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Abstract 

Malnutrition in toddlers, notably underweight, remains a critical public health issue in Indonesia. According to the 

2023 Indonesian Health Survey, the prevalence of underweight among toddlers has reached 15.9%. This condition 

has a significant impact on children's physical growth, cognitive development, and overall quality of life. This study 

aims to develop a predictive model for early detection of toddler nutritional status using three supervised machine 

learning algorithms: Decision Tree C4.5, K-Nearest Neighbor, and Naïve Bayes. The dataset consisted of 9,284 

toddler records from Gorontalo Province, comprising eight attributes and one class label indicating nutritional status. 

Evaluation results showed that the Decision Tree C4.5 algorithm delivered the best performance with 98.56% 

accuracy. The K-Nearest Neighbor model achieved an accuracy of 97.99%, while the Naïve Bayes model obtained 

96.96%. These findings demonstrate that machine learning can be an effective tool for identifying toddlers at risk of 

undernutrition early in their development. Beyond individual predictions, the proposed model represents a significant 

advancement in health informatics by providing a scalable decision-support system. This system can enhance the 

efficiency and precision of public health interventions, enabling faster, data-driven responses to combat malnutrition 

and improve child health outcomes across broader populations. 
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1. INTRODUCTION 

Malnutrition among toddlers in Indonesia remains a pressing public health concern, significantly 

manifested through acute and chronic forms, such as stunting, wasting, and underweight. As reported in 

the 2023 Indonesia Health Survey, the national prevalence of underweight in this demographic is 15.9% 

[1]. This situation is echoed in studies from various regions that highlight the high incidence of both 

acute and chronic malnutrition, emphasizing its detrimental impact on children's health outcomes. 

Underweight is a critical health condition that signifies a body weight below the expected range for an 

individual's height and age. This condition can arise from various factors, including inadequate 

nutritional intake, underlying medical issues, and diverse physiological or environmental elements. In 

the context of young children, underweight is a significant concern as it is often associated with acute 

malnutrition, particularly in the early stages of life when nutritional needs are paramount for growth and 

development [2]. Individuals with excessively low body weight face a multitude of health complications 

that encompass both physical and psychological dimensions. 

The condition is typically categorized as underweight, defined by a body mass index (BMI) that 

falls below the accepted threshold for age and height [3]. Physical health implications include a 

significant increase in susceptibility to infectious diseases, as underweight individuals often demonstrate 

compromised immune responses. Chronic underweight conditions can lead to profound malnutrition, 
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which is associated with significant morbidity. For instance, in pediatric populations, underweight status 

is linked with a greater risk of stunting and wasting [4]. Children who are underweight not only 

experience impaired growth but are also more likely to suffer from gastrointestinal disturbances and 

respiratory issues due to insufficient caloric and nutrient intakes [5]. Furthermore, studies indicate that 

hospitalization of malnourished children can result in prolonged stays, increased hospital costs, and 

elevated morbidity and mortality risks exacerbated by both acute and chronic malnutrition [6]. 

The occurrence of underweight, particularly in children and young adults, can be influenced by a 

range of etiological factors, including genetic predispositions, hormonal imbalances, and insufficient 

nutritional intake. Each of these factors plays a significant role in the development and persistence of 

underweight status. Genetic predisposition is a notable factor contributing to underweight. Studies have 

shown that certain genetic variations can influence an individual's body mass index (BMI) and their 

susceptibility to weight gain or loss [7]. An example can be found in research linking genetic factors to 

conditions like anorexia nervosa, where individuals may have a familial tendency to be underweight, as 

seen in genome-wide association studies detecting negative correlations between body mass index and 

genetic markers associated with eating disorders [8]. Such evidence supports the notion that genetics 

can complicate nutritional management and contribute to sustained underweight. 

Body weight is recognized as a key indicator of health status in Toddlers. It serves as a critical 

reflection of both nutritional adequacy and overall growth patterns. The assessment of body weight in 

this demographic not only provides insight into immediate health conditions but also lays the 

groundwork for potential future health outcomes. Nutritional status, as measured by body weight, is 

intrinsically linked to various health-related factors, including dietary intake, nutritional quality, and 

socioeconomic conditions. A study by Bekele and Fetene highlights the association between age and 

underweight, suggesting that children in older age groups within the under-five bracket are at a higher 

risk of experiencing underweight status due to compounded nutritional deficiencies over time [9]. 

The prevalence of undernutrition among toddlers old remains alarmingly high, particularly within 

rural communities and among populations with restricted access to adequate health services and 

nutrition. This issue is exacerbated by various socio-economic factors that contribute to malnutrition in 

these vulnerable populations. Recent studies indicate a significant prevalence of undernutrition 

indicators, such as stunting and wasting, particularly in South Asian countries like Bangladesh and India. 

For instance, a community health survey in Pakistan revealed that the prevalence of undernutrition 

among toddlers was as high as 52% when combining various forms of anthropometric failures [10].This 

aligns with findings from another study across 26 countries in Sub-Saharan Africa, which demonstrated 

that the prevalence of undernutrition among toddlers was 34.59%, often compounded by coexisting 

forms [11]. Contributing factors to these high rates include parental education level and socio-economic 

status, which significantly affect nutritional outcomes [12]. Efforts to address this issue require more 

effective and proactive strategies, including the integration of modern technologies for the early 

detection of underweight risk in toddlers. 

Machine learning (ML) has emerged as a transformative technology with the ability to 

revolutionize various domains, especially in healthcare settings where it is increasingly utilized for 

predictive analytics. The unique capacity of ML methodologies to process large and complex datasets 

enables a nuanced identification of patterns that surpass the limitations of traditional analytics. This 

ability is crucial in predicting malnutrition among toddlers, as it allows for timely interventions that can 

prevent more severe health complications in the future. Several studies elucidate the effectiveness of 

ML in the healthcare landscape, particularly focusing on malnutrition among children. For instance, 

Saleem et al. investigated the prediction of child malnutrition in Pakistan, highlighting the intricate 

interplay of sociodemographic factors that affect malnutrition rates. Their findings emphasize the 

potential of ML to identify critical risk factors, thus providing a foundation for targeted intervention 
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strategies aimed at reducing malnutrition prevalence among infants and toddlers [13]. Similarly, 

Rahman et al. examined the risk factors contributing to stunting and underweight among young children 

in Bangladesh, demonstrating how ML algorithms can successfully predict malnutrition outcomes based 

on these risk factors. Their research indicated significant improvements in predictive accuracy compared 

to earlier approaches [14]. 

The general applicability of ML in predicting health outcomes is reinforced by broader studies 

within the field. For example, Arueyi̇ngho et al. discuss various ML models and their applications in 

improving healthcare management, thereby emphasizing the critical role of these technologies in 

enhancing disease prediction and personalized medical care [15]. Specifically, the implementation of 

predictive models such as logistic regression and other sophisticated ML techniques illustrates the 

versatility of ML in capturing complex interactions within healthcare data, leading to enhanced 

predictive capabilities. 

Based on the above explanation, nutritional problems among toddlers, particularly underweight, 

remain a serious concern with significant implications for physical growth, cognitive development, and 

long-term quality of life. Although various interventions have been implemented, early detection of 

underweight risk remains suboptimal, as the complex and non-linear risk patterns are difficult to identify 

using conventional methods applied by healthcare providers. This study focuses on developing an 

accurate prediction model employing supervised machine learning methods, namely Naïve Bayes, K-

Nearest Neighbors, and the C4.5 Decision Tree algorithm. 

This study draws upon several previous works relevant to both the topic and the methods 

employed. One such study investigated the prediction of undernutrition status using the Random Forest 

algorithm, achieving an accuracy of 76.2% [16]. Another study examined the determinants of 

malnutrition in women using machine learning approaches, in which the Random Forest algorithm was 

identified as the most effective model, yielding an accuracy of 81.4% [17]. Another study explored the 

prediction of determinants of child undernutrition in Ethiopia, where the eXtreme Gradient Boosting 

(XGBoost) algorithm demonstrated superior predictive performance [18]. A subsequent study on the 

prediction of low birth weight (LBW) in Ethiopia reported that the Random Forest algorithm was the 

most effective model, achieving an accuracy of 91.60% [19]. A previous study on the classification of 

stunting among children aged 0–60 months found that age was a significant determinant of stunting, 

with the model achieving an accuracy of 61.82% [20]. 

2. METHOD 

The research methodology adopted in this study is presented in the schematic diagram below. 

 

 

Figure 1. Research Method Flow 
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Figure 1 illustrates that the research process in this study is divided into several stages. First, the required 

data were collected, consisting of anthropometric measurements. Second, data preprocessing was 

conducted, which involved handling missing values, transforming attributes, and correcting data 

inconsistencies. Third, the dataset was divided into two subsets, training and testing data, with an 80:20 

ratio. Fourth, predictive models were developed using the Naïve Bayes, K-Nearest Neighbors, and C4.5 

Decision Tree algorithms implemented in Python. These models were trained on the training dataset to 

identify patterns and rules that would enable accurate prediction of underweight cases. Fifth, model 

validation was performed using the k-fold cross-validation method to ensure that the models trained on 

the training data also demonstrated strong performance on previously unseen data. Finally, model 

evaluation was carried out to assess the predictive performance of the algorithms using accuracy, 

precision, recall, and F1-score metrics. These metrics provide a comprehensive assessment of the 

models’ ability to predict underweight conditions among toddlers. The overall problem-solving 

approach is presented in the following figure. 

 

 
Figure 2. Troubleshooting Flow 

 

Figure 2 illustrates the key stages involved in predicting underweight using machine learning 

methods, encompassing data collection, preprocessing, model implementation, evaluation, and policy 

recommendation. The first stage involves data collection from multiple sources, with collaboration with 

nutrition experts to obtain essential guidance and information before initiating the process. The second 

stage involves data preprocessing to ensure readiness for subsequent analysis, followed by model 

implementation, which includes training and testing with the application of cross-validation techniques. 

The third stage involves evaluating the model using predetermined performance metrics, such as 

accuracy, precision, and F1-score. Based on the evaluation results, policy recommendations can then be 

formulated to support decision-making and guide subsequent interventions. 
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2.1. Dataset 

This study employed by-name by-address (BNBA) underweight data collected from Gorontalo 

Province in June 2025. The dataset comprised a total of 9,284 records, each containing eight attributes 

and one label. The attributes included: 1. Sex, 2. Birth Weight, 3. Birth Length, 4. Body Weight, 5. Body 

Height, 6. Measurement Method, 7. Weight-for-Age Z-Score (WAZ), 8. Weight-for-Age (W/A). The 

label variable was Predicted Body Weight, which categorized the records into two classes: Underweight 

(n = 4,642) and Normal (n = 4,642). A detailed overview of the data types for each attribute is provided 

in Table 1. 

 

Tabel 1. Dataset Underweight 

No Sex 
Birth 

Weight 

Birth 

Length 

Body 

Weight 

Body 

Height 

Measurement 

Method 

Weight-

for-Age Z-

Score 

Weight-

for-Age 

(W/A) 

1 1 3.00 48.0 13.3 104.5 1 -2.43 Kurang 

2 1 3.00 47.0 13.7 100.2 1 -2.12 Kurang 

3 1 2.50 45.0 12.4 98.0 1 -2.96 Kurang 

…. …. …. …. ….    …. 

9282 1 2.80 48.0 16.5 99.0 1 -0.29 Normal 

9283 0 3.10 48.0 16.5 99.0 1 -0.16 Normal 

9284 0 3.05 46.0 13.0 96.0 1 -1.88 Normal 

Information: Kurang = Underweight 

2.2. Decision Tree C4.5 

The C4.5 Decision Tree algorithm, developed by Ross Quinlan, represents a significant evolution 

from its predecessor, ID3, particularly in its ability to enhance the construction and efficacy of decision 

trees in various applications. One of the notable advancements of C4.5 is its capability to handle both 

numerical and categorical data. This flexibility allows the algorithm to effectively categorize attributes 

without requiring data preprocessing steps that might compromise the dataset's integrity [21]. Unlike 

ID3, which only used information gain as a splitting criterion, C4.5 employs the Gain Ratio criterion, 

which mitigates the bias toward attributes with many distinct values. This shift enhances the robustness 

of the decision tree by helping to prevent overfitting to noise present in the data [22]. Furthermore, 

C4.5's capability to manage missing values provides a critical practical advantage in real-world 

scenarios. The ability to handle such data ensures that valuable information is not discarded but rather 

used for informed decision-making, thus increasing the decision tree's overall accuracy. Calculating the 

value of C4.5 gain can use the following equation [23]: 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
𝑆𝑖

𝑆
∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑖)

𝑛

𝑖=1

 

Information 

S : Case set (Underweight/Normal) 

A : Attribution 

Si : the number of cases on partition to i 

S : Number of cases in S  

2.3. K-Nearest Neighbor 

The K-Nearest Neighbor (KNN) algorithm is recognized for its straightforward implementation 

and effectiveness in both classification and regression tasks. Its nature as a lazy learning algorithm 

(1) 
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makes it particularly attractive, as it does not require explicit training once the dataset is provided; 

instead, it classifies new data points based on the proximity of training data points in the feature space 

[24]. This characteristic allows KNN to adapt readily to a variety of data types, including non-linear and 

multi-class datasets, which is an essential consideration in machine learning applications [25][26]. 

Several studies confirm the efficacy of KNN in various domains. For instance, KNN has demonstrated 

significant performance improvements when combined with techniques such as Boosting, enhancing its 

accuracy by up to 75% compared to other algorithms like Least Squares Support Vector Machine (LS-

SVM) [27]. Furthermore, research on blood donor data classification indicates that KNN can achieve 

accuracy rates exceeding 80% in several predictive scenarios, typically performing slightly lower than 

conventional decision tree algorithms [5]. In the context of medical applications, KNN's non-parametric 

nature empowers it to serve effectively in identifying health-related outcomes, such as predicting the 

recurrence of atrial fibrillation. In general, the Euclidean distance formula is as follows [28]: 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖

𝑘

𝑖=1

− 𝑦𝑖)² 

Information 

𝑥  : New data 

𝑦  : Training data 

𝑖  : Data dimensions or attributes 

𝑘  : Number of data dimensions 

2.4. Naïve Bayes 

The Naïve Bayes algorithm is widely recognized for its ability to produce probabilistic outputs, 

making it exceptionally valuable for decision-making processes that involve confidence levels. This 

algorithm operates on the fundamental assumption of feature independence, which facilitates rapid 

calculations and scalability. As a result, Naïve Bayes remains a relevant and frequently utilized machine 

learning algorithm, especially in contexts that require fast, computationally efficient predictions. The 

simplicity of Naïve Bayes allows for straightforward implementation, which is significant in both 

educational and professional settings, where speed and ease of interpretation are paramount [29]. 

Notably, the versatility of Naïve Bayes has led to its application across various domains, including text 

classification and health diagnostics. For instance, it has been effectively employed in identifying 

sentiment in customer reviews and classifying levels of consumer satisfaction based on various datasets 

[30]. Its probabilistic approach demonstrates efficacy in handling diverse datasets, showcasing its 

adaptability across different fields [31]. The equation of Bayes' theorem is based on the following 

formula [32]: 

𝑃(𝐻|𝑋) =
𝑃(𝑋|𝐻) ∗ 𝑃(𝐻)

𝑃(𝑋)
 

Information 

X : Data with unknown classes 

H  : The hypothesis of data X is a specific class 

P (H|X) : Probability of hypothesis H based on condition X (posteriori probability) 

P (H) : Probability hypothesis H (prior probability) 

P (X|H) : Probability X based on the condition on hypothesis H 

P (X) : Probability X 

(3) 
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2.5. Cross Validation 

Cross-validation has emerged as a crucial technique in the realm of machine learning, serving as 

a robust method for model evaluation and ensuring more reliable performance metrics. This approach, 

which systematically partitions the dataset into multiple subsets for training and testing, enhances the 

accuracy, stability, and objectivity of model assessments compared to relying on a single train-test split. 

The application of cross-validation techniques, such as k-fold cross-validation, is widespread and 

supported by studies highlighting its benefits in various domains, including medical imaging and 

neuroscience [33]. One of the primary strengths of cross-validation is its potential to optimize the use 

of available data, particularly in instances where datasets are limited. The iterative process of training 

the model on different subsets enables a comprehensive evaluation, thereby reducing the risk of 

overfitting, where a model performs well on training data but poorly on unseen data [34]. Studies 

emphasize the significant contribution of cross-validation to model performance evaluation, which 

accounts for variance and ensures the generalizability of results across different data samples [35]. 

2.6. Confusion Matrix 

The confusion matrix is a handy tool that helps us understand how well a classification model is 

really performing. Instead of just giving us an overall accuracy, it breaks down the predictions into 

categories like true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). 

This detailed view is especially useful when the data isn’t evenly balanced say, if one class is much 

more common than another since it helps highlight where the model might be biased or making mistakes. 

By looking at these different types of errors, we can get a clearer picture of what’s going wrong and 

how to improve the model. It’s a straightforward yet powerful way to guide better decision-making in 

real-world situations [36][37]. Take healthcare, for example. Researchers often use confusion matrices 

to assess the accuracy of their disease detection systems. In one recent study on spotting tooth decay, 

the matrix was key to measuring how well the model performed, based on the counts of TP, FP, and FN. 

These numbers helped researchers assess effectiveness and identify areas for refinement, which 

ultimately influences patient care and treatment decisions [38]. 

2.7. Supervised Learning 

Supervised learning algorithms present several notable advantages that underpin their widespread 

adoption across diverse domains. First, when sufficient labeled data are available, they achieve high 

levels of predictive accuracy, rendering them suitable for both classification and regression tasks [39]. 

Second, these algorithms demonstrate strong generalization capabilities to previously unseen data, 

particularly when combined with robust validation strategies such as cross-validation [40]. Third, the 

interpretability of many supervised models such as decision trees, support vector machines, and linear 

models facilitates the identification of feature importance and supports transparent decision-making 

processes [41]. Specific supervised approaches, including Naïve Bayes and logistic regression, enable 

probabilistic prediction and uncertainty estimation, a feature of particular importance in risk-sensitive 

fields such as healthcare [42]. Finally, the widespread availability of labeled datasets, together with well-

established evaluation metrics such as accuracy, precision, recall, and F1-score, further reinforces the 

practical utility and relevance of supervised learning in both research and applied contexts [43]. 

3. RESULT 

The evaluation results demonstrate the predictive performance of underweight classification using 

machine learning algorithms, as depicted in the performance graph below. 
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Figure 3. Machine Learning Model Performance 

 

Figure 3 illustrates the comparative performance of the three machine learning algorithms in 

predicting underweight status. Among them, the C4.5 Decision Tree demonstrated the highest predictive 

capability, achieving an accuracy of 98.56%, followed by K-Nearest Neighbors at 97.99% and Naïve 

Bayes at 96.96%. Notably, all models yielded precision, recall, and F1-scores above 95%, indicating 

strong reliability and consistency in classifying the nutritional status of toddlers. The superior 

performance of the C4.5 Decision Tree may be attributed to its ability to effectively handle both 

categorical and numerical attributes while maintaining interpretability, making it particularly suitable 

for health-related datasets. These findings reinforce the potential of supervised learning algorithms as 

robust tools for early detection of underweight, thereby supporting timely interventions in child 

nutrition. 

4. DISCUSSIONS 

In the context of BNBA data containing mixed types, the superiority of the C4.5 algorithm lies in 

its gain ratio-based splitting mechanism, which reduces bias toward attributes with many categories, its 

ability to handle missing values, and post-training pruning that minimizes overfitting. These 

characteristics enable the decision tree to capture clinically meaningful numeric thresholds (e.g., weight-

for-age or height-for-age cutoffs) while still utilizing categorical indicators without requiring excessive 

preprocessing. Compared to KNN, which is sensitive to scaling and the parameter, or Naïve Bayes, 

which assumes feature independence, C4.5 effectively models simple non-linear interactions through its 

hierarchical branches while maintaining rule-based interpretability. This explains the obtained accuracy 

of 98.56%, with precision and recall exceeding 95%, indicating strong generalization across both classes 

(underweight vs normal). 

When compared with previous studies, the model’s performance exceeds that of Random Forest, 

which achieves 76.2% accuracy in similar undernutrition classification tasks. This disparity can be 

attributed to (i) the better match between C4.5’s architecture and the structure of mixed numeric-

categorical attributes, (ii) balanced data and well-curated features (e.g., highly informative indicators 

like WAZ and W/A), and (iii) the robust validation strategy applied. In other words, “a more complex 

model does not necessarily mean a better one”; in this dataset, the alignment of C4.5’s inductive bias 

with simple, clinically grounded decision patterns provides a tangible advantage over moreopaque or 

hyperparameter-heavy approaches. 
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The implications for health informatics are substantial. Decision trees produce interpretable IF–

THEN rules that can be easily audited, communicated, and translated into operational guidelines for 

local health centers (e.g., “If WAZ < X and BB < Y for age Z, prioritize home visits and nutritional 

supplementation”). Such transparency strengthens policy accountability by reducing the “black-box” 

nature of algorithmic decisions and supports scalability: the model can be embedded in regional 

nutritional surveillance systems, deployed on low-resource devices, and integrated with dashboards for 

resource prioritization (nutrition staff, supplementation, referrals). With its combination of 

interpretability and high accuracy, C4.5 stands out as a production-ready decision-support model for 

early detection of child malnutrition risks, accelerating data-driven responses, and contributing to 

improved public health outcomes. 

4.1. Result Model Decision Tree C4.5 

The detailed evaluation metrics of the predictive model developed using the C4.5 Decision Tree 

algorithm are presented in Figure 4, providing a comprehensive overview of its classification 

performance. The model achieved an accuracy of 98.56%, indicating a high level of correctness in 

predicting underweight status among toddlers. Furthermore, the precision, recall, and F1-score values 

all exceeded 95%, underscoring the model's robustness and reliability across different evaluation 

dimensions. High precision reflects the model's ability to minimize false positives, while high recall 

demonstrates its effectiveness in correctly identifying underweight cases. The F1-score, as a harmonic 

mean of precision and recall, further confirms the model's balanced performance. These results 

collectively affirm that the C4.5 Decision Tree algorithm is a highly effective approach for underweight 

prediction, offering both accuracy and interpretability, which are essential for practical application in 

public health decision-making. 

 

 

Figure 4. Evaluation Decision Tree C4.5 Model 

 

The evaluation of the C4.5 Decision Tree model, as shown in Figure 4, highlights its strong 

performance in classifying toddlers as underweight. The model achieved an overall accuracy of 98.56%, 

supported by a confusion matrix that revealed a balanced distribution of correct and incorrect 

classifications. Specifically, 915 underweight cases were correctly classified as True Positives, while 

only 14 were misclassified as Normal (False Negatives). Similarly, 916 Normal cases were correctly 

identified as True Negatives, with only 12 instances misclassified as Underweight (False Positives). The 

precision, recall, and F1-scores for both classes were nearly identical, each exceeding 0.98, underscoring 

the robustness and reliability of the model. These results indicate that the Decision Tree not only 

minimizes the risk of misclassifying underweight children, which is critical in early intervention 

contexts, but also maintains strong accuracy in recognizing Normal cases. The balanced performance 
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across both classes demonstrates the model's suitability for real-world public health applications, where 

both sensitivity and specificity are essential for effective decision-making. 

4.2. Result Model K-Nearest Neighbors 

The evaluation metrics of the predictive model developed using the K-Nearest Neighbors 

algorithm are summarized in Figure 5. The KNN model achieved an accuracy of 97.99%, reflecting 

strong predictive capability in classifying underweight status among toddlers. Precision, recall, and F1-

score values were consistently above 95%, indicating reliable performance across multiple evaluation 

criteria. The high precision highlights the model’s ability to reduce false classifications of typical cases 

as underweight, while the substantial recall value demonstrates its effectiveness in capturing actual 

underweight cases. The F1-score further validates the balanced trade-off between precision and recall. 

These results confirm that KNN is a robust and effective algorithm for underweight prediction, although 

slightly outperformed by the C4.5 Decision Tree. 

 

 
Figure 5. Evaluation K-NN Model 

 

The evaluation of the K-Nearest Neighbors (KNN) model, as shown in Figure 5, demonstrates strong 

predictive performance with an overall accuracy of 97.99% on the test data. The confusion matrix 

reveals that the model correctly classified 1,388 underweight cases and 1,341 Normal cases. In 

comparison, 32 underweight cases were misclassified as Normal (False Negatives) and 24 Normal cases 

were misclassified as Underweight (False Positives). Although the number of misclassifications was 

slightly higher compared to the Decision Tree C4.5, the KNN model maintained reliable performance 

across both classes. The balance between correctly identified underweight and Normal cases indicates 

that KNN effectively captures similarity-based patterns within the dataset. These findings underscore 

the robustness of KNN as a predictive model for classifying underweight individuals. However, its 

sensitivity to parameter selection and data distribution may explain the marginally lower accuracy 

compared to the Decision Tree C4.5. 

4.3. Result Model Naïve Bayes 

The evaluation outcomes of the Naïve Bayes algorithm are presented in Figure 6. The model 

attained an accuracy of 96.96%, which, while slightly lower than the other two algorithms, still reflects 

high predictive reliability. Similar to KNN and C4.5, the precision, recall, and F1-score values for Naïve 

Bayes all exceeded 95%, demonstrating its competence in distinguishing between underweight and 

normal cases. The probabilistic nature of Naïve Bayes contributes to efficient computation and rapid 

prediction, making it particularly advantageous for scenarios requiring lightweight yet practical models. 

Although its overall performance was marginally lower compared to the Decision Tree and KNN 
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algorithms, Naïve Bayes remains a valuable approach, particularly as a baseline model for classification 

tasks involving underweight data. 

 

 

Figure 6. Evaluation Naïve Bayes Model 

 

 

The evaluation of the Naïve Bayes model, as illustrated in Figure 6, demonstrates solid predictive 

performance, with an overall accuracy of 96.96%, as well as precision and F1-score. The confusion 

matrix shows that the model correctly classified 1,811 underweight cases (True Positives) and 1,789 

Normal cases (True Negatives), while misclassifying only 60 Normal cases as underweight (False 

Positives) and 53 underweight cases as Normal (False Negatives). These results indicate that Naïve 

Bayes was able to maintain a balanced trade-off between precision and recall, minimizing both types of 

errors. Although its performance was slightly lower than that of the C4.5 Decision Tree and KNN 

models, the algorithm remains a reliable and computationally efficient approach for underweight 

prediction. Its probabilistic framework also provides interpretable outputs, which can be valuable for 

supporting decision-making in nutritional risk assessment. 

5. CONCLUSION 

The comparative analysis confirms that all three supervised learning algorithms Decision Tree 

4.5, K-Nearest Neighbors, and Naïve Bayes are capable of accurately predicting underweight status in 

toddlers. Among them, the Decision Tree C4.5 proved to be the most effective, not only due to its 

superior predictive accuracy (98.56%) but also because of its ability to handle both categorical and 

numerical attributes while maintaining interpretability through rule-based outputs. These findings have 

significant implications for the field of health informatics. Integrating predictive models, such as C4.5, 

into public health information systems can enable the early detection of undernutrition risk, support 

faster interventions, and facilitate data-driven decision-making at the primary care level. Future research 

should explore ensemble methods, such as Random Forest to further enhance the robustness and 

accuracy of predictions. Expanding the dataset to include other regions of Indonesia is also 

recommended to test model generalizability and gain deeper insights into regional determinants of 

toddler nutrition. 
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