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Abstract 

Timely and accurate prediction of cocoa fruit ripeness is critical for optimizing harvest schedules, improving yield 

quality, and supporting post-harvest processing. Conventional visual inspection methods are prone to subjectivity 

and inconsistencies, especially when distinguishing among multiple ripeness levels based on fruit age. This study 

proposes a deep learning approach that leverages multi-model convolutional neural network transfer learning 

combined with image data augmentation to classify cocoa fruit into four maturity stages derived from fruit age. An 

augmented dataset of cocoa fruit images was used to fine-tune five well-established pre-trained models: 

MobileNetV2, Xception, ResNet50, DenseNet121, and DenseNet169. Data augmentation techniques were employed 

to increase variability and improve model generalization. Model evaluation was conducted using a standard 80:20 

training-to-testing split to ensure sufficient data for learning while preserving a representative test set across all 

ripeness classes. The results demonstrate that DenseNet169 consistently outperformed other models, achieving the 

highest average accuracy of 85,05%, followed by DenseNet121 84,06%. Across all models, the use of data 

augmentation led to notable performance gains, highlighting its importance in enhancing predictive capability and 

reducing overfitting. The proposed framework shows promising potential for automating ripeness classification in 

agricultural contexts, offering a robust, scalable, and accurate solution for intelligent cocoa harvest management. 

This work contributes to the growing application of deep learning in precision agriculture, particularly in addressing 

fine-grained classification problems using limited but enriched visual data. 
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1. INTRODUCTION 

Cocoa (Theobroma cacao L.) is a national strategic commodity that plays an important role in 

supporting the Indonesian economy and food industry [1], [2]. Data from the Central Statistics Agency 

(BPS) shows that in 2023, Indonesia's cocoa production reached more than 632,120 tons [3], making it 

the third largest cocoa producer in the world after Ivory Coast and Ghana [4]. However, the quality of 

the cocoa harvest is greatly influenced by the timing of the harvesting process [5]–[8]. Harvesting unripe 

or overripe fruit can reduce the quality of the beans, impacting the taste of processed products such as 

chocolate [9]–[11], and causes economic losses to farmers and downstream industry players [12]. So 

far, determining the level of ripeness of cocoa fruit still relies on manual visual methods by farmers [13], 

[14], which is subjective and prone to inconsistency [15], [16].  

The challenge becomes even greater when it is necessary to classify multiple maturity levels that 

have subtle visual differences [17], [18]. Traditionally, ripeness classification relies on manual 

inspection based on pod color, texture, and size, procedures that are time-consuming, subjective, and 

prone to human error. Variability in visual appearance due to environmental factors further complicates 

the assessment process. This study addresses the problem of automating ripeness prediction using a 
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data-driven approach grounded in deep learning, with the goal of minimizing inconsistencies and 

enhancing decision-making efficiency at the field level. Deep learning technology, particularly 

Convolutional Neural Network (CNN), has proven effective in solving various image classification 

problems in the agricultural sector [19]–[25], including for predicting fruit ripeness [25]–[31]. However, 

most of the previous approaches only use one to three types of CNN architectures [32]–[41] and face 

performance limitations when the amount and variety of data is limited [42]–[46].  

On the other hand, variations in lighting, shooting angles, and differences in fruit age in field 

images are challenges in themselves that require a more complex and adaptive classification approach 

[47]–[51]. This study offers an innovative and novel approach, namely by comparing several CNN 

architectures through a transfer learning-based multi-model CNN strategy using five popular pre-trained 

models: MobileNetV2, Xception, ResNet50, DenseNet121, and DenseNet169. This multi-model 

approach allows for comparison and integration of the strengths of each model in extracting visual 

features in cocoa fruit images, resulting in a more accurate classification for four ripeness levels based 

on fruit age. The main novelty of this research is the extensive application of image augmentation and 

processing techniques to enrich the amount and variety of training data.  

The augmentation techniques used include rotation, flipping, zooming, shifting, shearing, 

brightness adjustments, and filling empty pixels using interpolation. All aimed at creating a more 

realistic and diverse representation of the data. This strategy significantly improves the model's 

generalization ability and reduces the risk of overfitting, especially in the context of limited real-world 

data. The research formulates cocoa ripeness classification as a supervised image classification problem, 

where the objective is to predict one of four discrete maturity classes using RGB images as input. The 

challenge lies in learning discriminative visual features from relatively subtle color and texture changes 

across ripeness stages. Performance is measured using classification accuracy on test data, highlighting 

the potential of this approach to serve as a reliable tool for ripeness monitoring in agricultural 

applications. With this approach, the research is expected to contribute to the development of an 

intelligent system for cocoa ripeness classification that is not only accurate and robust, but also efficient 

and replicable for various other agricultural commodities. The application of this system has significant 

potential to strengthen precision agriculture practices and data-driven crop management, particularly in 

tropical cocoa-producing countries like Indonesia. 

2. METHOD 

The proposed methodology consists of a sequential pipeline designed to predict cocoa fruit 

ripeness through deep learning-based image classification. As illustrated in Figure 1, the process 

comprises five primary stages: data collection, data preparation, augmentation, modeling, and 

evaluation. 

 

 
Figure 1. Process Pipeline of Cocoa Ripeness Classification 

 

Figure 1 Cocoa Maturity Classification Process Flow starting from data collection, data 

preparation, augmentation, modeling and evaluation. 
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2.1. Data Collection 

The image dataset used in this study consists of cocoa fruit photographs captured under natural 

lighting conditions, with varied backgrounds and orientations. Each image is labeled based on the age 

of the fruit, which is grouped into four ripeness stages: stage 1 (0–2 months), stage 2 (2–4 months), stage 

3 (4–6 months), and harvest stage (>6 months). These stages were determined based on field 

measurements and expert annotation using harvest-day metadata, ensuring biological relevance and 

consistency in maturity classification. To support generalization, image acquisition was conducted over 

different time periods and environmental conditions. The dataset aims to simulate real-world variability, 

allowing models to learn features that are robust against external noise and inconsistencies. All collected 

data were stored in high-resolution format before being processed in subsequent stages. 

2.2. Data Preparation 

The raw images were first passed through a preprocessing pipeline to ensure uniformity in size 

and structure. This step began with manual cropping of each image to isolate the cocoa fruit and remove 

irrelevant background content, improving the signal-to-noise ratio in feature extraction. After cropping, 

all images were resized to 128×128 pixels, a resolution chosen to balance computational efficiency and 

preservation of spatial details relevant to fruit surface texture and shape. Normalization was also applied 

by scaling pixel values to a range of [0, 1], which helps stabilize training dynamics in convolutional 

neural networks. Labels were encoded into categorical classes corresponding to the four ripeness levels. 

This preparation ensured that the models received consistent input formats [52], enabling fair 

comparison across architectures during the modeling phase. 

2.3. Data Augmentation 

 

Table 1. Data Augmentation Technique’s Purpose and Effect 

Augmentation Value Purpose and Effect 

rotation_range 20 

degrees 

Randomly rotates the image within ±20° to simulate different 

orientations of fruit. 

width_shift_range 0.15 Translates the image horizontally by up to 15% to mimic variation 

in positioning. 

height_shift_range 0.15 Applies vertical translation up to 15% to simulate changes in 

camera perspective. 

zoom_range 0.2 Zooms in/out by up to 20% to account for varying camera 

distances. 

shear_range 0.15 Applies affine transformation to simulate slant or distortion in the 

image. 

brightness_range [0.8, 1.2] Adjusts image brightness to replicate different lighting conditions 

in the field. 

horizontal_flip True Flip the image horizontally to handle the left-right symmetry of 

cocoa fruit. 

fill_mode 'nearest' Fills missing pixels after transformation using nearest-neighbor 

interpolation. 

 

To improve the robustness and generalization of the models, extensive image augmentation was 

performed. The augmentation process included several randomized transformations. Specifically, the 

integration of comprehensive image data augmentation techniques including geometric transformations 

such as rotation, width shift, height shift, zoom, shear, and horizontal flip, as well as photometric 
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transformation through brightness adjustment, was critical for simulating diverse real-world visual 

conditions encountered during cocoa fruit imaging. ata augmentation acts as a form of regularization by 

artificially expanding the training set’s variability, preventing overfitting and improving model 

generalization, especially when working with limited datasets in computer vision tasks [53]. By 

increasing data diversity without requiring additional manual collection, the augmented dataset allows 

models to learn more invariant and discriminative features, particularly for subtle maturity differences 

between cocoa ripeness levels. The data augmentation techniques applied in this study are summarized 

in Table 1. Empirical studies demonstrate that combining multiple augmentation types outperforms 

single transformations and offers comparable generalization gains to more complex domain 

generalization approaches [54]. 

2.4. Modelling 

The augmented dataset was used to fine-tune five different pre-trained convolutional neural 

networks: MobileNetV2, XceptionNet, ResNet50, DenseNet121, and DenseNet169. These models 

were selected for their proven performance on image classification benchmarks and varying 

architectural complexity. Notably, MobileNetV2 has been successfully applied for fruit-related vision 

tasks, achieving high accuracy [55]. Xception, which utilizes depthwise separable convolutions, has 

demonstrated strong accuracy and efficiency across multiple image classification benchmarks [52] and 

[56]. ResNet50 variants have shown high accuracy in distinguishing maturity stages in palm fruit 

datasets [57]. DenseNet121, characterized by dense connectivity facilitating gradient flow and feature 

reuse, has demonstrated superior accuracy (exceeding 94 %) in cocoa fruit disease classification tasks 

when compared directly with MobileNetV2 [58]. DenseNet169 was ranked among the top performing 

models in recent avocado ripeness classification studies when compared with other DenseNet variants 

[59]. Each model was initialized with weights pre-trained on ImageNet and adapted to the cocoa ripeness 

classification task through transfer learning. Model evaluation was conducted using a standard 80:20 

train-test split, where 80% of the data was used for training and 20% for testing. The class distribution 

was preserved in both sets to ensure a representative evaluation. The proposed model architecture is 

designed based on transfer learning using pre-trained convolutional neural networks (CNNs) combined 

with a classification head tailored for cocoa ripeness classification. 

2.5. Modelling 

The evaluation stage is conducted to measure the model’s performance in classifying cocoa pod 

ripeness based on age categories. To assess the model's ability to distinguish between these four ripeness 

levels, various evaluation metrics—namely accuracy, precision, recall, and F1-score are employed, as 

described in [60], and detailed in Equations 1–4. In the context of multiclass classification, True 

Positives (TP) indicate the number of instances correctly classified into a particular class, True 

Negatives (TN) represent instances correctly identified as not belonging to that class, False Positives 

(FP) refer to instances wrongly assigned to that class, and False Negatives (FN) are cases where 

instances of a given class are misclassified as another. Given the imbalance in the distribution of samples 

across the ripeness classes, relying solely on accuracy may provide a misleading evaluation. Therefore, 

precision, recall, and F1-score are included to offer a more comprehensive assessment. These metrics 

help account for the uneven class representation by evaluating how well the model performs per class, 

especially in detecting minority classes that may be underrepresented in the dataset. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 
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F1 − Score =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (4) 

 

3. RESULT AND DISCUSSION 

3.1. Data Collection 

This study utilizes the RipSetCocoaCNCH12 dataset, a curated collection of cocoa pod images 

systematically categorized into four ripeness stages: stage 1 (C1), stage 2 (C2), stage 3 (C3), and harvest 

stage (C4) based on the age of the fruit after pollination [61]. Each image in the dataset is labeled with 

its corresponding maturity level and was acquired under natural lighting conditions, representing 

realistic field scenarios. Figure 2 presents the number of samples available for each cocoa pod ripeness 

category. The dataset includes diverse pod appearances, covering variations in shape, surface texture, 

and pigmentation, which are critical visual indicators of ripeness progression. The dataset supports 

research in visual classification by offering well-annotated, high-resolution images, enabling effective 

training and evaluation of deep learning models. In this work, only the frontal view of each pod was 

used to maintain consistency in visual features across samples. Prior to model training, all images 

underwent preprocessing steps, including cropping to isolate the pod from the background and resizing 

to 128×128 pixels to match model input requirements. The diversity and quality of the dataset make it 

suitable for benchmarking convolutional neural network performance in ripeness classification tasks 

and provide a realistic foundation for practical implementation in precision agriculture. 

 

 
Figure 2. Number of Images in Each Ripeness Stage Category 

 

Figure 2 shows the number of images in each category of chocolate maturity stage starting from 

C1 (0-2 months) 41%, C2 (2-4 months) 17%, C3 (4-6 months) 23% and C4 (>6 months) 19%. 

3.2. Data Preparation 

The data preparation process focused on isolating individual cocoa fruits from complex image 

backgrounds and standardizing their format for classification. The original dataset comprised RGB 

images accompanied by segmentation masks that highlighted the regions corresponding to cocoa fruits. 

These masks were utilized to locate the contours or boundaries of each fruit instance within an image. 

Once the contours were identified, a bounding box was generated around each fruit, and the region 

inside the box was extracted. As depicted in Figure 3, the segmentation mask is used to extract the 

C1 (0-2 months)
41%

C2 (2-4 months)
17%

C3 (4-6 months)
23%

C4 (>6 months)
19%

Class Distribution (#Instances)
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relevant region from the original image. To enhance precision, only sufficiently large contours were 

retained to avoid including noise or irrelevant objects. The resulting cropped images contained only the 

fruit of interest with the background removed, ensuring that the model could focus solely on features 

pertinent to ripeness classification. An example of this can be seen in Figure 3. 

 

   
Figure 3. Example of A Cocoa Pod Image, Its Corresponding Segmentation Mask, and The Resulting 

Cropped Output 

 

Figure 3 shows an example of a cocoa fruit image, its segmentation, and its cropping results. Each 

isolated fruit image was then converted to a standardized format by resizing it to a fixed resolution of 

128 × 128 pixels. Additionally, pixel values were normalized to a [0,1] scale to facilitate stable neural 

network training [62]. The cropped images were saved with transparent backgrounds to eliminate any 

residual noise from the surrounding environment. This step not only improved the quality of the training 

data but also contributed to reducing overfitting and enhancing generalization performance during the 

learning phase. The combination of instance-level cropping, background removal, and image 

normalization provided a clean and consistent dataset for training deep learning models with improved 

accuracy and robustness. Figure 4 illustrates representative samples of cocoa fruit across four ripeness 

stages, categorized based on chronological age since fruit set. 

 

Stage 1 (0-2 months) Stage 2 (2-4 months) Stage 3 (4-6 months) Stage 4 (>6 months) 

    
Figure 4. Sample of Cocoa Ripeness Stages 

 

Figure 4 shows an example of cocoa fruit ripeness levels from stages 1 to 4. Stage 1 (0–2 months) 

is characterized by a predominantly green surface with minimal pigmentation, indicating the early 

developmental phase where physiological changes are minimal. In Stage 2 (2–4 months), fruits begin to 

show purplish discoloration or streaks, marking the onset of biochemical maturation processes such as 

chlorophyll degradation and anthocyanin accumulation. These visual cues provide early indicators of 

internal physiological changes relevant for harvest timing. As the fruit progresses to Stage 3 (4–6 

months), the color transition intensifies toward a reddish-brown hue with more uniform distribution, 

reflecting the progression of sugar accumulation and pericarp softening. In the final Stage 4 (>6 months), 

cocoa pods exhibit a dominant yellow coloration, indicating full ripeness and optimal harvest readiness. 

These color and texture transformations are critical markers for classifying ripeness in image-based 

analysis systems. Leveraging these visual features through convolutional neural networks enables non-

destructive, automated assessment of ripeness stages with high accuracy. 
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3.3. Data Augmentation 

To address the issue of limited dataset size and to improve the model's generalization capability, 

this study applied a comprehensive data augmentation strategy to the training images. Data 

augmentation artificially increases the diversity and volume of training data by applying a range of 

transformations that simulate real-world variabilities. This process is especially crucial in image 

classification tasks involving agricultural products, where external factors like lighting, orientation, and 

background may influence model performance. The visual outcomes of various data augmentation 

techniques are shown in Table 2. 

 

Table 2. Results of Data Augmentation 

No Augmentation Method Original Image Vs Augmented Image 

1 rotation_range 

 
2 width_shift_range 

 
3 height_shift_range 

 
4 zoom_range 

 
5 shear_range 

 
6 brightness_range 

 
7 horizontal_flip 

 
8 fill_mode 

 

 

Each augmentation operation was applied randomly during training, ensuring that the model 

encountered a different transformed version of the image on each epoch. This stochasticity plays a key 

role in reducing overfitting by preventing the model from memorizing fixed patterns and instead forcing 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5298


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 5, October 2025, Page. 3871-3885 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5298 

 

 

3878 

it to learn more robust, abstract features. The inclusion of spatial (rotation, shift, shear), photometric 

(brightness), and geometric (zoom, flip) transformations simulates real-world variability that might 

occur in uncontrolled agricultural environments. These augmentations also help the model become 

invariant to irrelevant factors such as pod alignment, illumination differences, and slight occlusions, 

which are common in field conditions. Ultimately, this augmentation strategy significantly contributes 

to increasing the effective size and richness of the training dataset, leading to improved classification 

performance, as reflected in the evaluation metrics reported in the experimental results. 

3.4. Modelling 

As illustrated in Figure 5, the pipeline begins with a set of input images, which can be either raw 

or augmented, depending on the experimental configuration. These images are fed into a base CNN 

model, which acts as a feature extractor. 

 

 
Figure 5. Model Architecture with Transfer Learning 

 

The base models used in this study include MobileNetV2, XceptionNet, ResNet50, DenseNet121, 

and DenseNet169. Each of these models was pre-trained on the ImageNet dataset and fine-tuned for the 

cocoa dataset by replacing their original classification layers with a new custom head. The convolutional 

blocks of the base model act as feature extractors [63], transforming the input image into high-level 

feature maps that capture spatial patterns and important structures. These feature maps are then passed 

to a Global Average Pooling (GAP) layer, which compresses each map into a single value by computing 

the average across all spatial dimensions. This approach significantly reduces the number of parameters 

and helps prevent overfitting while maintaining spatial invariance. Following the GAP layer, a dropout 

layer is applied with a dropout rate (e.g., 0.3) to further mitigate overfitting by randomly deactivating a 

subset of neurons during training. The final layer is a dense softmax classifier with four output neurons, 

corresponding to the four maturity stages of cocoa fruits. This layer computes the probability distribution 

over the ripeness classes, and the class with the highest probability is selected as the predicted maturity 

level. 

The model was trained for a maximum of 50 epochs using a batch size of 32. The Adam optimizer 

with a learning rate of 1e-4 was employed to ensure stable and efficient convergence during training. 

To prevent overfitting, early stopping was applied with a patience value of 10, allowing the training 

process to halt automatically if no improvement in validation loss was observed for 10 consecutive 

epochs. This modular architecture not only leverages the strong representational capabilities of pre-

trained CNNs but also introduces lightweight adaptations through global average pooling and dropout, 

making it highly effective and computationally efficient for the target classification task. 
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3.5. Evaluation 

To assess the effectiveness of the proposed classification model in identifying cocoa ripeness 

stages, a series of performance metrics were evaluated. These include accuracy, precision, recall, and 

F1-score, which provide a comprehensive view of the model's predictive capabilities across all classes. 

Table 3 summarizes the evaluation metrics obtained from the test dataset. 

 

Table 3. Model Performance Evaluation Results 

 

The performance evaluation results demonstrate that the proposed deep learning-based 

classification models exhibit significant improvements when augmented training data is applied, 

confirming the importance of data diversity in image-based agricultural tasks. Furthermore, the superior 

performance of transfer learning-based models highlights the benefits of leveraging pretrained 

convolutional neural networks for domain specific classification tasks. Transfer learning has proven 

particularly useful in agricultural contexts where acquiring large annotated datasets is often difficult. To 

better illustrate the comparative performance of the proposed CNN models in classifying cocoa pod 

ripeness, a graphical visualization of the evaluation metrics is presented in Figure 5 and Figure 6. These 

figures display the precision, recall, F1-score, and accuracy achieved by each model before and after 

applying data augmentation, respectively. The purpose of these visual comparisons is to highlight not 

only the relative strength of each architecture but also the positive impact of augmentation strategies on 

model generalization. The comparison results for each architecture without data augmentation can be 

seen in Figure 6 and the comparison result for each architecture with data augmentation can be seen in 

Figure 7. 

 

 
Figure 6. Model Performance Comparison Without Data Augmentation 

 

No Model 
Performance Without Augmentation Performance With Augmentation 

Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy 

1 MobileNetv2 81,07 81,35 81,09 81,35 82,30 82,28 82,26 82,28 

2 XceptionNet 80,02 80,28 79,89 80,28 83,75 83,84 83,72 83,84 

3 ResNet50 80,32 80,64 79,94 80,64 83,35 83,49 83,26 83,49 

4 DenseNet121 82,04 82,28 82,02 82,28 84,05 84,06 84,04 84,06 

5 DenseNet169 84,79 84,91 84,82 84,91 84,94 85,05 84,92 85,05 
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Figure 7. Model Performance Comparison with Data Augmentation 

 

Figure 6 visualizes model performance without data augmentation. Here, DenseNet169 clearly 

outperforms the other models across all metrics, achieving the highest accuracy (84.91%) and F1-score 

(84.82%). This suggests that its densely connected structure is particularly effective in extracting fine-

grained visual features from raw RGB images of cocoa pods. Other models, such as MobileNetV2 and 

ResNet50, show comparatively lower scores, indicating a limited ability to capture subtle ripeness cues 

in the absence of enriched training data. In contrast, Figure 7 illustrates the performance with data 

augmentation applied. All models demonstrate noticeable improvements, especially Xception, which 

experiences a sharp rise in F1-score from 79.89% to 83.72%. This underscores the sensitivity of certain 

lightweight or depthwise convolution-based models to the diversity and variability of input data. 

Interestingly, while DenseNet169 maintains its position as the top performing model, the performance 

gap between it and the other architectures narrows after augmentation, validating the hypothesis that 

appropriate augmentation can partially compensate for model complexity. 

The figures also support the observation that data augmentation enhances not only accuracy but 

also model balance, as evident from the consistent rise in recall and F1 score across models. This 

indicates that the models are improving not only in identifying positive cases but also in reducing false 

negatives, which is an essential aspect for real world agricultural decision support systems where 

missing a ripe pod can lead to economic loss. Overall, the visualizations in Figure 5 and Figure 6 provide 

clear empirical support for the combined benefits of proper model selection and data augmentation. The 

strong baseline performance of DenseNet architectures, along with the performance improvements 

brought by augmentation techniques, reaffirms the effectiveness of a transfer learning based multi model 

approach for addressing complex classification challenges in agricultural domains. A comparison of the 

accuracy of the model performance with and without data augmentation can be seen in Figure 8. 

 

 
Figure 8. Model Performance Comparison with and Without Data Augmentation 
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To further illustrate the impact of data augmentation on model performance, Figure 8 presents a 

comparative line graph of classification accuracy across five CNN architectures, evaluated with and 

without augmentation techniques. This visualization provides a clear empirical overview of how each 

model responds to augmented training data in the context of cocoa ripeness classification. As shown in 

Figure 8, all models experienced improvements in accuracy when trained with augmented data. The 

most notable increase was observed in XceptionNet, which improved from 80.28% to 83.84%, reflecting 

an absolute gain of 4.43%. This substantial enhancement confirms that models utilizing depthwise 

separable convolutions benefit significantly from expanded and varied training distributions. Similarly, 

ResNet50 and DenseNet121 improved by 3.53% and 2.16% respectively, while MobileNetV2 followed 

with a 1.14% gain. This highlights their capacity to generalize more effectively when exposed to a richer 

set of image conditions, including variations in brightness, orientation, scale, and perspective that were 

introduced during augmentation. 

The DenseNet169 model remained the top performing architecture in both training scenarios. 

Although the performance gain appears marginal at 0.16%, it is important to note that the model had 

already achieved a high baseline accuracy without augmentation. This suggests a saturation point where 

further increases in data diversity yield diminishing returns. It also indicates that dense connectivity 

architectures are inherently robust, even when trained on limited samples. Overall, Figure 7 visually 

reinforces the argument that data augmentation is not only beneficial but essential for improving model 

accuracy, particularly for architectures that are more dependent on diverse and enriched training data. 

These results also underscore the potential of combining augmentation strategies with transfer learning 

to develop scalable, robust image classification systems for precision agriculture applications. 

3.6. Discussion 

Among the tested architectures, DenseNet169 achieved the highest classification performance 

with an accuracy of 85.05% and 84.91%, both with and without data augmentation. This outcome is 

consistent with prior studies indicating that densely connected networks enable more efficient feature 

propagation and reuse, making them highly effective for capturing subtle inter-class differences in 

agricultural imagery [64]. Meanwhile, Xception demonstrated the most notable performance gain post-

augmentation. This suggests that depthwise separable convolutions used in Xception may benefit more 

from augmented data variability, a finding that aligns with the work of [52]. The consistent performance 

improvements observed across all models validate the effectiveness of the applied augmentation 

strategies, including rotation, width and height shifts, zooming, shearing, brightness adjustments, 

horizontal flipping, and pixel filling, as these collectively simulate diverse real-world field conditions 

commonly encountered in agricultural imagery. These results support previous findings by, which 

demonstrate that augmentation techniques substantially enhance the generalizability of deep learning 

models, especially in domains with limited or imbalanced datasets such as fruit quality assessment [65]. 

The success of DenseNet169 and DenseNet121 in this study also reinforces the idea that deeper 

and more complex models, when adequately supported by data augmentation, are better suited for high 

resolution visual discrimination tasks such as ripeness detection, which typically involve subtle texture 

and color variations. From an application perspective, the findings suggest that DenseNet169 is the most 

suitable model for deployment in controlled environments with sufficient computational resources. On 

the other hand, MobileNetV2 can serve as a lightweight alternative for edge computing scenarios, 

including mobile based field assessment tools. This differentiation supports the development of tiered 

systems that aim to balance classification performance with computational efficiency depending on field 

conditions and available infrastructure. Nevertheless, even though the achieved accuracy exceeds 85 

percent, further improvements are still necessary to ensure reliable deployment across diverse 
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agroecological zones. Variability in lighting, occlusion from leaves, and differences among cultivar 

phenotypes remain potential sources of classification errors that need to be addressed in future research. 

4. CONCLUSION 

This study presents a deep learning-based approach for classifying cocoa fruit maturity levels 

using transfer learning with multiple convolutional neural network architectures. The method effectively 

extracts discriminative visual features relevant to four ripe stages derived from the fruit's chronological 

age. The integration of comprehensive image data augmentation techniques, including geometric and 

photometric transformations, significantly enhanced the models' generalization capabilities and 

performance consistency across varying visual conditions. Among the evaluated models, DenseNet169 

consistently achieved the highest classification performance, with an accuracy reaching 85.05%, 

demonstrating its superior feature extraction and representational capacity when combined with data 

augmentation. The empirical results confirm that applying augmentation strategies not only enriches the 

training set diversity but also leads to measurable improvements in classification robustness across all 

tested architectures. The findings underscore the effectiveness of a multi-model transfer learning 

framework enhanced by image augmentation for supporting automated, non-destructive assessment of 

cocoa ripeness. This approach offers practical implications for agricultural technology, particularly in 

optimizing harvest timing and improving post-harvest processing decisions. Future work may explore 

combining multimodal data such as spectral or textural cues and integrating lightweight architectures 

for real-time field deployment. 
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