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Abstract

Brain tumor diagnosis remains a critical challenge in medical imaging, as accurate classification and precise
localization are essential for effective treatment planning. Traditional diagnostic approaches often rely on manual
interpretation of MRI scans, which can be time-consuming, subjective, and prone to variability across radiologists.
To address this limitation, this study proposes a two-stage framework that integrates machine learning (ML) based
classifiers for tumor type recognition and a U-Net architecture for tumor segmentation. The classifier was trained to
distinguish four tumor categories: glioma, meningioma, pituitary, and no tumor, while the U-Net model was
employed to delineate tumor regions at the pixel level, enabling volumetric assessment. The novelty of this research
lies in its dual focus that combines classification and segmentation within a single framework, which enhances
clinical applicability by offering both diagnostic and spatial insights. Experimental results demonstrated that among
the evaluated classifiers, XGBoost achieved the highest accuracy of 86 percent, surpassing other models such as
Random Forest, SVC, and Logistic Regression, while the U-Net model delivered consistent segmentation
performance across tumor types. These findings highlight the potential of hybrid ML and deep learning solutions to
improve reliability, efficiency, and objectivity in brain tumor analysis. In real-world practice, the proposed
framework can serve as a valuable decision-support tool, assisting radiologists in early detection, reducing diagnostic
workload, and supporting personalized treatment strategies.

Keywords : Brain Tumor Classification, Computer Vision, Machine Learning, Medical Image Processing, U-Net
Segmentation.
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1. INTRODUCTION

Brain tumors represent a major clinical challenge as they are among the most aggressive
neurological disorders, contributing significantly to global morbidity and mortality [1], [2], [3].
Accurate diagnosis and characterization are essential for determining effective treatment strategies, yet
conventional radiological evaluation based on manual inspection of magnetic resonance imaging (MRI)
scans remains limited by subjectivity, time constraints, and substantial inter-observer variability [4], [5],
[6]. The intrinsic heterogeneity of brain tumors, reflected in irregularities of size, shape, intensity
distribution, and textural patterns across different MRI modalities such as T1, T2, and FLAIR, makes
precise delineation and classification particularly difficult [7], [8]. Furthermore, many existing
computer-aided diagnosis approaches address either segmentation or classification in isolation, which
often leads to incomplete representation of the tumor and reduced generalization when applied in real
clinical environments [9], [10]. These limitations underline a critical gap in current diagnostic
methodologies and emphasize the need for more integrated and automated solutions capable of reliably
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segmenting tumor regions while simultaneously classifying multiple tumor types with high accuracy
and robustness.

To overcome these limitations, recent advances in artificial intelligence have introduced powerful
computational approaches that combine the representational capacity of deep learning with the
discriminative power of machine learning algorithms [11], [12], [13]. Deep learning models, particularly
convolutional neural networks and their derivatives, have demonstrated remarkable success in capturing
spatial and structural information from MRI scans, making them highly effective for tumor localization
and boundary segmentation [14], [15], [16]. Among these, encoder—decoder architectures such as U-Net
have become widely adopted due to their ability to preserve fine-grained spatial features while learning
hierarchical contextual representations of medical images [17], [18]. However, segmentation alone
cannot fully address the clinical requirement of differentiating among multiple tumor categories [19],
[20]. Therefore, machine learning classifiers can be integrated to exploit the features extracted from
deep learning models, enabling accurate multi-class categorization of tumor types such as glioma,
meningioma, pituitary adenoma, and normal tissue. This synergistic paradigm not only mitigates the
shortcomings of traditional manual assessment but also provides a robust and scalable framework that
enhances diagnostic precision, reduces inter-observer variability, and holds significant potential for
deployment in real-world healthcare environments [21], [22], [23].

Study by [24] introduce BiTr-UNet, a CNN-Transformer hybrid for multi-modal MRI brain
tumor segmentation on BraTS 2021. The network adopts a U-Net-style encoder—decoder but injects
bidirectional Transformer blocks to capture long-range dependencies while preserving fine spatial detail
via skip connections. This design improves Dice across whole tumor, tumor core, and enhancing tumor
compared with pure CNN baselines, suggesting that global self-attention complements local
convolutional features in heterogeneous glioma. The study’s contributions include a clean architectural
recipe, extensive ablations, and competitive BraTS validation and test scores. However, the self-
attention modules introduce notable memory and compute overhead, constraining 3D patch sizes and
batch settings, which can reduce practicality on standard clinical GPUs. In addition, training stability
and hyperparameter sensitivity around attention depth and tokenization require careful tuning. Finally,
while performance is strong on BraTS, cross-domain generalization to non-challenge clinical scans is
not fully assessed, leaving external robustness an open question.

Study by [25] propose A Lightweight U-Net for MRI brain tumor segmentation, integrating a
spatial attention mechanism to emphasize tumor-relevant regions while keeping parameter counts low.
The method targets precise boundary delineation with reduced inference time, reporting improved Dice
and IoU versus conventional U-Net variants on publicly available MRI datasets. Key contributions
include an efficiency-accuracy trade-off favorable for constrained hardware and an attention design that
remains compatible with standard U-Net training pipelines. The study also details training choices and
augmentation that stabilize small-lesion detection. Drawbacks include evaluation on limited datasets
and scanners, which leaves questions about robustness to protocol variability, class imbalance across
subregions, and post-contrast versus multi-modal inputs. Additionally, lightweight models can underfit
complex textures in infiltrative gliomas, and the paper offers limited analysis of uncertainty calibration
or failure cases. Future work should expand multi-center validation and compare against Transformer-
enhanced or diffusion-based segmenters.

Study by [26] develops a VGG16-based deep learning classifier for four-class brain tumor
recognition on MRI, covering glioma, meningioma, pituitary, and no-tumor. Leveraging transfer
learning, fine-tuning, and data augmentation on a large, diverse dataset exceeding 17k images, the
approach achieves high accuracy and competitive precision—recall, demonstrating that well-tuned
classical CNN backbones remain strong baselines for multiclass diagnosis. Contributions include a
transparent training pipeline, comparative analyses versus alternative architectures, and thorough
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reporting of class-wise metrics. Nonetheless, the study is primarily 2D slice-based and does not
explicitly model volumetric context or multi-modal fusion, which can limit sensitivity to subtle
subregional patterns. The reliance on aggregated public datasets may introduce dataset bias or leakage
if patient-level splits are not strictly enforced. Moreover, external validation on heterogeneous clinical
cohorts is limited, leaving generalization and calibration under real-world conditions as important next
steps.

Study by [27] propose a hybrid MRI brain tumor classification pipeline that couples deep feature
extraction with traditional machine-learning classifiers to enhance discriminative power and
interpretability. Using T1-weighted contrast-enhanced MRI from over two hundred patients, the
framework aggregates outputs from multiple CNNs and evaluates downstream classifiers such as SVM
and tree-based models, showing improvements over single end-to-end softmax heads. The contribution
lies in demonstrating that post-CNN ML heads can exploit representation complementarities and yield
robust class separation in multiclass settings. The drawback is increased system complexity with multi-
stage training, potential feature—classifier mismatch across scanners, and limited exploration of
calibration and shift robustness. While results are promising, the study would benefit from prospective
external validation, harmonization strategies for scanner variability, and reporting of decision curves to
connect accuracy gains with clinical utility. This hybrid perspective aligns well with pipelines that
segment first and then classify using flexible ML heads.

In contrast to prior studies that predominantly emphasize either pure deep learning pipelines or
lightweight segmentation variants, the novelty of our research lies in proposing a hybrid deep—machine
learning framework that integrates U-Net-based segmentation with downstream machine learning
classifiers for multi-class brain tumor analysis in MRI. Unlike BiTr-UNet or attention-augmented U-
Net models that prioritize segmentation performance but remain computationally intensive or dataset-
specific, our approach first leverages U-Net to accurately localize and delineate tumor regions, thereby
ensuring reliable region-of-interest extraction across heterogeneous tumor morphologies. These
segmented regions are subsequently transformed into discriminative feature representations, which are
then evaluated using multiple machine learning algorithms such as SVM, Random Forest, and XGBoost
to identify the most robust classifier. This dual-stage paradigm highlights that traditional machine
learning remains highly relevant when combined with deep learning-derived features, offering both
interpretability and adaptability. Furthermore, our framework aims to bridge the gap between
segmentation and classification in a single workflow, enabling not only tumor localization but also
precise subtype categorization, thereby addressing clinical needs for both spatial and categorical
diagnostic accuracy.

2. METHOD

This section explains the methodological framework employed in this study, which integrates
machine learning-based classification and U-Net segmentation for brain tumor analysis. The workflow
is structured to cover all essential steps, starting from data preparation to model training and testing, as
well as tumor segmentation.

2.1. Proposed Workflow

Based on Figure 1, the proposed method is divided into three main stages, namely data preparation
(blue), training phase (red), and testing phase (green). In the data preparation stage, raw MRI data
undergo pre-processing such as normalization and resizing, followed by data augmentation to enrich
variability and reduce overfitting. The dataset is then split into 80% training data and 20% testing data
to ensure fair model evaluation. In the training phase, the 80% portion of data is used to train several
machine learning classifiers, and the best trained model is selected based on accuracy, precision, recall,
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and F1-score. In the testing phase, the remaining 20% of data is used to evaluate the model, while U-
Net segmentation is applied to identify and extract the tumor region from MRI images. The final output
consists of a classified tumor type along with its segmented volume, which can be further utilized for
medical diagnosis and treatment planning.

Data
Presprocessing Augmentation "

¥

Spliting Data

J

80% Training Machllne . Accuracy, Precision,
Learning Trained Best
Data » Recall, and F1-Score
Classifier Model
) Classified and
20% Testing U-net
. Segmented —— End
Data Segmentation
Tumor

Figure 1. Proposed workflow

2.2. Data Collection and Preparation

The dataset used in this study was obtained from a publicly available brain MRI dataset on Kaggle
[28]. It consists of four classes: Glioma, Meningioma, Pituitary, and No Tumor. Each class was divided
into training (80%) and testing (20%) sets to ensure a balanced evaluation. Specifically, the training
distribution is as follows: 826 images of Glioma, 822 images of Meningioma, 827 images of Pituitary,
and 395 images of No Tumor, with the remaining images of each class allocated for testing. Prior to
model training, all images were pre-processed by resizing them into a uniform dimension of 224 x 224
x 3, ensuring consistency across the dataset [29], [30]. The sample dataset can be seen in Figure 2.

glioma_tumor meningioma_tumor prituitary_tumor

Figure 2. Sample dataset each class

To enhance model generalization and reduce overfitting, several data augmentation techniques
were applied, including rotation, flipping, zooming, shifting, and brightness adjustment [31], [32], [33].
The augmentation operations can be calculated using eq (1) — (5).

Rotation = RO(I) (1)

Where I is the image pixel value, R0 is the rotation function with angle 8 € [—15 o,15 o]. This
operation rotates the image by a random angle within the specified range. Rotation is particularly to
simulate variations in patient head orientation during MRI scanning.

Horizontal Flip (x,y) = I(W —x,y) 2)
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Where W is the image width. Flipping generates a mirror version of the image, which helps the
model recognize tumor features regardless of left-right brain orientation.

Zoom = Za(l),a € [0.9,1.1] 3)

Zooming applies a random scaling to the image, either enlarging or shrinking it slightly. This
simulates differences in tumor size and scanning distance.

WH Shift (x,y) = I(x + Ax,y + Ay), Ax, Ay € [-0.1W,0.1H] @)

Width and Height Shift (WH Shift) operation translates the image along the horizontal or vertical
axis. It makes the model robust against small variations in patient positioning within the MRI frame.

Brithness Adjustment = (x,y) = -1(x,y), € [0.8,1.2] (5)

Brightness is randomly increased or decreased to mimic differences in scanner intensity or
contrast, improving the model’s ability to handle images from diverse MRI machines. By combining
these augmentation strategies, the dataset variability is significantly enriched, thereby enabling the
classifier and segmentation model to achieve better robustness and generalization when exposed to
unseen data.

2.3. Machine Learning Classifier

In this stage, multiple machine learning classifiers were employed to automatically categorize
brain MRI scans into four classes: Glioma, Meningioma, Pituitary, and No Tumor. The selected models
include Logistic Regression (LR), Support Vector Classifier (SVC), K-Nearest Neighbors (KNN),
Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). Each classifier
was trained using the pre-processed and augmented dataset, with hyperparameters optimized to balance
accuracy and generalization [34], [35]. The evaluation of these models was performed based on
accuracy, precision, recall, Fl-score, and AUC values to provide a comprehensive performance
comparison. Among the tested approaches, XGBoost consistently outperformed the others,
demonstrating its capability to capture complex non-linear patterns and feature interactions within the
MRI data, making it the most effective classifier in this study.

2.4. U-net Segmentation

U-Net segmentation was employed to localize and extract the tumor region from MRI images,
providing complementary spatial information to the classification stage [36]. The U-Net architecture
follows an encoder—decoder design with skip connections, enabling the network to capture both high-
level contextual features and fine-grained spatial details [36], [37]. In the encoder path, convolution and
pooling operations progressively reduce image dimensions while learning discriminative features,
whereas the decoder path performs up-sampling to reconstruct the segmentation mask with precise
tumor boundaries [37]. Skip connections ensure that spatial information lost during down-sampling is
preserved, allowing accurate delineation of tumor structures. In this study, U-Net was trained on the
augmented dataset to segment tumors from the input MRI slices, and its output was integrated with the
classification results to provide both the tumor type and its segmented volume. This dual-stage
framework enhances the interpretability of predictions and supports medical practitioners in diagnosis
and treatment planning by combining class identification with visual tumor localization.
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Based on Figure 3, the U-Net architecture is composed of two main symmetrical paths, namely
the encoder (contracting path) and decoder (expanding path), connected by a bottleneck layer. In the
encoder path, the input image of size 224x224 is first processed through convolutional layers with 32
filters, followed by feature extraction at deeper levels with 64, 128, 256, and 512 filters. At each stage,
the convolution is followed by a rectified linear unit (ReLU) activation and a max-pooling operation
(red arrows), effectively halving the spatial resolution while doubling the number of feature channels.
This hierarchical downsampling captures fine-grained details at shallow layers and high-level abstract
features at deeper layers. The bottleneck layer employs 1024 filters at the smallest spatial resolution,
acting as the feature representation core that integrates all learned patterns from the encoder.
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Figure 2. U-net layers

In the decoder path, the architecture reverses the process using transposed convolutions (green
arrows) for upsampling, progressively restoring the spatial resolution. At each upsampling stage, the
corresponding feature maps from the encoder are concatenated through skip connections, ensuring that
spatial context from shallow layers is preserved and combined with the semantic richness of deeper
layers. Specifically, feature maps transition from 512 — 256 — 128 — 64 — 32 filters as the spatial
resolution increases back to 256x256, leading to precise localization of tumor regions. The final
convolutional layer outputs the segmented tumor mask, where pixel-level classification distinguishes
tumor tissue from non-tumor tissue.

3.  RESULT

All experiments were conducted on a high-performance computing environment to ensure the
reproducibility and reliability of results. The primary implementation was executed using Python-based
frameworks on Google Colab, enabling access to optimized deep learning libraries and GPU
acceleration. Locally, the system was also benchmarked on a workstation equipped with an Intel Core
Ultra 5 processor, an NVIDIA RTX 5070 Ti GPU, and 32 GB of RAM, providing sufficient
computational power for training U-Net models on multi-modal MRI data and for running multiple
machine learning classifiers in parallel.

3.1. Experimental Results of Machine Learning Models

In this subsection, the experimental results of the trained machine learning models are presented
and analyzed based on their classification performance. The evaluation primarily relies on the Receiver
Operating Characteristic (ROC) curve and the corresponding Area Under the Curve (AUC) scores,
which provide insights into the trade-off between sensitivity and specificity. These results highlight the
ability of each classifier to discriminate between tumor and non-tumor regions effectively.
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To ensure fair comparison and optimal performance of each machine learning model,
hyperparameter tuning was conducted using a grid search strategy combined with 80% of training data
and 20% validation. Logistic Regression was optimized using the 1bfgs solver with L2 regularization
and a regularization strength parameter C=1, while SVC employed the RBF kernel with C=10 and
automatic scaling of the gamma parameter to handle non-linear class boundaries. For K-Nearest
Neighbors, the number of neighbors k was varied from 3 to 11, with the best performance achieved at
k=7 using distance-based weighting metrics. Decision Tree and Random Forest models were fine-tuned
by exploring different tree depths and splitting criteria, where Random Forest with 300 trees, sqrt feature
selection, and no depth restriction yielded more stable generalization compared to a single Decision
Tree.

In contrast, XGBoost required more extensive tuning due to its large number of controllable
hyperparameters. A grid search was performed over learning rates {0.01,0.05,0.1}, number of estimators
{100,200,300}, and maximum tree depths {4,6,8}, combined with regularization parameters such as
subsample = 0.8, colsample bytree = 0.8, and reg lambda = 1 to prevent overfitting. The final
configuration used a learning rate of 0.1, 300 estimators, and a maximum depth of 6, which provided
the best trade-off between bias and variance. Additionally, the multi:softprob objective was used to
handle the four-class prediction task, and early stopping with 20 rounds on a 20% validation split was
applied to stabilize training and avoid unnecessary iterations.

Through this systematic hyperparameter optimization process, XGBoost consistently
outperformed all other models across accuracy, precision, recall, and F1-score, confirming its superior
ability to capture complex feature interactions in MRI data. Ensemble-based methods such as XGBoost
and Random Forest demonstrated stronger robustness compared to single learners like Decision Tree or
KNN, further supporting the effectiveness of advanced boosting techniques in medical image
classification tasks.

True Positive Rate

—— DecisionTreeClassifier (area=0.78)
RandomForestClassifier (area=0.85)
—— XGBClassifier (area=0.86)
e —— SVC (area=0.84)
el —— KNeighborsClassifier (area=0.85)
. —— LogisticRegression (area=0.83)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4. ROC curves and AUC comparison of the machine learning models

As seen in Figure 4, the ROC curves demonstrate that the ensemble-based models achieve
superior performance compared to single learners. In particular, XGBoost Classifier attains the highest
AUC score of 0.86, closely followed by Random Forest and K-Nearest Neighbors, each with an AUC
of 0.85. SVC and Logistic Regression also show competitive outcomes with AUC values of 0.84 and
0.83, respectively, whereas the Decision Tree model lags behind with an AUC of 0.78. As the ROC
curves provide an overview of the discriminative ability of each model, it is also essential to examine
their performance across multiple evaluation metrics to obtain a more comprehensive assessment.
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Therefore, Figure 5 presents a comparative analysis of accuracy, precision, recall, and F1-score for all

classifiers, offering deeper insights into their strengths and weaknesses beyond AUC values.
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Figure 5. Comparative evaluation of confusion matrix assessment

Based on Figure 5, it can be observed that XGBoost and Random Forest consistently achieve the
highest values across accuracy, precision, recall, and F1-score, with XGBoost slightly outperforming
others in terms of balanced performance. The strong generalization capability of these ensemble-based
models allows them to effectively capture complex decision boundaries while minimizing overfitting.
In contrast, single learners such as Decision Tree exhibit lower consistency across metrics, which
confirms their limited robustness when compared to ensemble methods.

To further validate these findings, Figure 6 illustrates the confusion matrices of all classifiers,
highlighting how each model performs in terms of true and false classifications. The results confirm that
XGBoost yields the most balanced classification outcomes, correctly identifying the majority of positive
and negative samples with minimal misclassification, thereby justifying its position as the best-
performing model in this study.
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3.2. Experimental Result of U-net Segmnetation

To further evaluate the system’s ability in tumor localization, this subsection presents the
experimental results of the U-Net segmentation model applied to brain MRI images. Unlike the previous
subsection that focused on classification performance, this experiment emphasizes pixel-wise
segmentation to accurately delineate tumor regions. The U-Net model is specifically designed for
biomedical image segmentation, where its encoder—decoder structure enables precise boundary
detection even with limited training samples. As seen in Figure 7, the segmentation results are
demonstrated for four representative cases corresponding to each category: No Tumor, Glioma,
Pituitary, and Meningioma. The first column depicts the input testing images, the second column
presents the ground-truth tumor masks, and the third column shows the tumor regions predicted by U-
Net.

The figure highlights that the U-Net successfully differentiates between tumor and non-tumor
regions with high fidelity. For the “No Tumor” case, the model correctly outputs an empty mask, while
for tumor cases (Glioma, Pituitary, and Meningioma), the predicted masks closely align with the ground-
truth annotations in terms of shape and position. These results confirm the robustness of U-Net in
segmenting heterogeneous tumor structures across different types, making it a reliable tool for
automated tumor delineation.

Predicted “No Tumor”

Predicted “Pituitary”

Predicted “Meningioma”
(a) Input Testing (b) Mask Groundtruth (¢) Predicted Tumor
Figure 7. Experiment results of U-net segmentation

3852


https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF)
P-ISSN: 2723-3863
E-ISSN: 2723-3871

Vol. 6, No. 5, October 2025, Page. 3844-3856
https://jutif.if unsoed.ac.id
DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5369

4. DISCUSSIONS

Several recent studies have explored brain tumor classification and segmentation using deep
learning approaches. Study [24] introduced BiTr-UNet, a CNN-Transformer hybrid that enhances
multi-modal segmentation on BraTS 2021. While this design successfully integrates long-range
dependency modeling through Transformer blocks, its computational overhead and limited assessment
on external datasets raise concerns for practical deployment. Similarly, [25] proposed a lightweight U-
Net with spatial attention, showing efficiency and improved Dice scores but being constrained by
evaluation on limited datasets and potential underfitting in complex tumor textures. Both [24] and [25]

focused solely on segmentation tasks.

Table 1. Comparison of related studies with our proposed method

Limitations Distinction from Our
Study Focus Methodology Strengths and Drawback Work
CNN- Strong Dice, High memory Our work is lighter,
. captures cost, limited more practical, and
[24] Segmentation Transformer . . .
hvbrid global & clinical adds classification
y local features validation beyond segmentation
Our framework
. Efficient, Evaluated on balances
. U-Net .WIth precise limited segmentation  with
[25] Segmentation spatial . . .
attention boundary datasets, risk classification,
detection of underfitting  offering wider
applicability
Transfer High Ignores l())ellroncsltud}sllicz)-{ttzrslgcsi
[26] Classification learning with accuracy, volumetric cla};siﬁcation by also
CNN robust on 2D context, lacks rovidin )t/umor
backbone = MRI slices segmentation provicing
localization
CNN feature Robust class Multi-stage gl_lénzzipproach 18 eni(ti};
. . extraction + ust complexity, . W
[27] Classification separation, . integrated
ML . limited .
. interpretable o segmentation and
classifiers generalization . .
classification
Joint tumor
type Focused on
Classification + ML-based P Isrllr(l)%llael-ity MRI
Our . classifier + .. : -
Segmentation U-Net localization,  (extension to
clinically multi-modal
oriented, future work)
efficient

On the classification side, [26] applied a VGG16-based transfer learning model on a large dataset
for four-class tumor recognition, reporting strong accuracy but relying only on 2D slices without
volumetric or multi-modal information. Meanwhile, [27] explored hybrid pipelines that combine CNN
feature extraction with traditional machine learning classifiers, which improved discriminative power
but at the cost of system complexity and limited validation across diverse clinical cohorts. Compared
with these works, our study contributes a dual-stage framework that integrates both tumor classification
and U-Net segmentation in a unified pipeline. This approach not only classifies tumors into four
categories (Glioma, Meningioma, Pituitary, and No Tumor) with high accuracy but also performs
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precise segmentation to localize tumor regions. Unlike [24] and [25], our method explicitly demonstrates
generalization across both recognition and localization tasks. Furthermore, in contrast to [26] and [27],
which focus only on classification, our study provides a holistic pipeline combining diagnostic
classification and region delineation, thereby bridging the gap between automated diagnosis and clinical
decision support.

In summary, while prior studies either concentrated on segmentation with complex architectures
[24] and [25] or pursued classification with limited integration of localization [26] and [27], our study
introduces a comprehensive framework that simultaneously addresses both classification and
segmentation of brain tumors. By combining a CNN-based classifier with U-Net segmentation, we
provide a clinically relevant pipeline that not only identifies tumor types but also localizes the affected
regions. This dual capability distinguishes our work from existing approaches, offering a more practical
tool for supporting radiologists in diagnostic workflows. Furthermore, the balance between accuracy,
computational efficiency, and task integration highlights the novelty and applicability of our framework
for real-world medical imaging scenarios.

5. CONCLUSION

This study aimed to develop an effective and reliable framework for brain tumor analysis by
combining machine learning—based classification and U-Net segmentation, enabling both tumor type
recognition and spatial localization. The experimental findings in the Results and Discussion confirmed
these expectations, where XGBoost achieved the best classification accuracy of 86% and U-Net
demonstrated consistent segmentation performance across glioma, meningioma, pituitary, and no-tumor
cases. This dual approach represents the novelty of the proposed framework, outperforming several
conventional single-task methods and offering a more comprehensive solution for clinical decision
support. For future research, the framework can be extended by integrating multi-modal MRI inputs,
enhancing 3D volumetric segmentation, and performing large-scale validation on diverse clinical
cohorts. Moreover, application prospects include embedding the method into computer-aided diagnosis
systems, assisting radiologists in early detection and personalized treatment planning, while future
studies should also address robustness, generalization, and deployment in real-world healthcare
environments.
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