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Abstract 

Brain tumor diagnosis remains a critical challenge in medical imaging, as accurate classification and precise 

localization are essential for effective treatment planning. Traditional diagnostic approaches often rely on manual 

interpretation of MRI scans, which can be time-consuming, subjective, and prone to variability across radiologists. 

To address this limitation, this study proposes a two-stage framework that integrates machine learning (ML) based 

classifiers for tumor type recognition and a U-Net architecture for tumor segmentation. The classifier was trained to 

distinguish four tumor categories: glioma, meningioma, pituitary, and no tumor, while the U-Net model was 

employed to delineate tumor regions at the pixel level, enabling volumetric assessment. The novelty of this research 

lies in its dual focus that combines classification and segmentation within a single framework, which enhances 

clinical applicability by offering both diagnostic and spatial insights. Experimental results demonstrated that among 

the evaluated classifiers, XGBoost achieved the highest accuracy of 86 percent, surpassing other models such as 

Random Forest, SVC, and Logistic Regression, while the U-Net model delivered consistent segmentation 

performance across tumor types. These findings highlight the potential of hybrid ML and deep learning solutions to 

improve reliability, efficiency, and objectivity in brain tumor analysis. In real-world practice, the proposed 

framework can serve as a valuable decision-support tool, assisting radiologists in early detection, reducing diagnostic 

workload, and supporting personalized treatment strategies. 
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1. INTRODUCTION 

Brain tumors represent a major clinical challenge as they are among the most aggressive 

neurological disorders, contributing significantly to global morbidity and mortality [1], [2], [3]. 

Accurate diagnosis and characterization are essential for determining effective treatment strategies, yet 

conventional radiological evaluation based on manual inspection of magnetic resonance imaging (MRI) 

scans remains limited by subjectivity, time constraints, and substantial inter-observer variability [4], [5], 

[6]. The intrinsic heterogeneity of brain tumors, reflected in irregularities of size, shape, intensity 

distribution, and textural patterns across different MRI modalities such as T1, T2, and FLAIR, makes 

precise delineation and classification particularly difficult [7], [8]. Furthermore, many existing 

computer-aided diagnosis approaches address either segmentation or classification in isolation, which 

often leads to incomplete representation of the tumor and reduced generalization when applied in real 

clinical environments [9], [10]. These limitations underline a critical gap in current diagnostic 

methodologies and emphasize the need for more integrated and automated solutions capable of reliably 
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segmenting tumor regions while simultaneously classifying multiple tumor types with high accuracy 

and robustness. 

To overcome these limitations, recent advances in artificial intelligence have introduced powerful 

computational approaches that combine the representational capacity of deep learning with the 

discriminative power of machine learning algorithms [11], [12], [13]. Deep learning models, particularly 

convolutional neural networks and their derivatives, have demonstrated remarkable success in capturing 

spatial and structural information from MRI scans, making them highly effective for tumor localization 

and boundary segmentation [14], [15], [16]. Among these, encoder–decoder architectures such as U-Net 

have become widely adopted due to their ability to preserve fine-grained spatial features while learning 

hierarchical contextual representations of medical images [17], [18]. However, segmentation alone 

cannot fully address the clinical requirement of differentiating among multiple tumor categories [19], 

[20]. Therefore, machine learning classifiers can be integrated to exploit the features extracted from 

deep learning models, enabling accurate multi-class categorization of tumor types such as glioma, 

meningioma, pituitary adenoma, and normal tissue. This synergistic paradigm not only mitigates the 

shortcomings of traditional manual assessment but also provides a robust and scalable framework that 

enhances diagnostic precision, reduces inter-observer variability, and holds significant potential for 

deployment in real-world healthcare environments [21], [22], [23].  

Study by [24] introduce BiTr-UNet, a CNN–Transformer hybrid for multi-modal MRI brain 

tumor segmentation on BraTS 2021. The network adopts a U-Net-style encoder–decoder but injects 

bidirectional Transformer blocks to capture long-range dependencies while preserving fine spatial detail 

via skip connections. This design improves Dice across whole tumor, tumor core, and enhancing tumor 

compared with pure CNN baselines, suggesting that global self-attention complements local 

convolutional features in heterogeneous glioma. The study’s contributions include a clean architectural 

recipe, extensive ablations, and competitive BraTS validation and test scores. However, the self-

attention modules introduce notable memory and compute overhead, constraining 3D patch sizes and 

batch settings, which can reduce practicality on standard clinical GPUs. In addition, training stability 

and hyperparameter sensitivity around attention depth and tokenization require careful tuning. Finally, 

while performance is strong on BraTS, cross-domain generalization to non-challenge clinical scans is 

not fully assessed, leaving external robustness an open question. 

Study by [25] propose A Lightweight U-Net for MRI brain tumor segmentation, integrating a 

spatial attention mechanism to emphasize tumor-relevant regions while keeping parameter counts low. 

The method targets precise boundary delineation with reduced inference time, reporting improved Dice 

and IoU versus conventional U-Net variants on publicly available MRI datasets. Key contributions 

include an efficiency-accuracy trade-off favorable for constrained hardware and an attention design that 

remains compatible with standard U-Net training pipelines. The study also details training choices and 

augmentation that stabilize small-lesion detection. Drawbacks include evaluation on limited datasets 

and scanners, which leaves questions about robustness to protocol variability, class imbalance across 

subregions, and post-contrast versus multi-modal inputs. Additionally, lightweight models can underfit 

complex textures in infiltrative gliomas, and the paper offers limited analysis of uncertainty calibration 

or failure cases. Future work should expand multi-center validation and compare against Transformer-

enhanced or diffusion-based segmenters. 

Study by [26] develops a VGG16-based deep learning classifier for four-class brain tumor 

recognition on MRI, covering glioma, meningioma, pituitary, and no-tumor. Leveraging transfer 

learning, fine-tuning, and data augmentation on a large, diverse dataset exceeding 17k images, the 

approach achieves high accuracy and competitive precision–recall, demonstrating that well-tuned 

classical CNN backbones remain strong baselines for multiclass diagnosis. Contributions include a 

transparent training pipeline, comparative analyses versus alternative architectures, and thorough 
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reporting of class-wise metrics. Nonetheless, the study is primarily 2D slice-based and does not 

explicitly model volumetric context or multi-modal fusion, which can limit sensitivity to subtle 

subregional patterns. The reliance on aggregated public datasets may introduce dataset bias or leakage 

if patient-level splits are not strictly enforced. Moreover, external validation on heterogeneous clinical 

cohorts is limited, leaving generalization and calibration under real-world conditions as important next 

steps. 

Study by [27] propose a hybrid MRI brain tumor classification pipeline that couples deep feature 

extraction with traditional machine-learning classifiers to enhance discriminative power and 

interpretability. Using T1-weighted contrast-enhanced MRI from over two hundred patients, the 

framework aggregates outputs from multiple CNNs and evaluates downstream classifiers such as SVM 

and tree-based models, showing improvements over single end-to-end softmax heads. The contribution 

lies in demonstrating that post-CNN ML heads can exploit representation complementarities and yield 

robust class separation in multiclass settings. The drawback is increased system complexity with multi-

stage training, potential feature–classifier mismatch across scanners, and limited exploration of 

calibration and shift robustness. While results are promising, the study would benefit from prospective 

external validation, harmonization strategies for scanner variability, and reporting of decision curves to 

connect accuracy gains with clinical utility. This hybrid perspective aligns well with pipelines that 

segment first and then classify using flexible ML heads. 

In contrast to prior studies that predominantly emphasize either pure deep learning pipelines or 

lightweight segmentation variants, the novelty of our research lies in proposing a hybrid deep–machine 

learning framework that integrates U-Net-based segmentation with downstream machine learning 

classifiers for multi-class brain tumor analysis in MRI. Unlike BiTr-UNet or attention-augmented U-

Net models that prioritize segmentation performance but remain computationally intensive or dataset-

specific, our approach first leverages U-Net to accurately localize and delineate tumor regions, thereby 

ensuring reliable region-of-interest extraction across heterogeneous tumor morphologies. These 

segmented regions are subsequently transformed into discriminative feature representations, which are 

then evaluated using multiple machine learning algorithms such as SVM, Random Forest, and XGBoost 

to identify the most robust classifier. This dual-stage paradigm highlights that traditional machine 

learning remains highly relevant when combined with deep learning-derived features, offering both 

interpretability and adaptability. Furthermore, our framework aims to bridge the gap between 

segmentation and classification in a single workflow, enabling not only tumor localization but also 

precise subtype categorization, thereby addressing clinical needs for both spatial and categorical 

diagnostic accuracy. 

2. METHOD 

This section explains the methodological framework employed in this study, which integrates 

machine learning-based classification and U-Net segmentation for brain tumor analysis. The workflow 

is structured to cover all essential steps, starting from data preparation to model training and testing, as 

well as tumor segmentation. 

2.1. Proposed Workflow 

Based on Figure 1, the proposed method is divided into three main stages, namely data preparation 

(blue), training phase (red), and testing phase (green). In the data preparation stage, raw MRI data 

undergo pre-processing such as normalization and resizing, followed by data augmentation to enrich 

variability and reduce overfitting. The dataset is then split into 80% training data and 20% testing data 

to ensure fair model evaluation. In the training phase, the 80% portion of data is used to train several 

machine learning classifiers, and the best trained model is selected based on accuracy, precision, recall, 
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and F1-score. In the testing phase, the remaining 20% of data is used to evaluate the model, while U-

Net segmentation is applied to identify and extract the tumor region from MRI images. The final output 

consists of a classified tumor type along with its segmented volume, which can be further utilized for 

medical diagnosis and treatment planning.  

 

 
Figure 1. Proposed workflow 

 

2.2. Data Collection and Preparation 

The dataset used in this study was obtained from a publicly available brain MRI dataset on Kaggle 

[28]. It consists of four classes: Glioma, Meningioma, Pituitary, and No Tumor. Each class was divided 

into training (80%) and testing (20%) sets to ensure a balanced evaluation. Specifically, the training 

distribution is as follows: 826 images of Glioma, 822 images of Meningioma, 827 images of Pituitary, 

and 395 images of No Tumor, with the remaining images of each class allocated for testing. Prior to 

model training, all images were pre-processed by resizing them into a uniform dimension of 224 × 224 

× 3, ensuring consistency across the dataset [29], [30]. The sample dataset can be seen in Figure 2. 

 

 
Figure 2. Sample dataset each class 

 

To enhance model generalization and reduce overfitting, several data augmentation techniques 

were applied, including rotation, flipping, zooming, shifting, and brightness adjustment [31], [32], [33]. 

The augmentation operations can be calculated using eq (1) – (5). 

 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑅𝜃(𝐼)      (1) 

Where 𝐼 is the image pixel value, 𝑅𝜃 is the rotation function with angle 𝜃 ∈ [−15 ∘ ,15 ∘]. This 

operation rotates the image by a random angle within the specified range. Rotation is particularly to 

 simulate variations in patient head orientation during MRI scanning. 

 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐹𝑙𝑖𝑝 (𝑥, 𝑦) = 𝐼(𝑊 − 𝑥, 𝑦)       (2) 
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Where 𝑊 is the image width. Flipping generates a mirror version of the image, which helps the 

model recognize tumor features regardless of left-right brain orientation. 

 

𝑍𝑜𝑜𝑚 = 𝑍𝛼(𝐼), 𝛼 ∈ [0.9,1.1]        (3) 

 

Zooming applies a random scaling to the image, either enlarging or shrinking it slightly. This 

simulates differences in tumor size and scanning distance. 

 

𝑊𝐻 𝑆ℎ𝑖𝑓𝑡 (𝑥, 𝑦) = 𝐼(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦), 𝛥𝑥, 𝛥𝑦 ∈ [−0.1𝑊, 0.1𝐻]    (4) 

 

Width and Height Shift (𝑊𝐻 𝑆ℎ𝑖𝑓𝑡) operation translates the image along the horizontal or vertical 

axis. It makes the model robust against small variations in patient positioning within the MRI frame. 

 

𝐵𝑟𝑖𝑡ℎ𝑛𝑒𝑠𝑠 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 =  (𝑥, 𝑦) = 𝛽 ⋅ 𝐼(𝑥, 𝑦), 𝛽 ∈ [0.8,1.2]    (5) 

 

Brightness is randomly increased or decreased to mimic differences in scanner intensity or 

contrast, improving the model’s ability to handle images from diverse MRI machines. By combining 

these augmentation strategies, the dataset variability is significantly enriched, thereby enabling the 

classifier and segmentation model to achieve better robustness and generalization when exposed to 

unseen data. 

2.3. Machine Learning Classifier 

In this stage, multiple machine learning classifiers were employed to automatically categorize 

brain MRI scans into four classes: Glioma, Meningioma, Pituitary, and No Tumor. The selected models 

include Logistic Regression (LR), Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), 

Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Each classifier 

was trained using the pre-processed and augmented dataset, with hyperparameters optimized to balance 

accuracy and generalization [34], [35]. The evaluation of these models was performed based on 

accuracy, precision, recall, F1-score, and AUC values to provide a comprehensive performance 

comparison. Among the tested approaches, XGBoost consistently outperformed the others, 

demonstrating its capability to capture complex non-linear patterns and feature interactions within the 

MRI data, making it the most effective classifier in this study. 

2.4. U-net Segmentation 

U-Net segmentation was employed to localize and extract the tumor region from MRI images, 

providing complementary spatial information to the classification stage [36]. The U-Net architecture 

follows an encoder–decoder design with skip connections, enabling the network to capture both high-

level contextual features and fine-grained spatial details [36], [37]. In the encoder path, convolution and 

pooling operations progressively reduce image dimensions while learning discriminative features, 

whereas the decoder path performs up-sampling to reconstruct the segmentation mask with precise 

tumor boundaries [37]. Skip connections ensure that spatial information lost during down-sampling is 

preserved, allowing accurate delineation of tumor structures. In this study, U-Net was trained on the 

augmented dataset to segment tumors from the input MRI slices, and its output was integrated with the 

classification results to provide both the tumor type and its segmented volume. This dual-stage 

framework enhances the interpretability of predictions and supports medical practitioners in diagnosis 

and treatment planning by combining class identification with visual tumor localization. 
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Based on Figure 3, the U-Net architecture is composed of two main symmetrical paths, namely 

the encoder (contracting path) and decoder (expanding path), connected by a bottleneck layer. In the 

encoder path, the input image of size 224×224 is first processed through convolutional layers with 32 

filters, followed by feature extraction at deeper levels with 64, 128, 256, and 512 filters. At each stage, 

the convolution is followed by a rectified linear unit (ReLU) activation and a max-pooling operation 

(red arrows), effectively halving the spatial resolution while doubling the number of feature channels. 

This hierarchical downsampling captures fine-grained details at shallow layers and high-level abstract 

features at deeper layers. The bottleneck layer employs 1024 filters at the smallest spatial resolution, 

acting as the feature representation core that integrates all learned patterns from the encoder. 

 

 
Figure 2. U-net layers 

 

In the decoder path, the architecture reverses the process using transposed convolutions (green 

arrows) for upsampling, progressively restoring the spatial resolution. At each upsampling stage, the 

corresponding feature maps from the encoder are concatenated through skip connections, ensuring that 

spatial context from shallow layers is preserved and combined with the semantic richness of deeper 

layers. Specifically, feature maps transition from 512 → 256 → 128 → 64 → 32 filters as the spatial 

resolution increases back to 256×256, leading to precise localization of tumor regions. The final 

convolutional layer outputs the segmented tumor mask, where pixel-level classification distinguishes 

tumor tissue from non-tumor tissue. 

3. RESULT 

All experiments were conducted on a high-performance computing environment to ensure the 

reproducibility and reliability of results. The primary implementation was executed using Python-based 

frameworks on Google Colab, enabling access to optimized deep learning libraries and GPU 

acceleration. Locally, the system was also benchmarked on a workstation equipped with an Intel Core 

Ultra 5 processor, an NVIDIA RTX 5070 Ti GPU, and 32 GB of RAM, providing sufficient 

computational power for training U-Net models on multi-modal MRI data and for running multiple 

machine learning classifiers in parallel. 

3.1. Experimental Results of Machine Learning Models 

In this subsection, the experimental results of the trained machine learning models are presented 

and analyzed based on their classification performance. The evaluation primarily relies on the Receiver 

Operating Characteristic (ROC) curve and the corresponding Area Under the Curve (AUC) scores, 

which provide insights into the trade-off between sensitivity and specificity. These results highlight the 

ability of each classifier to discriminate between tumor and non-tumor regions effectively. 
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To ensure fair comparison and optimal performance of each machine learning model, 

hyperparameter tuning was conducted using a grid search strategy combined with 80% of training data 

and 20% validation. Logistic Regression was optimized using the lbfgs solver with L2 regularization 

and a regularization strength parameter C=1, while SVC employed the RBF kernel with C=10 and 

automatic scaling of the gamma parameter to handle non-linear class boundaries. For K-Nearest 

Neighbors, the number of neighbors k was varied from 3 to 11, with the best performance achieved at 

k=7 using distance-based weighting metrics. Decision Tree and Random Forest models were fine-tuned 

by exploring different tree depths and splitting criteria, where Random Forest with 300 trees, sqrt feature 

selection, and no depth restriction yielded more stable generalization compared to a single Decision 

Tree. 

In contrast, XGBoost required more extensive tuning due to its large number of controllable 

hyperparameters. A grid search was performed over learning rates {0.01,0.05,0.1}, number of estimators 

{100,200,300}, and maximum tree depths {4,6,8}, combined with regularization parameters such as 

subsample = 0.8, colsample_bytree = 0.8, and reg_lambda = 1 to prevent overfitting. The final 

configuration used a learning rate of 0.1, 300 estimators, and a maximum depth of 6, which provided 

the best trade-off between bias and variance. Additionally, the multi:softprob objective was used to 

handle the four-class prediction task, and early stopping with 20 rounds on a 20% validation split was 

applied to stabilize training and avoid unnecessary iterations. 

Through this systematic hyperparameter optimization process, XGBoost consistently 

outperformed all other models across accuracy, precision, recall, and F1-score, confirming its superior 

ability to capture complex feature interactions in MRI data. Ensemble-based methods such as XGBoost 

and Random Forest demonstrated stronger robustness compared to single learners like Decision Tree or 

KNN, further supporting the effectiveness of advanced boosting techniques in medical image 

classification tasks. 

 

 

Figure 4. ROC curves and AUC comparison of the machine learning models 

 

As seen in Figure 4, the ROC curves demonstrate that the ensemble-based models achieve 

superior performance compared to single learners. In particular, XGBoost Classifier attains the highest 

AUC score of 0.86, closely followed by Random Forest and K-Nearest Neighbors, each with an AUC 

of 0.85. SVC and Logistic Regression also show competitive outcomes with AUC values of 0.84 and 

0.83, respectively, whereas the Decision Tree model lags behind with an AUC of 0.78. As the ROC 

curves provide an overview of the discriminative ability of each model, it is also essential to examine 

their performance across multiple evaluation metrics to obtain a more comprehensive assessment. 
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Therefore, Figure 5 presents a comparative analysis of accuracy, precision, recall, and F1-score for all 

classifiers, offering deeper insights into their strengths and weaknesses beyond AUC values. 

 

 
Figure 5. Comparative evaluation of confusion matrix assessment 

 

Based on Figure 5, it can be observed that XGBoost and Random Forest consistently achieve the 

highest values across accuracy, precision, recall, and F1-score, with XGBoost slightly outperforming 

others in terms of balanced performance. The strong generalization capability of these ensemble-based 

models allows them to effectively capture complex decision boundaries while minimizing overfitting. 

In contrast, single learners such as Decision Tree exhibit lower consistency across metrics, which 

confirms their limited robustness when compared to ensemble methods. 

To further validate these findings, Figure 6 illustrates the confusion matrices of all classifiers, 

highlighting how each model performs in terms of true and false classifications. The results confirm that 

XGBoost yields the most balanced classification outcomes, correctly identifying the majority of positive 

and negative samples with minimal misclassification, thereby justifying its position as the best-

performing model in this study. 

 

 

 
Figure 6. Model prediction based on table of confusion matrix 
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3.2. Experimental Result of U-net Segmnetation 

To further evaluate the system’s ability in tumor localization, this subsection presents the 

experimental results of the U-Net segmentation model applied to brain MRI images. Unlike the previous 

subsection that focused on classification performance, this experiment emphasizes pixel-wise 

segmentation to accurately delineate tumor regions. The U-Net model is specifically designed for 

biomedical image segmentation, where its encoder–decoder structure enables precise boundary 

detection even with limited training samples. As seen in Figure 7, the segmentation results are 

demonstrated for four representative cases corresponding to each category: No Tumor, Glioma, 

Pituitary, and Meningioma. The first column depicts the input testing images, the second column 

presents the ground-truth tumor masks, and the third column shows the tumor regions predicted by U-

Net. 

The figure highlights that the U-Net successfully differentiates between tumor and non-tumor 

regions with high fidelity. For the “No Tumor” case, the model correctly outputs an empty mask, while 

for tumor cases (Glioma, Pituitary, and Meningioma), the predicted masks closely align with the ground-

truth annotations in terms of shape and position. These results confirm the robustness of U-Net in 

segmenting heterogeneous tumor structures across different types, making it a reliable tool for 

automated tumor delineation. 

 

 
Predicted “No Tumor” 

  

 
Predicted “Glioma” 

  

 
Predicted “Pituitary” 

  

 
Predicted “Meningioma” 

  

(a) Input Testing (b) Mask Groundtruth (c) Predicted Tumor 

Figure 7. Experiment results of U-net segmentation 
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4. DISCUSSIONS 

Several recent studies have explored brain tumor classification and segmentation using deep 

learning approaches. Study [24] introduced BiTr-UNet, a CNN–Transformer hybrid that enhances 

multi-modal segmentation on BraTS 2021. While this design successfully integrates long-range 

dependency modeling through Transformer blocks, its computational overhead and limited assessment 

on external datasets raise concerns for practical deployment. Similarly, [25] proposed a lightweight U-

Net with spatial attention, showing efficiency and improved Dice scores but being constrained by 

evaluation on limited datasets and potential underfitting in complex tumor textures. Both [24] and [25] 

focused solely on segmentation tasks. 

 

Table 1. Comparison of related studies with our proposed method 

Study Focus Methodology Strengths 
Limitations 

and Drawback 

Distinction from Our 

Work 

[24] Segmentation 

CNN–

Transformer 

hybrid 

Strong Dice, 

captures 

global & 

local features 

High memory 

cost, limited 

clinical 

validation 

Our work is lighter, 

more practical, and 

adds classification 

beyond segmentation 

[25] Segmentation 

U-Net with 

spatial 

attention 

Efficient, 

precise 

boundary 

detection 

Evaluated on 

limited 

datasets, risk 

of underfitting 

Our framework 

balances 

segmentation with 

classification, 

offering wider 

applicability 

[26] Classification 

Transfer 

learning with 

CNN 

backbone 

High 

accuracy, 

robust on 2D 

MRI slices 

Ignores 

volumetric 

context, lacks 

segmentation 

Our study extends 

beyond slice-based 

classification by also 

providing tumor 

localization 

[27] Classification 

CNN feature 

extraction + 

ML 

classifiers 

Robust class 

separation, 

interpretable 

Multi-stage 

complexity, 

limited 

generalization 

Our approach is end-

to-end with 

integrated 

segmentation and 

classification 

Our 
Classification + 

Segmentation 

ML-based 

classifier + 

U-Net 

Joint tumor 

type 

recognition 

& 

localization, 

clinically 

oriented, 

efficient 

Focused on 

single-

modality MRI 

(extension to 

multi-modal 

future work) 

- 

 

On the classification side, [26] applied a VGG16-based transfer learning model on a large dataset 

for four-class tumor recognition, reporting strong accuracy but relying only on 2D slices without 

volumetric or multi-modal information. Meanwhile, [27] explored hybrid pipelines that combine CNN 

feature extraction with traditional machine learning classifiers, which improved discriminative power 

but at the cost of system complexity and limited validation across diverse clinical cohorts. Compared 

with these works, our study contributes a dual-stage framework that integrates both tumor classification 

and U-Net segmentation in a unified pipeline. This approach not only classifies tumors into four 

categories (Glioma, Meningioma, Pituitary, and No Tumor) with high accuracy but also performs 
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precise segmentation to localize tumor regions. Unlike [24] and [25], our method explicitly demonstrates 

generalization across both recognition and localization tasks. Furthermore, in contrast to [26] and [27], 

which focus only on classification, our study provides a holistic pipeline combining diagnostic 

classification and region delineation, thereby bridging the gap between automated diagnosis and clinical 

decision support. 

In summary, while prior studies either concentrated on segmentation with complex architectures 

[24] and [25] or pursued classification with limited integration of localization [26] and [27], our study 

introduces a comprehensive framework that simultaneously addresses both classification and 

segmentation of brain tumors. By combining a CNN-based classifier with U-Net segmentation, we 

provide a clinically relevant pipeline that not only identifies tumor types but also localizes the affected 

regions. This dual capability distinguishes our work from existing approaches, offering a more practical 

tool for supporting radiologists in diagnostic workflows. Furthermore, the balance between accuracy, 

computational efficiency, and task integration highlights the novelty and applicability of our framework 

for real-world medical imaging scenarios. 

5. CONCLUSION 

This study aimed to develop an effective and reliable framework for brain tumor analysis by 

combining machine learning–based classification and U-Net segmentation, enabling both tumor type 

recognition and spatial localization. The experimental findings in the Results and Discussion confirmed 

these expectations, where XGBoost achieved the best classification accuracy of 86% and U-Net 

demonstrated consistent segmentation performance across glioma, meningioma, pituitary, and no-tumor 

cases. This dual approach represents the novelty of the proposed framework, outperforming several 

conventional single-task methods and offering a more comprehensive solution for clinical decision 

support. For future research, the framework can be extended by integrating multi-modal MRI inputs, 

enhancing 3D volumetric segmentation, and performing large-scale validation on diverse clinical 

cohorts. Moreover, application prospects include embedding the method into computer-aided diagnosis 

systems, assisting radiologists in early detection and personalized treatment planning, while future 

studies should also address robustness, generalization, and deployment in real-world healthcare 

environments. 
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