatas, dapat diketahui bahwa pada kategori Bugs, mayoritas isu berada pada tingkat
severity Major sebesar 89,14%, sedangkan sisanya terdiri dari Blocker sebesar 1,19%, Critical sebesar
3,82%, dan Minor sebesar 5,52%. Pada kategori Code Smells, sebagian besar masalah berada pada
tingkat severity Critical sebesar 55,13%, diikuti oleh Major sebesar 28,87%, serta Minor sebesar
15,38%, sementara Blocker hanya sebesar 0,11%. Adapun pada kategori Vulnerabilities tidak ditemukan
masalah, sehingga tidak ada distribusi severity yang dapat dianalisis lebih lanjut.

Berdasarkan hasil analisis menggunakan SonarQube yang telah dilakukan, secara keseluruhan
ditemukan sejumlah 23.241 isu, yang terdiri dari 2.356 bugs dan 20.885 code smells, tanpa adanya
temuan vulnerabilities. Dengan rasio masalah sebesar 3,84% terhadap total baris kode sebanyak
605.130, serta klasifikasi severity yang didominasi oleh isu pada tingkat Critical dan Major, hasil ini
memberikan gambaran mengenai kondisi teknis dari kode yang digunakan dalam SIMAK Universitas
Siliwangi.

5800

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

3.5. Rekomendasi

a. Integrasi Static Code Analysis (SCA) ke dalam Proses DevOps

Dari hasil penelitian yang menunjukkan adanya temuan signifikan pada code smells (+89,87%)
dan bugs (£10,13%) dengan total 23.241 isu, disarankan agar institusi pengembang SIMAK
mengintegrasikan SCA seperti SonarQube ke dalam pipeline pengembangan perangkat lunak. Dengan
integrasi otomatis, deteksi dini dapat dilakukan sebelum kode masuk ke tahap produksi, sehingga risiko
keamanan dan biaya perbaikan dapat ditekan.

b. Prioritasi Perbaikan pada Code Smells Kritis

Mayoritas masalah berada pada kategori Critical (55,13%) yang berpotensi memengaruhi
maintainability dan keamanan sistem di masa depan. Oleh karena itu, pengembang perlu menyusun
roadmap perbaikan bertahap, dimulai dari temuan Critical dan Major, sebelum menindaklanjuti masalah
Minor dan Blocker, hal ini akan meningkatkan kualitas perangkat lunak secara signifikan.

c. Standarisasi Kualitas Kode melalui Panduan Teknis

Hasil penelitian menunjukkan pentingnya adanya coding standard dan panduan teknis yang
mengacu pada OWASP Top 10 dan best practices pemrograman aman. Dengan adanya pedoman
internal, pengembang dapat lebih konsisten dalam menulis kode yang aman dan berkualitas.

d. Pelatihan dan Capacity Building bagi Tim Pengembang

Ditemukan bahwa sebagian besar masalah bersifat berulang (duplikasi kode hingga 52,8%). Hal
ini menunjukkan perlunya peningkatan kapasitas SDM, baik melalui pelatihan penggunaan tool SCA
maupun workshop tentang secure coding. Dengan demikian, kompetensi tim dalam pencegahan
terjadinya bugs dan kerentanan system dapat meningkat.

e. Ekspansi Penelitian ke Tools dan Teknologi Lain

Penelitian yang dilakukan berfokus pada SonarQube, untuk kedepannya perlu dilakukan evaluasi
komparatif dengan tools lain seperti Semgrep atau Bandit agar dapat memberikan rekomendasi yang
lebih komprehensif terkait kelebihan dan kekurangan setiap tools sesuai jenis proyek (PHP, JS, Python).

f. Pengembangan Dashboard Monitoring Kualitas Kode

Untuk mendukung keberlanjutan, disarankan dibuat dashboard internal yang menyajikan metrik
kualitas kode (bugs, vulnerabilities, code smells, severity) secara real-time. Dashboard ini dapat menjadi
media monitoring dan evaluasi rutin bagi manajemen serta pengembang.

g. Publikasi Ilmiah dan Diseminasi Praktik Baik

Mengingat penelitian ini menghasilkan temuan yang signifikan dan komprehensif, maka
publikasi di jurnal nasional maupun internasional perlu terus ditingkatkan. Selain itu, hasil penelitian
dapat didiseminasikan kepada komunitas akademik dan pengembang lokal agar memberikan kontribusi
luas terhadap praktik secure software development di Indonesia.

5801

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

4. DISCUSSIONS

Hasil penelitian ini menunjukkan bahwa penerapan SCA menggunakan SonarQube mampu
memberikan gambaran yang komprehensif terhadap kualitas dan keamanan kode pada SIMAK
Universitas Siliwangi. Temuan sebanyak 23.241 isu yang terdiri dari bugs dan code smells menunjukkan
adanya kebutuhan peningkatan praktik pengembangan perangkat lunak yang lebih terstandar dan
berorientasi pada keamanan. Meskipun rasio masalah terhadap total baris kode hanya sebesar 3,84%
dan dikategorikan “layak”, tingginya jumlah code smells dan duplikasi kode menandakan potensi risiko
terhadap maintainability dan efisiensi sistem di masa mendatang. Dengan demikian, penelitian ini
memberikan kontribusi nyata dalam membuktikan efektivitas SCA sebagai instrumen deteksi dini untuk
menjaga mutu perangkat lunak di lingkungan akademik. Selain memberikan evaluasi teknis terhadap
kondisi kode yang ada, hasil penelitian ini juga menghasilkan rekomendasi strategis berupa integrasi
SCA ke dalam proses DevOps, pengembangan dashboard monitoring kualitas kode, serta peningkatan
kapasitas pengembang melalui pelatihan secure coding. Secara keseluruhan, penelitian ini berdampak
pada penguatan tata kelola keamanan perangkat lunak di perguruan tinggi dan dapat menjadi acuan
dalam membangun model evaluasi kualitas kode yang berkelanjutan dan terukur.

Beberapa penelitian sebelumnya juga telah menyoroti efektivitas penerapan SCA dalam
mendeteksi kelemahan perangkat lunak, terutama di sektor publik dan pendidikan. Berbeda dengan
penelitian-penelitian sebelumnya yang umumnya dilakukan pada sistem uji coba atau proyek
eksperimental, penelitian ini memiliki kebaruan dalam penerapannya langsung pada sistem yang telah
digunakan secara aktif oleh civitas akademika, yakni SIMAK Universitas Siliwangi. Pendekatan ini
memungkinkan analisis kualitas dan keamanan kode dilakukan dalam konteks operasional nyata,
sehingga hasil yang diperoleh merefleksikan kondisi teknis aktual dan tantangan implementatif di
lingkungan pendidikan tinggi. Selain itu, penelitian ini tidak hanya berfokus pada jumlah temuan atau
tingkat keparahan, tetapi juga mengintegrasikan hasil analisis dengan klasifikasi kelayakan kode dan
rekomendasi strategis yang dapat diterapkan secara langsung untuk memperkuat secure software
governance. Dengan demikian, penelitian ini memperluas perspektif SCA dari hanya sekedar alat
deteksi teknis menjadi instrumen evaluasi berkelanjutan yang mendukung peningkatan kualitas tata
kelola dan keamanan perangkat lunak akademik.

5. CONCLUSION

Penelitian ini menegaskan bahwa SCA merupakan pendekatan efektif untuk deteksi dini masalah
keamanan dan kualitas perangkat lunak. Implementasi berkelanjutan melalui integrasi ke dalam pipeline
DevOps, penyusunan pedoman secure coding, serta peningkatan kapasitas tim pengembang menjadi
langkah penting untuk meningkatkan kualitas dan keamanan sistem informasi akademik secara
berkesinambungan. Secara umum, penelitian ini memberikan kontribusi penting terhadap
pengembangan ilmu pengetahuan di bidang Informatika dan Ilmu Komputer, khususnya pada ranah
software quality assurance dan secure software engineering. Penelitian ini memperluas pemahaman
tentang bagaimana metode analisis statis dapat diimplementasikan secara efektif di lingkungan
akademik nyata, bukan hanya dalam konteks eksperimental atau laboratorium.

Namun demikian, penelitian ini masih memiliki keterbatasan pada penggunaan satu alat analisis,
yaitu SonarQube, dan satu studi kasus utama, sehingga terbuka peluang bagi penelitian selanjutnya
untuk memperluas cakupan objek, melakukan validasi lintas platform, serta mengkaji integrasi SCA
dengan pendekatan keamanan berbasis kecerdasan buatan untuk hasil yang lebih adaptif dan
komprehensif.

Beberapa arah pengembangan dapat dilakukan untuk penelitian selanjutnya. Pertama, perlu
dilakukan studi komparatif terhadap berbagai alat Static Analysis seperti Semgrep, Bandit, atau
SonarLint untuk mengukur efektivitas relatif dan tingkat akurasi antar platform. Kedua, integrasi hasil

5802

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

analisis ke dalam dashboard pemantauan kualitas kode berbasis real-time analytics dapat dikembangkan
guna mendukung pengambilan keputusan manajerial dan teknis dalam tata kelola perangkat lunak.
Ketiga, penelitian selanjutnya dapat menggabungkan metode Static Analysis dengan Dynamic Analysis
untuk memperoleh hasil evaluasi yang lebih menyeluruh terhadap performa dan keamanan sistem.
Terakhir, secara praktis, hasil penelitian ini dapat dijadikan dasar bagi penyusunan kebijakan secure
coding standard dan panduan implementasi Green and Secure Software Development di lingkungan
pendidikan tinggi maupun lembaga pemerintah yang mengelola sistem informasi publik.

CONFLICT OF INTEREST

Dalam penelitian ini penulis menyatakan tidak ada konflik kepentingan terkait hasil penelitian
yang dibahas dalam artikel ini.

ACKNOWLEDGEMENT

Ucapan terima kasih yang sebanyak-banyaknya kepada LPPM Uiversitas Siliwangi yang
memberikan dana terhadap penelitian ini.

REFERENCES
[1] LLDIKTI Wilayah XVII, Buku Pedoman Penilaian Maturitas Pengelola PDDIKTI 2024, Jan.
2025.

[2] LLDIKTI3, “Pengelolaan pelaporan PDDIKTI di ITPLN,” Materi Sosialisasi, Aug. 2024.

[3] SEVIMA, “Apa itu Sistem Informasi Akademik (SIAKAD)?,” Jun. 2023.

[4] Quipper, “Sistem Informasi Akademik (SIAKAD) - definisi dan fitur,” May. 2024.

[5] Katadata, “Pemerintahan, sektor paling rentan insiden siber,” Jul. 2024,

[6] Naval-CSIRT, “5,6 juta data Kemendikbudristek dibobol,” Oct. 2024.

[7] Verizon, “2025 Data Breach Investigations Report,” May. 2025.

[8] K. Souppaya and K. Scarfone, “NIST SP 800-218: Secure Software Development Framework
(SSDF) v1.1,” Gaithersburg: NIST, 2022.

[9] K. Rokis and M. Kirikova, “Exploring Low-Code Development: A Comprehensive Literature
Review,” Complex Systems Informatics and Modeling Quarterly, vol. 2023, no. 36, pp. 6886,
2023.

[10] Practical DevSecOps, “Comprehensive guide to SAST implementation,” 2023.

[11] D. Patten, “Application security testing in CI/CD pipelines,” 2025.

[12] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. Zaidman, “How developers
engage with static analysis tools in different contexts,” Empir Softw Eng, vol. 25, no. 2, pp. 1419—
1457, Mar. 2020.

[13] W. Charoenwet, S. Charoenwet, and N. Yoshida, “An empirical study of static analysis tools for
secure code review,” arXiv, 2024,

[14] A. Murali et al., “FuzzSlice: Pruning false positives in static analysis warnings,” /CSE, 2024.

[15] Practical DevSecOps, “Comprehensive guide to SAST implementation,” 2023.

[16] M. F. Santoso, “Implementation Of UI/UX Concepts And Techniques In Web Layout Design
With Figma,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 2, pp. 279-285, Apr.
2024.

[17] J. Park, J. Kim, and H. Choi, “Reduction of false positives for runtime errors in C/C++ static
analysis,” Electronics, vol. 12, no. 16, p. 3518, 2023.

[18] SonarSource Docs, “Quality gates (SonarQube 10.6),” Aug. 2025.

[19] GitHub Docs, “About code scanning with CodeQL,” Mar. 2023.

[20] Oligo Security Academy, “Static code analysis: Methods, pros/cons,” Jul. 2025.

5803

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 6, December 2025, Page. 5791-5804
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.6.5371

—
(98]
[ey i e

[26]

ISO, “ISO/IEC 25010:2011—System and software quality models,” Geneva: ISO, 2011.
OWASP, OWASP Top 10: 2021, 2021.

MITRE, “CWE Top 25 Most Dangerous Software Weaknesses,” 2024.

Z. Wadhams, “Barriers to using SAST tools: A literature review,” Montana State Univ., 2024.
G. Liargkovas, M. Papadakis, and A. Zeller, “A study of static analysis alert suppressions,” arXiv,
2023.

C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. Zaidman, “How developers
engage with static analysis tools in different contexts,” Empir Softw Eng, vol. 25, no. 2, pp. 1419—
1457, Mar. 2020.

5804

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.6.5371

