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Abstract 

Heart failure (HF) stands as a major global health problem where precise and early prediction of patient prognosis is 

essential for improving clinical management and patient care. A common obstacle for standard machine learning 

models in this domain is the prevalent issue of class imbalance within clinical datasets. To overcome this challenge, 

this study introduces a systematically optimized ensemble learning model for the accurate classification of patient 

survival. The methodology was applied to a publicly accessible clinical dataset of 299 heart failure patients. Its 

comprehensive framework included logarithmic transformation, stratified data splitting (80:20), SHAP-based 

selection of eight key features, and hyperparameter tuning with Optuna over 75 trials, with the specific objective of 

maximizing the F1-score using 10-fold cross-validation. The performance of three ensemble models (Random Forest, 

XGBoost, and LightGBM) was refined using decision threshold tuning. The results revealed that the fully optimized 

Random Forest model yielded superior outcomes, attaining an accuracy of 96.67%, an F1-score of 0.9474, and 

precision and recall values of 0.95, demonstrating high reliability with only a single instance of a False Negative and 

False Positive. The study concludes that the systematic application of SHAP, SMOTE, and Optuna within an 

ensemble framework substantially improves classification performance for imbalanced HF data, surpassing existing 

benchmarks. This work thus provides a replicable and systematic framework for developing reliable machine learning 

models from complex, imbalanced medical datasets, contributing a valuable methodology to the field of 

computational science. 
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1. INTRODUCTION 

Heart failure (HF) is a multifaceted clinical syndrome that poses a major challenge to public health 

worldwide. With a rising prevalence, better prognostic tools are essential for the efficient allocation of 

healthcare resources [1]. The condition is a primary driver of hospital admissions and severely impacts 

patients' quality of life by compromising both their physical and mental well-being [2]. Consequently, 

accurate survival prediction is of critical importance, as it empowers clinicians to tailor treatment 

strategies and optimize care intensity for better patient outcomes. Identifying high-risk patients at an 

early stage facilitates personalized interventions, a practice known to improve survival rates and quality 

of life [3]. In this context, computer-assisted predictive models act as essential tools for frontline 

clinicians, enabling early identification and intervention for at-risk patients [4]. The application of 

machine learning (ML) has emerged as a promising approach in this domain, utilizing extensive data 

from electronic health records (EHRs) to build predictive models [5]. Compared to traditional statistical 

methods, which are often limited to simpler data structures, ML models frequently provide more 

accurate risk predictions when applied to large and complex datasets [6]. This advantage stems from the 

ability of ML algorithms to automatically learn and map the intricate relationships between variables 

within large-scale data, often surpassing the performance of conventional models [7]. This capability 
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includes handling high-dimensional data, such as protein networks in cardiac remodeling [8], because 

clinical HF data is often structurally complex, containing interactive and non-linear information that is 

difficult for traditional analyses to process effectively [9]. Despite these capabilities, the performance 

of such models faces inherent challenges in medical data, most notably class imbalance, where one 

outcome class significantly outnumbers the other. Moreover, the opaque, "black-box" nature of many 

sophisticated algorithms can hinder their adoption in clinical practice, as the logic behind their 

predictions often lacks transparency [10]. 

Several previous studies have applied various methods to classify heart failure patient outcomes. 

For instance, a study focusing on imbalanced data handling using the Balanced Random Forest (BRF) 

method achieved an accuracy of 76.25% [11], while a standard Random Forest implementation on the 

same dataset yielded an accuracy of 86.62% [12]. Other advanced approaches have shown better results; 

a study focused on wrapper feature selection combining MLP and BPSO reached an accuracy of 91.11% 

[13], and the use of an Extra Tree Classifier was reported to obtain an accuracy of 92.62% [14]. Further 

optimization efforts, such as integrating Random Forest with a Genetic Algorithm (GA), successfully 

pushed performance further to 93.36% [15]. 

Despite these advancements, a significant research gap exists in the systematic and 

comprehensive optimization of these models. Many studies tend to apply one or two optimization 

techniques in isolation, such as focusing solely on imbalance handling or only on feature selection. This 

is a critical oversight, as effective feature selection not only simplifies the model and improves 

computational speed but can also enhance predictive performance by reducing the curse of 

dimensionality [16]. Furthermore, many existing predictive models are validated only on their original 

dataset, with a lack of independent external verification to truly assess their generalizability [17]. Very 

few have integrated a complete pipeline that includes feature engineering, robust feature selection, 

imbalance handling applied specifically to the training data, automated hyperparameter tuning, and 

decision threshold optimization. This lack of a holistic approach leaves potential performance 

improvements unexploited. 

Unlike previous studies that tended to apply optimization techniques in isolation, this study 

proposes and validates a comprehensive, holistic framework for optimizing ensemble learning models. 

This research represents one of the first efforts to systematically integrate a full pipeline, which includes 

feature engineering, SHAP-based feature selection, SMOTE for imbalance handling, automated 

hyperparameter tuning with Optuna, and decision threshold optimization. The focus is on ensemble 

learning, a method where several individual learners are combined into one stronger model. This 

approach is known for its ability to increase robustness, mitigate overfitting, and often lead to superior 

predictive outcomes [18]. Furthermore, relying on a combination of algorithms, rather than a solitary 

one, has been demonstrated to enhance both predictive accuracy and sensitivity [19]. Therefore, the 

primary contribution of this work is to show that this systematically optimized pipeline can yield a high-

performance model for heart failure survival classification. 

2. METHOD 

This study presents a structured framework, fully developed in Python, to build and assess 

classification models for predicting the mortality risk in heart failure patients. The end-to-end process, 

from data acquisition to performance evaluation, relied on a suite of essential machine learning libraries. 

These included Scikit-learn for data preprocessing and evaluation metrics, imblearn for handling class 

imbalance with SMOTE, XGBoost and LightGBM for model construction, Optuna for hyperparameter 

optimization, and SHAP for feature selection. 
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2.1. Dataset 

This study makes use of a publicly available dataset [20]. The data consists of 299 records 

from heart failure patients, each described by 13 attributes. The patient population 

consists of individuals diagnosed with advanced stages of heart failure, originally 

collected in Faisalabad, Pakistan [21]. The target for classification is the binary 

DEATH_EVENT feature, where '1' denotes mortality and '0' denotes survival. The data 

is significantly imbalanced, containing 203 'survived' instances (67.9%) and 96 'deceased' 

instances (32.1%), a factor that heavily influenced the methodological design. A thorough 

explanation of the utilized features is summarized in Table 1. 
 

Table 1. Summary of Dataset Features 

Feature Description Variable 

Type 

Unit / Value 

age Age of the patient 

 

Integer Years 

anaemia Presence of anaemia 

 

Binary 0 = No, 1 = Yes 

creatinine 

phosphokinase 

Blood concentration of the CPK 

enzyme 

 

Integer mcg/L 

diabetes Presence of diabetes 

 

Binary 0 = No, 1 = Yes 

ejection fraction Ventricular ejection percentage 

per heartbeat 

 

Integer Percentage (%) 

high blood pressure Presence of hypertension 

 

Binary 0 = No, 1 = Yes 

platelets Blood platelet count 

 

Float kiloplatelet/mL 

serum creatinine Serum creatinine concentration 

 

Float mg/dL 

serum sodium Serum sodium concentration 

 

Integer mEq/L 

sex Gender of the patient Binary 0 = Female, 1 = 

Male 

smoking Patient's smoking status 

 

Binary 0 = No, 1 = Yes 

time Duration of follow-up 

 

Integer Days 

DEATH EVENT Target Variable: Patient 

mortality during follow-up 

 

Binary 0 = No, 1 = Yes 

 

2.2. Research Framework 

The research methodology is designed as a structured and chronological workflow to ensure 

reproducibility and optimal predictive performance. This framework, as illustrated in Figure 1, is 

divided into two main pipelines. 

1. Training Pipeline 

Focuses on training data preparation, feature selection, imbalanced class handling, and 

hyperparameter optimization to generate the most optimal model. 
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2. Evaluation Pipeline 

To measure the robustness and generalization of the final model, a separate test set that was not 

involved in training is applied. 

 

 
Figure 1. The proposed research workflow. 

 

2.3. Data Preprocessing and Feature Selection 

The next step in the process was data preparation. First, simple feature engineering was performed 

by applying a logarithmic transformation to three features (creatinine phosphokinase, platelets, and 

serum creatinine). This step aimed to normalize the highly skewed data distributions, which can often 

improve model performance. The need for this transformation is supported by previous analyses of this 

dataset, which noted that features like creatinine phosphokinase have distributions with a few extremely 

high values, characteristic of a skewed distribution [22]. To maintain class balance, the dataset was 

subjected to stratified partitioning, creating a training set with 80% of the data and a test set with the 

remaining 20%, which is a conventional split supported by prior studies [23]. This method was chosen 

to ensure that the proportion of the DEATH EVENT class in both the training and test sets remained the 

same as in the original dataset, a crucial step for valid evaluation on imbalanced data. 

Feature selection was performed on the training set to optimize both interpretability and 

efficiency. Algorithms belonging to the tree-based ensemble family (e.g., Random Forest and XGBoost) 

inherently yield feature importance values, offering valuable insights into critical variables and 

informing model construction [24]. Building on this principle, this study utilized SHAP (Shapley 

Additive exPlanations), a novel approach designed to explain the outputs of complex "black-box" 

models [25]. A key advantage of SHAP is that it is a model-agnostic technique, making it universally 

applicable for interpreting a wide range of machine learning models [26]. SHAP was selected for its 

ability to provide accurate and consistent justifications for the predictive contribution of each feature. 

Specifically, SHAP values quantify the contribution of each feature to a given prediction, where the 

magnitude of the value indicates the influence's strength and its sign indicates the direction of the effect 

[27]. Moreover, SHAP is a favored method as its additive feature attribution approach provides 

explanations that are relatively consistent with human intuition [28]. This allows for interpretation at a 

local level, meaning the impact of the features on each individual prediction can be precisely calculated 

[29]. From this process, the eight features with the most significant contributions were identified and 

subsequently used in all following modeling stages. 

2.4. Model Training and Optimization 

To ensure consistent and reproducible results, a random_state of 123 was used throughout all 

experiments involving stochastic processes, such as in data splitting, SMOTE, and model initialization. 

The entire training and optimization process was performed exclusively on the training data. To mitigate 

unequal class representation, Synthetic Minority Oversampling Technique (SMOTE) was employed. 
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Through this approach, new artificial instances of the minority outcome (deceased patients) were 

generated, resulting in a more balanced dataset for learning. Employing SMOTE is an effective strategy 

to prevent models from developing a bias towards the majority class. Notably, this method has been 

shown to be highly beneficial for tree-based ensemble classifiers like Random Forest, as it can 

substantially elevate their predictive performance on this type of clinical data [30]. 

Modern ensemble models such as LightGBM and XGBoost contain numerous hyperparameters, 

and since manual adjustment is often cumbersome and inefficient, an automated optimization 

framework is preferable [31]. After the training data was balanced, automated hyperparameter tuning 

was performed using the Optuna framework. Optuna is an advanced framework that efficiently searches 

for optimal parameters by dynamically adjusting its search space based on the results of previous trials, 

which improves both efficiency and model performance [32]; this approach utilizes Bayesian 

Optimization and is more efficient than traditional methods like GridSearch [33]. This is achieved 

through two main components: a sampling algorithm that intelligently selects the next hyperparameters 

to test based on historical trial data, and a pruning algorithm that can terminate unpromising trials early 

to save computational time [34]. Finding the optimal set of hyperparameters is a critical step, as ideal 

parameters for models like Random Forest and XGBoost can vary significantly depending on the 

optimization search strategy employed [35]. This process aimed to find the optimal hyperparameter 

combination for three ensemble models (Random Forest, XGBoost, and LightGBM), which have 

demonstrated high performance in various clinical studies. These models are all powerful ensemble 

techniques; Random Forest operates by combining decision tree results through majority voting, while 

XGBoost and LightGBM are gradient boosting methods that iteratively build a strong predictive model 

from a series of weaker ones [36]. The optimization was conducted for 75 trials with the primary 

objective of maximizing the F1-score. For this process, the Optuna framework was configured to use a 

Tree-structured Parzen Estimator (TPE) sampler and a Successive Halving pruner to efficiently search 

the hyperparameter space. A 10-fold cross-validation scheme was employed within each trial to ensure 

that the performance evaluation was robust and to mitigate the risk of overfitting. This use of k-fold 

cross-validation is a robust method for reliably assessing model performance during the hyperparameter 

tuning process [37]. Once the optimal hyperparameter configuration was found, the three models were 

retrained using the entire SMOTE-processed training dataset. 

2.5. Model Testing and Performance Evaluation 

In the final stage, the trained models were evaluated against the unseen test set to assess their 

performance. Initially, decision threshold tuning was applied to the model's output probabilities. This 

was a necessary step, as the standard 0.5 threshold can be ineffective for imbalanced data; the objective 

was to identify a threshold that optimized the F1-score. Model performance was ultimately quantified 

using four standard metrics. The metrics are determined using the standard outputs of a confusion matrix 

(TP, TN, FP, FN). Choosing these measures aligns with prior work in this field [38]. 

 

1. Accuracy 

Accuracy measures the overall correctness of the model, calculated as the ratio of all correct 

predictions to the total number of samples, as defined in Equation (1). 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

2. Precision 

Precision evaluates the accuracy of the positive predictions. It is the ratio of true positives to the 

total number of instances predicted as positive, as detailed in Equation (2). 
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Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

3. Recall (Sensitivity) 

Recall, also known as Sensitivity, determines the model's ability to identify all relevant instances. 

It is calculated as the ratio of true positives to the total number of actual positive instances, as shown 

in Equation (3). 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

4. F1-Score 

The F1-Score provides a single metric that balances Precision and Recall by calculating their 

harmonic mean, as detailed in Equation (4). 

F1-Score = 2 ×
Precision × Recall

Precision+ Recall
 (4) 

The F1-score was selected as the primary evaluation metric for this study. Its choice is justified 

by its capacity to offer a more balanced and dependable evaluation than accuracy on imbalanced 

datasets, especially in a clinical context where the consequences of misclassifying the minority (death) 

class are more severe. 

3. RESULT 

The primary quantitative outcomes of this research, which fulfill the study's objective of creating 

a high-performance classification framework, are presented in this chapter. The findings are organized 

to mirror the methodological workflow, commencing with the identification of the most predictive 

features, proceeding to an evaluation of model performance in incremental scenarios, and culminating 

in a detailed analysis of the top-performing model. The results detailed herein serve to validate the 

contribution of the proposed optimization pipeline. 

3.1. Results of Feature Selection 

The optimization pipeline commenced with identifying the most predictive features via SHAP 

analysis on the training data. Figure 2 presents the SHAP feature importance plot, which establishes a 

clear hierarchy by ordering features based on their mean absolute SHAP values. Such a ranking is 

instrumental in discerning the most influential clinical factors for the model's predictive process [39]. 

 

 
Figure 2. SHAP feature importance ranking 
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The SHAP analysis pinpointed time, ejection fraction, and log serum creatinine as the three most 

influential predictors. Following this, the essential task was to ascertain the optimal quantity of top 

features (top-k) for the model. An experiment was therefore conducted to determine this, with its results 

summarized in Table 2. In this study, attention was directed toward Random Forest, which was selected 

because of its favorable early outcomes. 

 

Table 2. Impact of Top-k Feature Selection on Random Forest Performance 

Number of 

Features 

Accuracy F1-Score Precision Recall 

12 0.9500 0.9143 1.00 0.84 

11 0.9333 0.8947 0.89 0.89 

10 0.9333 0.8947 0.89 0.89 

9 0.9333 0.8889 0.94 0.84 

8 0.9667 0.9474 0.95 0.95 

7 0.9500 0.9189 0.94 0.89 

6 0.9500 0.9143 1.00 0.84 

5 0.9333 0.8889 0.94 0.84 

4 0.9333 0.8947 0.89 0.89 

3 0.9167 0.8718 0.85 0.89 

 

The data in Table 2 shows that the model's peak performance was achieved when using the top 8 

features, with a peak F1-score of 0.9474 and an accuracy of 0.9667. Using more than eight features did 

not yield a significant improvement and instead posed a risk of overfitting. Therefore, the following 

eight features were established as the final feature set: time, ejection fraction, log serum creatinine, age, 

serum sodium, log creatinine phosphokinase, log platelets, and anaemia. 

3.2. Incremental Model Performance Analysis 

In order to assess how each optimization stage influenced the results, five successive experimental 

scenarios were designed. Table 3 provides a comparative overview of the three ensemble algorithms, 

demonstrating how every optimization step contributed to the overall performance. 

 

Table 3. Performance comparison of models in each experimental scenario 

Experimental 

Scenario 

Model Accuracy F1-Score Precision Recall Top-k 

Baseline RF 0.9167 0.8649 0.89 0.84 12 

 XGB 0.8667 0.7778 0.82 0.74 12 

 LGBM 0.9000 0.8421 0.84 0.84 12 

FE (Log Trans) RF 0.9333 0.8889 0.94 0.84 12 

 XGB 0.9167 0.8649 0.89 0.84 12 

 LGBM 0.9167 0.8718 0.85 0.89 12 

SHAP Selection RF 0.9167 0.8649 0.89 0.84 3 

 XGB 0.9167 0.8649 0.89 0.84 9 

 LGBM 0.9333 0.8947 0.89 0.89 9 

Threshold Tuning RF 0.9333 0.8889 0.94 0.84 3 

 XGB 0.9333 0.9000 0.86 0.95 9 

 LGBM 0.9500 0.9189 0.94 0.89 9 

HPO (Optuna) RF 0.9667 0.9474 0.95 0.95 8 

 XGB 0.9500 0.9143 1.00 0.84 10 

 LGBM 0.9500 0.9143 1.00 0.84 6 
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An in-depth analysis of Table 3 reveals a systematic improvement in model performance at each 
stage: 

1. Baseline Performance 

As a baseline, the models were first tested using the full set of 12 features, where the Random 

Forest (RF) achieved an F1 score of 0.8649. 

2. Impact of Feature Engineering 

Applying a logarithmic transformation to handle skewed data provided a notable improvement, 

increasing the RF model's F1-Score to 0.8889. 

3. Significance of Threshold Tuning 

This stage yielded a substantial performance boost across the models, with the XGBoost F1-

Score, for example, jumping to 0.9000. This highlights that optimizing the decision threshold is a 

critical step for imbalanced datasets. 

4. Final Optimization and Peak Performance 

In the final optimization stage using HPO with Optuna, the Random Forest model attained its 

highest performance level. The fully optimized model yielded an Accuracy of 0.9667 and an F1-

score of 0.9474 using an optimal subset of 8 features, which confirmed its status as the superior 

model. 

3.3. Evaluation and Performance Analysis of the Best Model 

The fully optimized Random Forest model, which emerged as the superior performer, underwent 

a detailed performance analysis on the test set using the confusion matrix presented in Figure 3. 

  

 
Figure 3. Confusion Matrix for the Optimized Random Forest (Test Set) 

 

An examination of Figure 3 reveals the model's strong capacity for generalization and leads to the 

subsequent conclusions: 

1. High Accuracy 

An accuracy of 96.67% was attained by the model (58 out of 60 correct predictions) on the 

previously unseen test data. 

2. Superior Clinical Sensitivity 

The model achieved a Recall (Sensitivity) of 94.7% by correctly identifying 18 out of 19 death 

cases. This high True Positive Rate is vital in a medical context, where the ability to detect high-

risk patients is a top priority. 
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3. Balanced Performance 

An F1-score of 0.9474 indicates that the model maintains a strong equilibrium between 

Precision and Recall, which confirms its robust performance on the imbalanced dataset. 

To further assess the model's discriminative ability, especially concerning the imbalanced nature 

of the dataset, the Receiver Operating Characteristic (ROC) curve and Precision-Recall (PR) curve were 

analyzed, as shown in Figure 4. The model demonstrated excellent classification capability with an Area 

Under the ROC Curve (AUC) of 0.96. Furthermore, the PR curve, which is particularly informative for 

imbalanced data, showed a high Area Under the PR Curve (AUPRC) of 0.96, confirming that the model 

maintains high precision even at high recall rates. These results provide strong evidence of the model's 

robust generalization performance. 

 

 
Figure 4. ROC and PR Curves for the Optimized RF Model (Test Set). 

 

The success of the proposed framework is demonstrated by its ability to produce a model with 

both high overall accuracy and crucial sensitivity to the minority (death) class, which represents the key 

priority in this clinical context.  

4. DISCUSSIONS 

This study demonstrates that the systematic optimization framework successfully achieved an 

accuracy of 96.67%, a performance that significantly surpasses previous studies, including the prior best 

method, which achieved 93.36% (Table 4). This success is attributed to the effective and comprehensive 

pipeline: SHAP feature selection successfully identified clinically relevant predictors (such as ejection 

fraction and serum creatinine), while SMOTE and Optuna ensured the model could optimally recognize 

patterns in the minority class (death), as reflected by the high F1-Score. 

Beyond achieving high predictive accuracy, the primary contribution of this research to the field 

of computer science lies in two key areas. First, by integrating SHAP as a core component, this study 

contributes to the growing body of work on Explainable AI (XAI) in medicine. It demonstrates how 

interpretability can be built into the optimization pipeline to address the critical 'black-box' problem, 

thereby increasing the trustworthiness of complex models for clinical applications. Second, the proposed 

holistic pipeline serves as a replicable and systematic framework that can be adapted for developing 

high-performance predictive models in other medical domains that face similar challenges with complex 

and imbalanced data. 
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Table 4. Comparison of accuracy with previous studies 

Reference Sources Method Accuracy (%) 

[14] Extra Tree Classifier 92.62 

[11] Balanced Random Forest (BRF)+Chi2 76.25 

[15] Random Forest+GA 93.36 

[12] Random Forest 86.62 

[13] Multilayer Perceptron+BPSO 91.11 

This study Random Forest+SHAP+Optuna 96.67 

 

Despite the model's excellent performance, a key limitation of the study is the modest size of the 

dataset, a factor that may reduce the model's generalization capacity when applied to broader patient 

populations. The occurrence of one False Negative prediction, when considered alongside this 

limitation, reinforces the model’s intended role as a clinical decision support tool rather than a substitute 

for professional medical judgment. Therefore, the crucial next step involves validating the framework 

on more extensive and varied external datasets before considering further implementation. 

5. CONCLUSION 

This study concludes that a holistic optimization framework, which integrates feature 

engineering, SHAP-based feature selection, data balancing with SMOTE, and hyperparameter tuning 

with Optuna, is a highly effective strategy for enhancing predictive performance in heart failure survival 

classification. Of the models evaluated, the fully optimized Random Forest model demonstrated superior 

performance. The principal contribution of this work is the validation of this systematic framework. As 

a contribution to the field of medical informatics, this framework demonstrates how a systematic 

optimization approach can advance the development of high-performing and interpretable machine 

learning models. This is evidenced by the final model, which achieved a highly competitive accuracy of 

96.67% and an F1-Score of 0.9474, outperforming previously established benchmarks. This result 

underscores that a comprehensive and systematic optimization approach is crucial for unlocking the full 

potential of machine learning on complex clinical data. Although these findings are promising, future 

investigations should prioritize assessing the framework's performance on larger and more diverse 

patient cohorts to establish its generalizability before its potential for clinical application is fully 

realized. 
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