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Abstract

Heart failure (HF) stands as a major global health problem where precise and early prediction of patient prognosis is
essential for improving clinical management and patient care. A common obstacle for standard machine learning
models in this domain is the prevalent issue of class imbalance within clinical datasets. To overcome this challenge,
this study introduces a systematically optimized ensemble learning model for the accurate classification of patient
survival. The methodology was applied to a publicly accessible clinical dataset of 299 heart failure patients. Its
comprehensive framework included logarithmic transformation, stratified data splitting (80:20), SHAP-based
selection of eight key features, and hyperparameter tuning with Optuna over 75 trials, with the specific objective of
maximizing the F1-score using 10-fold cross-validation. The performance of three ensemble models (Random Forest,
XGBoost, and LightGBM) was refined using decision threshold tuning. The results revealed that the fully optimized
Random Forest model yielded superior outcomes, attaining an accuracy of 96.67%, an Fl-score of 0.9474, and
precision and recall values of 0.95, demonstrating high reliability with only a single instance of a False Negative and
False Positive. The study concludes that the systematic application of SHAP, SMOTE, and Optuna within an
ensemble framework substantially improves classification performance for imbalanced HF data, surpassing existing
benchmarks. This work thus provides a replicable and systematic framework for developing reliable machine learning
models from complex, imbalanced medical datasets, contributing a valuable methodology to the field of
computational science.

Keywords : Ensemble Learning, Heart Failure, Optuna, SHAP, SMOTE.

This work is an open access article licensed under a Creative Commons Attribution 4.0 International License.

1. INTRODUCTION

Heart failure (HF) is a multifaceted clinical syndrome that poses a major challenge to public health
worldwide. With a rising prevalence, better prognostic tools are essential for the efficient allocation of
healthcare resources [1]. The condition is a primary driver of hospital admissions and severely impacts
patients' quality of life by compromising both their physical and mental well-being [2]. Consequently,
accurate survival prediction is of critical importance, as it empowers clinicians to tailor treatment
strategies and optimize care intensity for better patient outcomes. Identifying high-risk patients at an
early stage facilitates personalized interventions, a practice known to improve survival rates and quality
of life [3]. In this context, computer-assisted predictive models act as essential tools for frontline
clinicians, enabling early identification and intervention for at-risk patients [4]. The application of
machine learning (ML) has emerged as a promising approach in this domain, utilizing extensive data
from electronic health records (EHRs) to build predictive models [5]. Compared to traditional statistical
methods, which are often limited to simpler data structures, ML models frequently provide more
accurate risk predictions when applied to large and complex datasets [6]. This advantage stems from the
ability of ML algorithms to automatically learn and map the intricate relationships between variables
within large-scale data, often surpassing the performance of conventional models [7]. This capability

5320


https://jutif.if.unsoed.ac.id/
http://creativecommons.org/licenses/by/4.0/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 5320-5332
P-ISSN: 2723-3863 https://jutif.if unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5324

includes handling high-dimensional data, such as protein networks in cardiac remodeling [8], because
clinical HF data is often structurally complex, containing interactive and non-linear information that is
difficult for traditional analyses to process effectively [9]. Despite these capabilities, the performance
of such models faces inherent challenges in medical data, most notably class imbalance, where one
outcome class significantly outnumbers the other. Moreover, the opaque, "black-box" nature of many
sophisticated algorithms can hinder their adoption in clinical practice, as the logic behind their
predictions often lacks transparency [10].

Several previous studies have applied various methods to classify heart failure patient outcomes.
For instance, a study focusing on imbalanced data handling using the Balanced Random Forest (BRF)
method achieved an accuracy of 76.25% [11], while a standard Random Forest implementation on the
same dataset yielded an accuracy of 86.62% [12]. Other advanced approaches have shown better results;
a study focused on wrapper feature selection combining MLP and BPSO reached an accuracy of 91.11%
[13], and the use of an Extra Tree Classifier was reported to obtain an accuracy of 92.62% [14]. Further
optimization efforts, such as integrating Random Forest with a Genetic Algorithm (GA), successfully
pushed performance further to 93.36% [15].

Despite these advancements, a significant research gap exists in the systematic and
comprehensive optimization of these models. Many studies tend to apply one or two optimization
techniques in isolation, such as focusing solely on imbalance handling or only on feature selection. This
is a critical oversight, as effective feature selection not only simplifies the model and improves
computational speed but can also enhance predictive performance by reducing the curse of
dimensionality [16]. Furthermore, many existing predictive models are validated only on their original
dataset, with a lack of independent external verification to truly assess their generalizability [17]. Very
few have integrated a complete pipeline that includes feature engineering, robust feature selection,
imbalance handling applied specifically to the training data, automated hyperparameter tuning, and
decision threshold optimization. This lack of a holistic approach leaves potential performance
improvements unexploited.

Unlike previous studies that tended to apply optimization techniques in isolation, this study
proposes and validates a comprehensive, holistic framework for optimizing ensemble learning models.
This research represents one of the first efforts to systematically integrate a full pipeline, which includes
feature engineering, SHAP-based feature selection, SMOTE for imbalance handling, automated
hyperparameter tuning with Optuna, and decision threshold optimization. The focus is on ensemble
learning, a method where several individual learners are combined into one stronger model. This
approach is known for its ability to increase robustness, mitigate overfitting, and often lead to superior
predictive outcomes [18]. Furthermore, relying on a combination of algorithms, rather than a solitary
one, has been demonstrated to enhance both predictive accuracy and sensitivity [19]. Therefore, the
primary contribution of this work is to show that this systematically optimized pipeline can yield a high-
performance model for heart failure survival classification.

2. METHOD

This study presents a structured framework, fully developed in Python, to build and assess
classification models for predicting the mortality risk in heart failure patients. The end-to-end process,
from data acquisition to performance evaluation, relied on a suite of essential machine learning libraries.
These included Scikit-learn for data preprocessing and evaluation metrics, imblearn for handling class
imbalance with SMOTE, XGBoost and LightGBM for model construction, Optuna for hyperparameter
optimization, and SHAP for feature selection.
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2.1. Dataset
This study makes use of a publicly available dataset [20]. The data consists of 299 records
from heart failure patients, each described by 13 attributes. The patient population
consists of individuals diagnosed with advanced stages of heart failure, originally
collected in Faisalabad, Pakistan [21]. The target for classification is the binary
DEATH EVENT feature, where '1' denotes mortality and '0' denotes survival. The data
is significantly imbalanced, containing 203 'survived' instances (67.9%) and 96 'deceased'
instances (32.1%), a factor that heavily influenced the methodological design. A thorough
explanation of the utilized features is summarized in Table 1.
Table 1. Summary of Dataset Features
Feature Description Variable Unit / Value
Type
age Age of the patient Integer Years
anaemia Presence of anaemia Binary 0=No, 1 =Yes
creatinine Blood concentration of the CPK  Integer mcg/L
phosphokinase enzyme
diabetes Presence of diabetes Binary 0=No, 1 =Yes
ejection fraction Ventricular ejection percentage  Integer Percentage (%)
per heartbeat
high blood pressure Presence of hypertension Binary 0=No, 1 =Yes
platelets Blood platelet count Float kiloplatelet/mL
serum creatinine Serum creatinine concentration  Float mg/dL
serum sodium Serum sodium concentration Integer mEq/L
sex Gender of the patient Binary 0 =Female, 1 =
Male
smoking Patient's smoking status Binary 0=No, 1 =Yes
time Duration of follow-up Integer Days
DEATH EVENT Target Variable: Patient Binary 0=No, 1 =Yes
mortality during follow-up
2.2. Research Framework

reproducibility and optimal predictive performance. This framework, as illustrated in Figure 1, is

The research methodology is designed as a structured and chronological workflow to ensure

divided into two main pipelines.

1.

Training Pipeline

Focuses on training data preparation, feature selection, imbalanced class handling, and

hyperparameter optimization to generate the most optimal model.
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2. Evaluation Pipeline
To measure the robustness and generalization of the final model, a separate test set that was not
involved in training is applied.

Data
Splitting Training
Data
Feature Engineering (Log - o | Feature Selection »
Dataset (Heart
aymeg’ Transformation) 7| | Train Test Pl (sHap) Pl SWoTE
Records)
Test
Data
Model \ Y
Evaluation 4 Ensemble Models
-W -Iim L Threshold Tuning |, & & Hyperparameter
* Based on F1-Score Model Training <€ Inandom Forestl I XGBoost I € Tuning (Optuna)

Figure 1. The proposed research workflow.

2.3. Data Preprocessing and Feature Selection

The next step in the process was data preparation. First, simple feature engineering was performed
by applying a logarithmic transformation to three features (creatinine phosphokinase, platelets, and
serum creatinine). This step aimed to normalize the highly skewed data distributions, which can often
improve model performance. The need for this transformation is supported by previous analyses of this
dataset, which noted that features like creatinine phosphokinase have distributions with a few extremely
high values, characteristic of a skewed distribution [22]. To maintain class balance, the dataset was
subjected to stratified partitioning, creating a training set with 80% of the data and a test set with the
remaining 20%, which is a conventional split supported by prior studies [23]. This method was chosen
to ensure that the proportion of the DEATH EVENT class in both the training and test sets remained the
same as in the original dataset, a crucial step for valid evaluation on imbalanced data.

Feature selection was performed on the training set to optimize both interpretability and
efficiency. Algorithms belonging to the tree-based ensemble family (e.g., Random Forest and XGBoost)
inherently yield feature importance values, offering valuable insights into critical variables and
informing model construction [24]. Building on this principle, this study utilized SHAP (Shapley
Additive exPlanations), a novel approach designed to explain the outputs of complex "black-box"
models [25]. A key advantage of SHAP is that it is a model-agnostic technique, making it universally
applicable for interpreting a wide range of machine learning models [26]. SHAP was selected for its
ability to provide accurate and consistent justifications for the predictive contribution of each feature.
Specifically, SHAP values quantify the contribution of each feature to a given prediction, where the
magnitude of the value indicates the influence's strength and its sign indicates the direction of the effect
[27]. Moreover, SHAP is a favored method as its additive feature attribution approach provides
explanations that are relatively consistent with human intuition [28]. This allows for interpretation at a
local level, meaning the impact of the features on each individual prediction can be precisely calculated
[29]. From this process, the eight features with the most significant contributions were identified and
subsequently used in all following modeling stages.

2.4. Model Training and Optimization

To ensure consistent and reproducible results, a random_state of 123 was used throughout all
experiments involving stochastic processes, such as in data splitting, SMOTE, and model initialization.
The entire training and optimization process was performed exclusively on the training data. To mitigate
unequal class representation, Synthetic Minority Oversampling Technique (SMOTE) was employed.
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Through this approach, new artificial instances of the minority outcome (deceased patients) were
generated, resulting in a more balanced dataset for learning. Employing SMOTE is an effective strategy
to prevent models from developing a bias towards the majority class. Notably, this method has been
shown to be highly beneficial for tree-based ensemble classifiers like Random Forest, as it can
substantially elevate their predictive performance on this type of clinical data [30].

Modern ensemble models such as LightGBM and XGBoost contain numerous hyperparameters,
and since manual adjustment is often cumbersome and inefficient, an automated optimization
framework is preferable [31]. After the training data was balanced, automated hyperparameter tuning
was performed using the Optuna framework. Optuna is an advanced framework that efficiently searches
for optimal parameters by dynamically adjusting its search space based on the results of previous trials,
which improves both efficiency and model performance [32]; this approach utilizes Bayesian
Optimization and is more efficient than traditional methods like GridSearch [33]. This is achieved
through two main components: a sampling algorithm that intelligently selects the next hyperparameters
to test based on historical trial data, and a pruning algorithm that can terminate unpromising trials early
to save computational time [34]. Finding the optimal set of hyperparameters is a critical step, as ideal
parameters for models like Random Forest and XGBoost can vary significantly depending on the
optimization search strategy employed [35]. This process aimed to find the optimal hyperparameter
combination for three ensemble models (Random Forest, XGBoost, and LightGBM), which have
demonstrated high performance in various clinical studies. These models are all powerful ensemble
techniques; Random Forest operates by combining decision tree results through majority voting, while
XGBoost and LightGBM are gradient boosting methods that iteratively build a strong predictive model
from a series of weaker ones [36]. The optimization was conducted for 75 trials with the primary
objective of maximizing the F1-score. For this process, the Optuna framework was configured to use a
Tree-structured Parzen Estimator (TPE) sampler and a Successive Halving pruner to efficiently search
the hyperparameter space. A 10-fold cross-validation scheme was employed within each trial to ensure
that the performance evaluation was robust and to mitigate the risk of overfitting. This use of k-fold
cross-validation is a robust method for reliably assessing model performance during the hyperparameter
tuning process [37]. Once the optimal hyperparameter configuration was found, the three models were
retrained using the entire SMOTE-processed training dataset.

2.5. Model Testing and Performance Evaluation

In the final stage, the trained models were evaluated against the unseen test set to assess their
performance. Initially, decision threshold tuning was applied to the model's output probabilities. This
was a necessary step, as the standard 0.5 threshold can be ineffective for imbalanced data; the objective
was to identify a threshold that optimized the F1-score. Model performance was ultimately quantified
using four standard metrics. The metrics are determined using the standard outputs of a confusion matrix
(TP, TN, FP, FN). Choosing these measures aligns with prior work in this field [38].

1. Accuracy
Accuracy measures the overall correctness of the model, calculated as the ratio of all correct
predictions to the total number of samples, as defined in Equation (1).

TP+TN
TP+TN+FP+FN

Accuracy = (1

2. Precision
Precision evaluates the accuracy of the positive predictions. It is the ratio of true positives to the
total number of instances predicted as positive, as detailed in Equation (2).
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precision — TP ,
recision = TP+ FP 2)
3. Recall (Sensitivity)
Recall, also known as Sensitivity, determines the model's ability to identify all relevant instances.
It is calculated as the ratio of true positives to the total number of actual positive instances, as shown
in Equation (3).
Recall = e 3
TP+ FN ®)
4. F1-Score
The F1-Score provides a single metric that balances Precision and Recall by calculating their
harmonic mean, as detailed in Equation (4).
Precision X Recall

F1-S =2X
core Precision + Recall )

The F1-score was selected as the primary evaluation metric for this study. Its choice is justified
by its capacity to offer a more balanced and dependable evaluation than accuracy on imbalanced
datasets, especially in a clinical context where the consequences of misclassifying the minority (death)
class are more severe.

3.  RESULT

The primary quantitative outcomes of this research, which fulfill the study's objective of creating
a high-performance classification framework, are presented in this chapter. The findings are organized
to mirror the methodological workflow, commencing with the identification of the most predictive
features, proceeding to an evaluation of model performance in incremental scenarios, and culminating
in a detailed analysis of the top-performing model. The results detailed herein serve to validate the
contribution of the proposed optimization pipeline.

3.1. Results of Feature Selection

The optimization pipeline commenced with identifying the most predictive features via SHAP
analysis on the training data. Figure 2 presents the SHAP feature importance plot, which establishes a
clear hierarchy by ordering features based on their mean absolute SHAP values. Such a ranking is
instrumental in discerning the most influential clinical factors for the model's predictive process [39].

Top-12 Features Based on SHAP Importance

time
ejection_fraction
log_serum_creatinine
age

serum_sodium
log_creatinine_phosphokinase
log_platelets
anaemia

smoking
high_blood_pressure
Sex

diabetes

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Mean(|SHAP Value|)

Figure 2. SHAP feature importance ranking
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The SHAP analysis pinpointed time, ejection fraction, and log serum creatinine as the three most
influential predictors. Following this, the essential task was to ascertain the optimal quantity of top
features (top-k) for the model. An experiment was therefore conducted to determine this, with its results
summarized in Table 2. In this study, attention was directed toward Random Forest, which was selected
because of its favorable early outcomes.

Table 2. Impact of Top-k Feature Selection on Random Forest Performance

Number of Accuracy F1-Score Precision Recall
Features
12 0.9500 0.9143 1.00 0.84
11 0.9333 0.8947 0.89 0.89
10 0.9333 0.8947 0.89 0.89
9 0.9333 0.8889 0.94 0.84
8 0.9667 0.9474 0.95 0.95
7 0.9500 0.9189 0.94 0.89
6 0.9500 0.9143 1.00 0.84
5 0.9333 0.8889 0.94 0.84
4 0.9333 0.8947 0.89 0.89
3 0.9167 0.8718 0.85 0.89

The data in Table 2 shows that the model's peak performance was achieved when using the top 8
features, with a peak F1-score of 0.9474 and an accuracy of 0.9667. Using more than eight features did
not yield a significant improvement and instead posed a risk of overfitting. Therefore, the following
eight features were established as the final feature set: time, ejection fraction, log serum creatinine, age,
serum sodium, log creatinine phosphokinase, log platelets, and anaemia.

3.2. Incremental Model Performance Analysis

In order to assess how each optimization stage influenced the results, five successive experimental
scenarios were designed. Table 3 provides a comparative overview of the three ensemble algorithms,
demonstrating how every optimization step contributed to the overall performance.

Table 3. Performance comparison of models in each experimental scenario

Experimental Model  Accuracy F1-Score Precision Recall Top-k
Scenario
Baseline RF 0.9167 0.8649 0.89 0.84 12
XGB 0.8667 0.7778 0.82 0.74 12
LGBM 0.9000 0.8421 0.84 0.84 12
FE (Log Trans) RF 0.9333 0.8889 0.94 0.84 12
XGB 0.9167 0.8649 0.89 0.84 12
LGBM 0.9167 0.8718 0.85 0.89 12
SHAP Selection  RF 0.9167 0.8649 0.89 0.84 3
XGB 0.9167 0.8649 0.89 0.84 9
LGBM 0.9333 0.8947 0.89 0.89 9
Threshold Tuning RF 0.9333 0.8889 0.94 0.84 3
XGB 0.9333 0.9000 0.86 0.95 9
LGBM 0.9500 0.9189 0.94 0.89 9
HPO (Optuna) RF 0.9667 0.9474 0.95 0.95 8
XGB 0.9500 0.9143 1.00 0.84 10
LGBM 0.9500 0.9143 1.00 0.84 6
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An in-depth analysis of Table 3 reveals a systematic improvement in model performance at each
stage:

1.

3.3.

Baseline Performance

As a baseline, the models were first tested using the full set of 12 features, where the Random
Forest (RF) achieved an F1 score of 0.8649.

Impact of Feature Engineering

Applying a logarithmic transformation to handle skewed data provided a notable improvement,
increasing the RF model's F1-Score to 0.8889.

Significance of Threshold Tuning

This stage yielded a substantial performance boost across the models, with the XGBoost F1-
Score, for example, jumping to 0.9000. This highlights that optimizing the decision threshold is a
critical step for imbalanced datasets.

Final Optimization and Peak Performance

In the final optimization stage using HPO with Optuna, the Random Forest model attained its
highest performance level. The fully optimized model yielded an Accuracy of 0.9667 and an F1-
score of 0.9474 using an optimal subset of 8 features, which confirmed its status as the superior
model.

Evaluation and Performance Analysis of the Best Model

The fully optimized Random Forest model, which emerged as the superior performer, underwent

a detailed performance analysis on the test set using the confusion matrix presented in Figure 3.

Confusion Matrix (Threshold = 0.50)

- 40

- 35

o - 40 -30

25

20

15

- 10
0 1

Predicted Label

True Label

(5]

Figure 3. Confusion Matrix for the Optimized Random Forest (Test Set)

An examination of Figure 3 reveals the model's strong capacity for generalization and leads to the
subsequent conclusions:

1.

High Accuracy
An accuracy of 96.67% was attained by the model (58 out of 60 correct predictions) on the
previously unseen test data.

2. Superior Clinical Sensitivity

The model achieved a Recall (Sensitivity) of 94.7% by correctly identifying 18 out of 19 death
cases. This high True Positive Rate is vital in a medical context, where the ability to detect high-
risk patients is a top priority.
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3. Balanced Performance

An Fl-score of 0.9474 indicates that the model maintains a strong equilibrium between
Precision and Recall, which confirms its robust performance on the imbalanced dataset.
To further assess the model's discriminative ability, especially concerning the imbalanced nature

of the dataset, the Receiver Operating Characteristic (ROC) curve and Precision-Recall (PR) curve were
analyzed, as shown in Figure 4. The model demonstrated excellent classification capability with an Area
Under the ROC Curve (AUC) of 0.96. Furthermore, the PR curve, which is particularly informative for
imbalanced data, showed a high Area Under the PR Curve (AUPRC) of 0.96, confirming that the model
maintains high precision even at high recall rates. These results provide strong evidence of the model's
robust generalization performance.

True Positive Rate

o
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=
o

0.2

0.0

Receiver Operating Characteristic (ROC) Curve

Precision-Recall (PR) Curve

rd ROC curve (AUC = 0.96)
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=4
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o
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False Positive Rate
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Figure 4. ROC and PR Curves for the Optimized RF Model (Test Set).

The success of the proposed framework is demonstrated by its ability to produce a model with
both high overall accuracy and crucial sensitivity to the minority (death) class, which represents the key

priority in this clinical context.

4.

DISCUSSIONS

This study demonstrates that the systematic optimization framework successfully achieved an

accuracy of 96.67%, a performance that significantly surpasses previous studies, including the prior best
method, which achieved 93.36% (Table 4). This success is attributed to the effective and comprehensive
pipeline: SHAP feature selection successfully identified clinically relevant predictors (such as ejection

fraction and serum creatinine), while SMOTE and Optuna ensured the model could optimally recognize
patterns in the minority class (death), as reflected by the high F1-Score.

Beyond achieving high predictive accuracy, the primary contribution of this research to the field

of computer science lies in two key areas. First, by integrating SHAP as a core component, this study
contributes to the growing body of work on Explainable Al (XAI) in medicine. It demonstrates how

interpretability can be built into the optimization pipeline to address the critical 'black-box' problem,

thereby increasing the trustworthiness of complex models for clinical applications. Second, the proposed
holistic pipeline serves as a replicable and systematic framework that can be adapted for developing
high-performance predictive models in other medical domains that face similar challenges with complex

and imbalanced data.
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Table 4. Comparison of accuracy with previous studies

Reference Sources Method Accuracy (%)
[14] Extra Tree Classifier 92.62
[11] Balanced Random Forest (BRF)+Chi2 76.25
[15] Random Forest+GA 93.36
[12] Random Forest 86.62
[13] Multilayer Perceptron+BPSO 91.11
This study Random Forest+SHAP+Optuna 96.67

Despite the model's excellent performance, a key limitation of the study is the modest size of the
dataset, a factor that may reduce the model's generalization capacity when applied to broader patient
populations. The occurrence of one False Negative prediction, when considered alongside this
limitation, reinforces the model’s intended role as a clinical decision support tool rather than a substitute
for professional medical judgment. Therefore, the crucial next step involves validating the framework
on more extensive and varied external datasets before considering further implementation.

5. CONCLUSION

This study concludes that a holistic optimization framework, which integrates feature
engineering, SHAP-based feature selection, data balancing with SMOTE, and hyperparameter tuning
with Optuna, is a highly effective strategy for enhancing predictive performance in heart failure survival
classification. Of the models evaluated, the fully optimized Random Forest model demonstrated superior
performance. The principal contribution of this work is the validation of this systematic framework. As
a contribution to the field of medical informatics, this framework demonstrates how a systematic
optimization approach can advance the development of high-performing and interpretable machine
learning models. This is evidenced by the final model, which achieved a highly competitive accuracy of
96.67% and an F1-Score of 0.9474, outperforming previously established benchmarks. This result
underscores that a comprehensive and systematic optimization approach is crucial for unlocking the full
potential of machine learning on complex clinical data. Although these findings are promising, future
investigations should prioritize assessing the framework's performance on larger and more diverse
patient cohorts to establish its generalizability before its potential for clinical application is fully
realized.
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