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Abstract 

Dengue fever (DF) remains a global health problem requiring accurate early detection to prevent severe 

complications. This study applies machine learning (ML) algorithms to clinical and laboratory data for improving 

diagnostic accuracy. Six classifiers were compared: Decision Tree (DT), K-Nearest Neighbor (KNN), Logistic 

Regression (LR), Naïve Bayes (NB), Neural Network (NN), and Support Vector Machine (SVM). The dataset 

consists of 1,003 patient records with nine feature columns, of which 989 were used after preprocessing. Class 

distribution was imbalanced, with 67.6% positive and 32.4% negative cases. Model performance was evaluated using 

10-fold cross-validation based on accuracy, precision, recall, F1-score, confusion matrix, and ROC curve analysis. 

The results indicate that DT achieved the highest performance with 99.4% accuracy, 99.4% precision, 99.7% recall, 

and 99.6% F1-score, slightly outperforming NN. KNN, LR, and SVM produced comparable results, while NB 

showed substantially lower accuracy (44.3%) and limited discriminatory power. ROC analysis confirmed these 

findings, with DT, NN, SVM, and LR achieving AUC values between 0.992 and 0.999, whereas NB performed 

poorly. These findings highlight the strong potential of ML algorithms, particularly DT, to support medical decision 

systems, strengthen informatics-based decision support applications, and enhance the accuracy and speed of dengue 

diagnosis in clinical practice.  
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1. INTRODUCTION 

Machine Learning (ML) has become a central approach in medical data analysis due to its ability 

to uncover hidden patterns in complex datasets and generate accurate predictive models. Recent studies 

confirm that ML and deep learning (DL) techniques play a vital role in healthcare, supporting disease 

diagnosis, clinical decision-making, and automation of medical data processing [1],[2]. Applications of 

ML are evident in infectious diseases, where algorithms have been successfully applied to assist 

diagnosis, predict disease progression, and classify severity with high accuracy [3].  

Dengue fever (DF) remains a major public health challenge in tropical countries, including 

Bangladesh [4], with cases increasing annually. Early prediction and classification of DF are crucial to 

prevent severe complications and improve clinical outcomes. Previous studies demonstrated the 

potential of ML models such as Artificial Neural Networks (ANN), Logistic Regression (LR), Decision 

Tree (DT), and Multilayer Perceptrons in classifying DF severity with promising results [5],[6], [7]. 

ML enables the integration of diverse clinical, laboratory, and epidemiological parameters, 

providing robust prediction models [8]. Beyond clinical data, environmental factors such as weather and 
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population density also enhance predictive accuracy [9]. Despite this progress, selecting the most 

appropriate algorithm remains a challenge. 

No single ML algorithm consistently achieves superior performance across different healthcare 

datasets. DTs are interpretable but prone to overfitting with small samples, NB is simple and fast but 

limited by the assumption of feature independence, SVM demonstrates strong performance with high-

dimensional data but requires complex parameter tuning, and KNN is intuitive yet computationally 

expensive for large datasets [10], [11], [12], [13]. This variation underlines the necessity of comparative 

evaluations to identify the most effective approach for specific datasets and application contexts, 

particularly in clinical datasets with potential class imbalance, which is a common challenge in medical 

diagnosis. 

Several recent works have compared ML algorithms for DF prediction, reporting diverse findings. 

Random Forest and SVM are frequently recommended [8], [14], hybrid models such as LSTM–ARIMA 

or combined learning strategies have shown improved early detection performance [15], and clinical 

markers such as pulse pressure and AST/platelet ratio are strong predictors of severe dengue [16]. Other 

studies in Colombia [17] and Latin America [18] also highlighted the advantages of hybrid and 

integrated approaches, while systematic reviews emphasize that algorithm performance depends heavily 

on data characteristics and application domains [19]. 

Recent studies have advanced dengue prediction through hybrid models that integrate 

meteorological and clinical data [20], systematic reviews of ML and DL methods [21], and regional 

applications such as case screening with ML in Latin America [7]. Robust multi-model frameworks 

validated in Brazil and Peru [22], ML-based severity prediction in Puerto Rico [23]. and the use of 

advanced neural architectures with digital epidemiology tools like Google Trends [24], [25], [26], 

further demonstrate the diverse approaches enhancing dengue surveillance and forecasting. 

Despite these global advances, limited studies have specifically examined clinical and laboratory 

datasets from South Asia, particularly Bangladesh. This research gap underscores the need for localized 

comparative analyses. Building on this background, the present study aims to evaluate widely used ML 

classifiers—DT, KNN, LR, NB, NN, and SVM—for dengue fever prediction using Bangladeshi clinical 

and laboratory data, in order to determine which algorithm provides the best predictive performance. 

The evaluation focuses on accuracy, precision, recall, and F1-score, offering both theoretical insights 

into ML performance for DF and practical guidance for healthcare practitioners and policymakers in 

early detection and disease control [4]. 

2. METHOD 

This study is an applied research in the field of machine learning that aims to compare the 

performance of six classification algorithms in predicting dengue fever (DF) based on patients’ clinical 

and laboratory data. The research methodology consists of several stages, namely: 

2.1. Dataset Collection 

The dataset used in this study was obtained from Mendeley Data, titled Predictive Clinical Dataset 

for Dengue Fever Using Vital Signs and Blood Parameters. This publicly accessible dataset was 

originally collected from patients treated at the Upazila Health Complex in Kalai, Joypurhat, 

Bangladesh. The raw dataset consists of 1,003 patient records, each comprising nine features 

representing vital signs and blood parameters. Class distribution in the dataset is moderately imbalanced, 

with 669 positive cases (67.6%) and 320 negative cases (32.4%). Table 1 provides a detailed description 

of the attributes, including their data types and example values, which serve as the foundation for the 

dengue prediction modeling in this study. 
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Table 1. Dengue Dataset Description 

No Attribute Data Type Example Value 

1 Age int64 43 

2 Gender object Male, Female 

3 Hemoglobin float64 12.6 

4 White Blood Cell Count (WBC) float64 2200 

5 Differential Count int64 1, 0 

6 Red Blood Cell Panels 

(RBC Panels) 

int64 1, 0 

7 Platelet Count float64 17000 

8 Platelet Distribution Width  (PDW) float64 11.0 

9 Final Result(Label) int64 1=Positive, 0=Negative 

2.2. Data Preprocessing 

Data preprocessing consisted of three main steps. First, data cleaning was performed by removing 

entries without target labels and handling missing values using median imputation, leaving 989 valid 

samples from the original 1,003 records. Second, categorical variables such as Gender were encoded 

using Label Encoding. Third, numerical features were standardized with StandardScaler to ensure 

comparable scales and avoid bias during model training. These steps prepared the dataset to be clean, 

consistent, and ready for classification. 

2.3. Classification Algorithm Modeling 

In this study, six ML algorithms were employed to build dengue fever (DF) classification models, 

namely: DT, KNN, LR, NB, NN, and SVM. 

DT was selected for its ability to generate interpretable models through decision tree structures 

(implemented with default parameters without limiting max_depth). KNN was used as a simple 

instance-based algorithm (with k=5 neighbors and Euclidean distance metric). LR was considered due 

to its strength in modeling the relationship between predictor variables and binary target variables (L2 

regularization, solver=lbfgs, and maximum iteration of 1000). NB was chosen for its lightweight and 

efficient nature, particularly when dealing with datasets containing a large number of features 

(GaussianNB variant). NN was applied to explore complex non-linear patterns in patient data, 

leveraging its capacity to adjust weights across multiple layers (a feedforward neural network with one 

hidden layer of 100 neurons, ReLU activation, and Adam optimizer, trained for up to 1000 iterations). 

SVM was included for its strong performance in handling high-dimensional data (with linear kernel and 

probability estimates enabled). 

Each algorithm was implemented using the preprocessed dataset, which had undergone missing 

value imputation, normalization, and categorical variable encoding. The initial parameters of the 

algorithms were set to default configurations, with several adjustments applied to improve performance. 

Although the dataset shows moderate class imbalance (67.6% positive vs. 32.4% negative), no 

oversampling technique such as SMOTE was applied in order to maintain the original distribution of 

the data. This limitation is acknowledged as it may affect the generalization of certain classifiers such 

as NB. 

2.4. Model Evaluation 

One of the commonly used methods to evaluate the performance of machine learning models is 

the confusion matrix, which presents a comparison between predicted outcomes and actual data [27]. 

This matrix contains the predicted target values compared against the actual target values. The predicted 
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data are the values obtained from the machine learning model, while the actual data represent the true 

values. An illustration of the confusion matrix is shown in figure 1. The confusion matrix provides a 

detailed overview of the number of correct predictions (True Positives/TP, True Negatives/TN) as well 

as incorrect predictions (False Positives/FP, False Negatives/FN). 

 

 
Figure 1. Confusion Matrix [27] 

 

In the context of dengue detection, the positive class represents patients diagnosed with dengue 

fever, while the negative class indicates patients not diagnosed with dengue fever. Based on this matrix, 

several evaluation metrics can be calculated to assess the quality of the model, namely: accuracy, 

precision, recall, and F1-score. The accuracy metric can be computed using Equation (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

Meanwhile, precision is defined by Equation (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

Next, recall is calculated using Equation (3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

Finally, the F1-score can be computed using Equation (4). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
 𝑃𝑟𝑒𝑠𝑖𝑠𝑖 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 +𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

3. RESULT 

After the training process, model performance was evaluated using the confusion matrix, which 

illustrates the comparison between predicted outcomes and actual conditions. The following is an 

explanation of the confusion matrices produced by each ML algorithm. 

3.1. Evaluation of the Decision Tree Algorithm 

The confusion matrix results for the DT algorithm are presented in figure 2, showing that the 

model successfully classified 667 positive cases as positive (TP) and 316 negative cases as negative 

(TN). However, there were still 2 positive cases incorrectly classified as negative (FN) and 4 negative 
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cases misclassified as positive (FP). These findings indicate that DT performs fairly well in recognizing 

both classes, although some errors remain in predicting the negative class. 

Using Equations (1) through (4), the accuracy, precision, recall, and F1-score values were 

calculated. The performance resulted in an accuracy of 99.4%, precision of 99.4%, recall of 99.7%, and 

an F1-score of 99.6%. This indicates that the DT model is capable of balancing between prediction 

accuracy for positive cases and the ability to capture all positive instances. 

 

 
Figure 2. Confusion Matrix of the Decision Tree Algorithm 

3.2. Evaluation of the K-Nearest Neighbor Algorithm 

Figure 3 presents the confusion matrix of the KNN algorithm. The classification results with k = 

5 show that 313 samples were correctly classified as negative and 667 samples as positive. However, 

there were still 7 false positive (FP) cases and 2 false negative (FN) cases. 

Using equations (1) to (4), the accuracy, precision, recall, and F1-score can be calculated. The 

performance yielded an accuracy of 99.1%, precision of 99.0%, recall of 99.7%, and F1-score of 99.3%. 

Although there were minor misclassifications, particularly in positive cases that should have been 

detected, KNN still demonstrated very good performance and can be considered reliable in detecting 

dengue patients. 

 

 
Figure 3. Confusion Matrix of the K-Nearest Neighbor Algorithm 

3.3. Evaluation of the Logistic Regression Algorithm 

Figure 4 presents the confusion matrix of the LR algorithm. This model demonstrates excellent 

performance, with a low number of type I errors (FP) and no type II errors (FN). The figure shows that 

LR produced a pattern identical to SVM, with 312 true negative samples, 669 true positive samples, 8 

false positive cases, and 0 false negative cases. 

Using equations (1) to (4), the accuracy, precision, recall, and F1-score were calculated. The 

performance achieved an accuracy of 99.2%, precision of 98.7%, recall of 100%, and F1-score of 99.4%. 
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These results indicate that LR has excellent performance in detecting disease cases, making it a reliable 

and robust model in this study. 

 

 
Figure 4. Confusion Matrix of the Logistic Regression Algorithm 

3.4. Evaluation of the Naive Bayes Algorithm 

Figure 5 presents the confusion matrix of the NB algorithm. This model performed very well in 

avoiding type I errors (FP = 0), meaning no healthy patients were misdiagnosed as dengue positive. 

However, its main weakness lies in the extremely high number of type II errors (FN), where 551 positive 

patients failed to be detected and were instead classified as negative. Out of a total of 989 test samples, 

NB correctly classified only 320 negative samples and 118 positive samples. 

Using equations (1) to (4), the accuracy, precision, recall, and F1-score were calculated. The 

results yielded an overall accuracy of 44.3%, precision of 100%, recall of 17.6%, and an F1-score of 

only 30.3%. These findings confirm that although the model avoids misdiagnosis of healthy patients, its 

performance is very poor in recognizing patients truly infected with dengue, making it unsuitable for 

application to this dataset. 

 

 
Figure 5. Confusion Matrix of the Naive Bayes Algorithm 

3.5. Evaluation of the Neural Network Algorithm 

Figure 6 presents the confusion matrix of the NN algorithm. This model demonstrates excellent 

performance with a balance between type I and type II errors. Out of the total test data, 314 samples 

were correctly classified as negative and 668 samples as positive. Misclassifications were relatively 

small, with only 6 false positives and 1 false negative. 

Using equations (1) to (4), the accuracy, precision, recall, and F1-score were calculated. The 

performance results yielded an accuracy of 99.4%, precision of 99.1%, recall of 99.9%, and an F1-score 

of 99.5%. With these results, NN stands out as the best algorithm in this study, as it was able to detect 

nearly all cases with a very low error rate, both for healthy patients and those infected with dengue. 
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Figure 6. Confusion Matrix of the Neural Network Algorithm 

3.6. Evaluation of the Support Vector Machine Algorithm 

Figure 7 shows the confusion matrix of the SVM algorithm. Out of the total test data, 312 samples 

were correctly classified as negative and 669 samples as positive. There were only 8 false positive cases 

and no false negatives. 

Using equations (1) to (4), the accuracy, precision, recall, and F1-score were calculated. The 

performance results yielded an accuracy of 99.2%, precision of 98.7%, recall of 100%, and an F1-score 

of 99.4%. These results confirm that SVM can detect all positive cases without any being missed, with 

a very minimal type I error. Its performance is highly competitive and nearly on par with KNN, making 

SVM one of the strongest models in this study. 

 

 
Figure 7. Confusion Matrix of the Support Vector Machine Algorithm 

 

These confusion matrix results are further validated through ROC curve analysis, which provides 

insight into each algorithm's discriminative ability. 

3.7. ROC Curve Analysis 

In addition to using the confusion matrix and evaluation metrics (accuracy, precision, recall, and 

F1-score), this study also utilizes the Receiver Operating Characteristic (ROC) curve to analyze the 

ability of each algorithm to distinguish between the positive class (having dengue fever) and the negative 

class (not having dengue fever). The ROC curve maps the relationship between True Positive Rate 

(TPR/Recall) and False Positive Rate (FPR), while the Area Under the Curve (AUC) value is used as a 

quantitative indicator of the model's discriminative performance. The closer the value is to 1, the better 

the model's ability to correctly classify both classes. Figure 8 presents the ROC curves of the 6 

algorithms used. 
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Figure 8. ROC Curve 

 

In the DT algorithm, the ROC curve shows fairly good performance, but there are still fluctuations 

in several parts of its curve. This indicates that although DT can produce high predictions under certain 

conditions, there is a potential for classification errors when faced with complex data or uneven feature 

distributions. The curve not fully approaching the ideal line (top left corner) suggests that this model is 

still quite vulnerable to overfitting and data variation. 

In the KNN algorithm, the ROC curve shows reasonably good performance, although not as high 

as SVM or DT. Its distance-based characteristics make performance highly influenced by the data 

distribution and the chosen value of k. While the model can classify with adequate accuracy, recall 

(sensitivity) may decrease when test data points are inconsistently spaced. Nevertheless, overall, KNN 

still demonstrates an acceptable discriminative ability. 

The LR algorithm displays an ROC curve that is quite close to the ideal area, although slightly 

below SVM. This indicates that LR, as a linear model, can provide effective class separation in binary 

classification cases. The advantage of LR lies in its stability in generating interpretable probability 

predictions, so even though its curve does not always dominate compared to more complex algorithms 

like NN or SVM, LR remains a highly reliable baseline model.Overall, the ROC curve analysis 

emphasizes that each algorithm has its own strengths and limitations. SVM and NN occupy the top 

positions in terms of discriminative ability, while LR provides a balance between stability and accuracy. 

DT and KNN still yield good results despite certain limitations, while NB offers a simple yet effective 

solution. Thus, the ROC curve serves as a comprehensive visual proof that machine learning-based 

models can be significantly utilized in supporting the early detection of dengue fever. 

On the other hand, the NB algorithm shows a moderate performance in its ROC curve. Its pattern 

demonstrates good discriminative ability, but not as strong as algorithms like SVM or NN. This is 

understandable given that the independence assumption among features used by NB is often not fully 

met in complex medical data. Nevertheless, NB still offers competitive results with its main advantages 

being model simplicity and high computational speed. 

Further analysis of the NN algorithm reveals that the generated ROC curve approaches optimal 

performance. The NN curve is generally smooth and tends to align closely with the ideal line, indicating 

that this model can effectively learn complex patterns from the data. The relatively high AUC for NN 

demonstrates its ability to identify dengue fever patients with excellent accuracy. This advantage is 

supported by the network structure that captures non-linear relationships among features, allowing NN 

to provide highly competitive performance compared to other algorithms. 
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In contrast to the DT algorithm, SVM presents an excellent ROC curve with nearly perfect 

proximity to the ideal point. This reflects SVM's strength in constructing the optimal hyperplane to 

separate the two classes of data with maximum margin. The high ROC curve for SVM serves as evidence 

that this algorithm is very effective in detecting both truly positive and negative patients, thereby 

minimizing classification errors. Thus, SVM stands out as one of the most superior algorithms in this 

research context. 

Overall, the ROC curve analysis emphasizes that each algorithm has its own strengths and 

limitations, and these observations provide a foundation for further evaluation using learning curves. 

3.8. Learning Curve Analysis 

Figure 9 shows the combined learning curves of all six machine learning algorithms. Decision 

Tree (DT) and Neural Network (NN) consistently achieve high training and validation scores, indicating 

strong predictive performance. Naive Bayes (NB) shows a notable gap between training and validation, 

suggesting underfitting. K-Nearest Neighbors (KNN), Logistic Regression (LR), and Support Vector 

Machine (SVM) display stable curves with minor differences, reflecting balanced learning without 

overfitting. These curves complement the ROC analysis by illustrating how models learn over increasing 

training sizes, highlighting their stability and generalization potential. 

These results confirm the effectiveness of DT and NN in this classification task, as illustrated in 

Figure 9, and provide further evidence of model robustness across different training sizes. 

 

 
Figure 9: Combined Learning Curve of All Models 

3.9. Performance Comparison Evaluation of Algorithms 

Table 2 presents a comparison of the performance of six machine learning algorithms in detecting 

dengue fever cases based on four evaluation metrics: accuracy, precision, recall, and F1-score. The 

results indicate the varying capabilities of each model in classifying the dengue dataset, ranging from 

DT, KNN, LR, NB, NN, to SVM. 

 

Table 2. Performance Comparison of ML Algorithms 

Model Accuracy (%) Precision (%) Recal l (%) F1-score (%) 

DT 99.4 99.4 99.7 99.6 

KNN 99.1 99.0 99.7 99.3 

LR 99.2 98.7 100.0 99.4 

NB 44.3 100.0 17.6 30.3 

NN 99.4 99.1 99.9 99.5 

SVM 99.2 98.7 100.0 99.4 
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The performance comparison in Table 2 aligns with both ROC and learning curve analyses, 

confirming DT and NN as the top-performing models and NB as the least effective. 

NB obtained the lowest results with only 44.3% accuracy, 17.6% recall, and 30.3% F1-score. 

Although its precision reached 100%, the model failed to detect most positive cases, making it unsuitable 

for this dataset. 

In contrast, DT, KNN, LR, NN, and SVM all demonstrated strong and competitive performance. 

SVM and LR achieved perfect recall (100%), ensuring no positive cases were missed. DT recorded the 

highest accuracy (99.4%) with a strong balance between precision and recall, while KNN and NN also 

showed excellent performance close to the best values. 

4. DISCUSSIONS 

The findings of this study show that Decision Tree (DT), Neural Network (NN), Logistic 

Regression (LR), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM) achieved excellent 

results in dengue fever detection, each with accuracy above 99%. DT and NN obtained the highest 

accuracy (99.4%) with balanced precision and recall, highlighting the interpretability of DT and the 

capability of NN to capture complex patterns. 

LR and SVM also performed competitively, both achieving perfect recall (100%) and 

successfully detecting all positive cases. Although their precision was slightly lower than DT and NN, 

this characteristic is particularly valuable in clinical applications where minimizing false negatives is 

critical for early diagnosis. KNN showed stable performance, though slightly below DT and NN. 

By contrast, Naïve Bayes (NB) performed poorly, with accuracy of 44.3% and recall of only 

17.6%. Despite its perfect precision, NB failed to recognize most positive cases, which can be attributed 

to its strong independence assumption that does not fit clinical data complexity. 

The ROC curve analysis and learning curve results further support these findings, showing that 

SVM, NN, and LR not only have strong discriminative ability but also maintain stable learning across 

increasing training sizes, whereas NB exhibits underfitting and limited generalization. These results 

suggest that model selection in medical diagnosis must prioritize recall, since failing to detect positive 

patients carries serious risks. Moreover, the combination of ROC and learning curve analyses provides 

a comprehensive understanding of each algorithm's performance, highlighting DT and NN as robust 

choices for accurate and reliable dengue detection. 

The results align with previous studies [5], [6], which emphasized the effectiveness of DT, NN, 

and SVM in infectious disease prediction. Kaur et al. [14] further highlighted the reliability of ensemble 

and tree-based methods for dengue prognosis. Similarly, Zhao et al. [17] demonstrated the strength of 

neural networks for dengue forecasting in Colombia, while Bohm et al. [7] and Madewell et al. [23] 

confirmed that ML-based case screening can outperform traditional diagnostic indicators. These 

comparisons reinforce that DT, NN, and SVM consistently emerge as high-performing classifiers across 

different epidemiological contexts. 

Threats to validity should also be noted. Internally, although 10-fold cross-validation reduces 

variance, the relatively small dataset size may still risk overfitting, particularly for DT and NN. 

Externally, the dataset originates from Bangladesh and may not fully represent clinical populations in 

other countries, limiting generalizability. Construct validity is also a concern, since NB’s poor 

performance suggests that underlying assumptions of feature independence may not hold in clinical data. 

Recognizing these limitations is crucial for interpreting the results and guiding future applications. 

5. CONCLUSION 

Based on the evaluation metrics, five classification algorithms—Decision Tree (DT), K-Nearest 

Neighbor (KNN), Logistic Regression (LR), Neural Network (NN), and Support Vector Machine 
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(SVM)— achieved excellent performance with accuracy above 99% and F1-scores between 99.3% and 

99.6%. These results confirm their effectiveness in detecting dengue cases, with differences mainly in 

the trade-off between precision and recall. 

SVM and LR achieved perfect recall (100%), ensuring no positive cases were missed, although 

their precision was slightly lower. DT and NN attained the highest accuracy with better balance between 

precision and recall, while KNN performed consistently but slightly below them. In contrast, Naïve 

Bayes (NB) showed poor recall and low overall accuracy, making it unsuitable for this dataset. ROC 

analysis reinforced these findings: SVM, NN, and LR had the best discriminative ability, DT and KNN 

remained competitive, while NB performed poorly, consistent with its other metrics. 

This study contributes to the field of Informatics by demonstrating how ML classifiers can be 

integrated into computer-based decision support systems for early dengue detection, reducing diagnostic 

errors in clinical practice. For future work, larger and multi-center datasets, as well as the integration of 

environmental or temporal features, should be explored to enhance generalizability and robustness 

across diverse populations. 
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