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Abstract

Timely and accurate prediction of cocoa fruit ripeness is critical for optimizing harvest schedules, improving yield
quality, and supporting post-harvest processing. Conventional visual inspection methods are prone to subjectivity
and inconsistencies, especially when distinguishing among multiple ripeness levels based on fruit age. This study
proposes a deep learning approach that leverages multi-model convolutional neural network transfer learning
combined with image data augmentation to classify cocoa fruit into four maturity stages derived from fruit age. An
augmented dataset of cocoa fruit images was used to fine-tune five well-established pre-trained models:
MobileNetV2, Xception, ResNet50, DenseNet121, and DenseNet169. Data augmentation techniques were employed
to increase variability and improve model generalization. Model evaluation was conducted using a standard 80:20
training-to-testing split to ensure sufficient data for learning while preserving a representative test set across all
ripeness classes. The results demonstrate that DenseNet169 consistently outperformed other models, achieving the
highest average accuracy of 85,05%, followed by DenseNetl21 84,06%. Across all models, the use of data
augmentation led to notable performance gains, highlighting its importance in enhancing predictive capability and
reducing overfitting. The proposed framework shows promising potential for automating ripeness classification in
agricultural contexts, offering a robust, scalable, and accurate solution for intelligent cocoa harvest management.
This work contributes to the growing application of deep learning in precision agriculture, particularly in addressing
fine-grained classification problems using limited but enriched visual data.
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1. INTRODUCTION

Cocoa (Theobroma cacao L.) is a national strategic commodity that plays an important role in
supporting the Indonesian economy and food industry [1], [2]. Data from the Central Statistics Agency
(BPS) shows that in 2023, Indonesia's cocoa production reached more than 632,120 tons [3], making it
the third largest cocoa producer in the world after Ivory Coast and Ghana [4]. However, the quality of
the cocoa harvest is greatly influenced by the timing of the harvesting process [5]-[8]. Harvesting unripe
or overripe fruit can reduce the quality of the beans, impacting the taste of processed products such as
chocolate [9]-[11], and causes economic losses to farmers and downstream industry players [12]. So
far, determining the level of ripeness of cocoa fruit still relies on manual visual methods by farmers [13],
[14], which is subjective and prone to inconsistency [15], [16].

The challenge becomes even greater when it is necessary to classify multiple maturity levels that
have subtle visual differences [17], [18]. Traditionally, ripeness classification relies on manual
inspection based on pod color, texture, and size, procedures that are time-consuming, subjective, and
prone to human error. Variability in visual appearance due to environmental factors further complicates
the assessment process. This study addresses the problem of automating ripeness prediction using a
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data-driven approach grounded in deep learning, with the goal of minimizing inconsistencies and
enhancing decision-making efficiency at the field level. Deep learning technology, particularly
Convolutional Neural Network (CNN), has proven effective in solving various image classification
problems in the agricultural sector [19]-[25], including for predicting fruit ripeness [25]-[31]. However,
most of the previous approaches only use one to three types of CNN architectures [32]-[41] and face
performance limitations when the amount and variety of data is limited [42]-[46].

On the other hand, variations in lighting, shooting angles, and differences in fruit age in field
images are challenges in themselves that require a more complex and adaptive classification approach
[471-[51]. This study offers an innovative and novel approach, namely by comparing several CNN
architectures through a transfer learning-based multi-model CNN strategy using five popular pre-trained
models: MobileNetV2, Xception, ResNet50, DenseNet121, and DenseNet169. This multi-model
approach allows for comparison and integration of the strengths of each model in extracting visual
features in cocoa fruit images, resulting in a more accurate classification for four ripeness levels based
on fruit age. The main novelty of this research is the extensive application of image augmentation and
processing techniques to enrich the amount and variety of training data.

The augmentation techniques used include rotation, flipping, zooming, shifting, shearing,
brightness adjustments, and filling empty pixels using interpolation. All aimed at creating a more
realistic and diverse representation of the data. This strategy significantly improves the model's
generalization ability and reduces the risk of overfitting, especially in the context of limited real-world
data. The research formulates cocoa ripeness classification as a supervised image classification problem,
where the objective is to predict one of four discrete maturity classes using RGB images as input. The
challenge lies in learning discriminative visual features from relatively subtle color and texture changes
across ripeness stages. Performance is measured using classification accuracy on test data, highlighting
the potential of this approach to serve as a reliable tool for ripeness monitoring in agricultural
applications. With this approach, the research is expected to contribute to the development of an
intelligent system for cocoa ripeness classification that is not only accurate and robust, but also efficient
and replicable for various other agricultural commodities. The application of this system has significant
potential to strengthen precision agriculture practices and data-driven crop management, particularly in
tropical cocoa-producing countries like Indonesia.

2. METHOD

The proposed methodology consists of a sequential pipeline designed to predict cocoa fruit
ripeness through deep learning-based image classification. As illustrated in Figure 1, the process
comprises five primary stages: data collection, data preparation, augmentation, modeling, and
evaluation.

O e T Modeling

Data Collection } Data Preparation H Augmentation —b Base A\/lodcljgb Evaluation

Figure 1. Process Pipeline of Cocoa Ripeness Classification

Figure 1 Cocoa Maturity Classification Process Flow starting from data collection, data
preparation, augmentation, modeling and evaluation.
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2.1. Data Collection

The image dataset used in this study consists of cocoa fruit photographs captured under natural
lighting conditions, with varied backgrounds and orientations. Each image is labeled based on the age
of the fruit, which is grouped into four ripeness stages: stage 1 (0—2 months), stage 2 (2—4 months), stage
3 (4-6 months), and harvest stage (>6 months). These stages were determined based on field
measurements and expert annotation using harvest-day metadata, ensuring biological relevance and
consistency in maturity classification. To support generalization, image acquisition was conducted over
different time periods and environmental conditions. The dataset aims to simulate real-world variability,
allowing models to learn features that are robust against external noise and inconsistencies. All collected
data were stored in high-resolution format before being processed in subsequent stages.

2.2. Data Preparation

The raw images were first passed through a preprocessing pipeline to ensure uniformity in size
and structure. This step began with manual cropping of each image to isolate the cocoa fruit and remove
irrelevant background content, improving the signal-to-noise ratio in feature extraction. After cropping,
all images were resized to 128%128 pixels, a resolution chosen to balance computational efficiency and
preservation of spatial details relevant to fruit surface texture and shape. Normalization was also applied
by scaling pixel values to a range of [0, 1], which helps stabilize training dynamics in convolutional
neural networks. Labels were encoded into categorical classes corresponding to the four ripeness levels.
This preparation ensured that the models received consistent input formats [52], enabling fair
comparison across architectures during the modeling phase.

2.3. Data Augmentation

Table 1. Data Augmentation Technique’s Purpose and Effect

Augmentation Value Purpose and Effect
rotation_range 20 Randomly rotates the image within +20° to simulate different
degrees orientations of fruit.
width_shift range 0.15 Translates the image horizontally by up to 15% to mimic variation
in positioning.
height shift range 0.15 Applies vertical translation up to 15% to simulate changes in
camera perspective.
Z0om_range 0.2 Zooms in/out by up to 20% to account for varying camera
distances.
shear_range 0.15 Applies affine transformation to simulate slant or distortion in the
image.
brightness_range [0.8, 1.2]  Adjusts image brightness to replicate different lighting conditions
in the field.
horizontal flip True Flip the image horizontally to handle the left-right symmetry of
cocoa fruit.
fill_mode 'nearest’ Fills missing pixels after transformation using nearest-neighbor
interpolation.

To improve the robustness and generalization of the models, extensive image augmentation was
performed. The augmentation process included several randomized transformations. Specifically, the
integration of comprehensive image data augmentation techniques including geometric transformations
such as rotation, width shift, height shift, zoom, shear, and horizontal flip, as well as photometric
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transformation through brightness adjustment, was critical for simulating diverse real-world visual
conditions encountered during cocoa fruit imaging. ata augmentation acts as a form of regularization by
artificially expanding the training set’s variability, preventing overfitting and improving model
generalization, especially when working with limited datasets in computer vision tasks [53]. By
increasing data diversity without requiring additional manual collection, the augmented dataset allows
models to learn more invariant and discriminative features, particularly for subtle maturity differences
between cocoa ripeness levels. The data augmentation techniques applied in this study are summarized
in Table 1. Empirical studies demonstrate that combining multiple augmentation types outperforms
single transformations and offers comparable generalization gains to more complex domain
generalization approaches [54].

2.4. Modelling

The augmented dataset was used to fine-tune five different pre-trained convolutional neural
networks: MobileNetV2, XceptionNet, ResNet50, DenseNet121, and DenseNet169. These models
were selected for their proven performance on image classification benchmarks and varying
architectural complexity. Notably, MobileNetV2 has been successfully applied for fruit-related vision
tasks, achieving high accuracy [55]. Xception, which utilizes depthwise separable convolutions, has
demonstrated strong accuracy and efficiency across multiple image classification benchmarks [52] and
[56]. ResNet50 variants have shown high accuracy in distinguishing maturity stages in palm fruit
datasets [57]. DenseNet121, characterized by dense connectivity facilitating gradient flow and feature
reuse, has demonstrated superior accuracy (exceeding 94 %) in cocoa fruit disease classification tasks
when compared directly with MobileNetV2 [58]. DenseNet169 was ranked among the top performing
models in recent avocado ripeness classification studies when compared with other DenseNet variants
[59]. Each model was initialized with weights pre-trained on ImageNet and adapted to the cocoa ripeness
classification task through transfer learning. Model evaluation was conducted using a standard 80:20
train-test split, where 80% of the data was used for training and 20% for testing. The class distribution
was preserved in both sets to ensure a representative evaluation. The proposed model architecture is
designed based on transfer learning using pre-trained convolutional neural networks (CNNs) combined
with a classification head tailored for cocoa ripeness classification.

2.5. Modelling

The evaluation stage is conducted to measure the model’s performance in classifying cocoa pod
ripeness based on age categories. To assess the model's ability to distinguish between these four ripeness
levels, various evaluation metrics—namely accuracy, precision, recall, and F1-score are employed, as
described in [60], and detailed in Equations 1-4. In the context of multiclass classification, True
Positives (TP) indicate the number of instances correctly classified into a particular class, True
Negatives (TN) represent instances correctly identified as not belonging to that class, False Positives
(FP) refer to instances wrongly assigned to that class, and False Negatives (FN) are cases where
instances of a given class are misclassified as another. Given the imbalance in the distribution of samples
across the ripeness classes, relying solely on accuracy may provide a misleading evaluation. Therefore,
precision, recall, and F1-score are included to offer a more comprehensive assessment. These metrics
help account for the uneven class representation by evaluating how well the model performs per class,
especially in detecting minority classes that may be underrepresented in the dataset.

Precision = s (D
TP+FP
Recall = —— )
TP+FN
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Precision+Recall
Accuracy = _ TPHTN 4
TP+FP+TN+FN

3. RESULT AND DISCUSSION

3.1. Data Collection

This study utilizes the RipSetCocoaCNCH12 dataset, a curated collection of cocoa pod images
systematically categorized into four ripeness stages: stage 1 (C1), stage 2 (C2), stage 3 (C3), and harvest
stage (C4) based on the age of the fruit after pollination [61]. Each image in the dataset is labeled with
its corresponding maturity level and was acquired under natural lighting conditions, representing
realistic field scenarios. Figure 2 presents the number of samples available for each cocoa pod ripeness
category. The dataset includes diverse pod appearances, covering variations in shape, surface texture,
and pigmentation, which are critical visual indicators of ripeness progression. The dataset supports
research in visual classification by offering well-annotated, high-resolution images, enabling effective
training and evaluation of deep learning models. In this work, only the frontal view of each pod was
used to maintain consistency in visual features across samples. Prior to model training, all images
underwent preprocessing steps, including cropping to isolate the pod from the background and resizing
to 128x%128 pixels to match model input requirements. The diversity and quality of the dataset make it
suitable for benchmarking convolutional neural network performance in ripeness classification tasks
and provide a realistic foundation for practical implementation in precision agriculture.

Class Distribution (#Instances)

C4 (>6 months)

C2 (2-4 months)
17%

Figure 2. Number of Images in Each Ripeness Stage Category

Figure 2 shows the number of images in each category of chocolate maturity stage starting from
C1 (0-2 months) 41%, C2 (2-4 months) 17%, C3 (4-6 months) 23% and C4 (>6 months) 19%.

3.2. Data Preparation

The data preparation process focused on isolating individual cocoa fruits from complex image
backgrounds and standardizing their format for classification. The original dataset comprised RGB
images accompanied by segmentation masks that highlighted the regions corresponding to cocoa fruits.
These masks were utilized to locate the contours or boundaries of each fruit instance within an image.
Once the contours were identified, a bounding box was generated around each fruit, and the region
inside the box was extracted. As depicted in Figure 3, the segmentation mask is used to extract the
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relevant region from the original image. To enhance precision, only sufficiently large contours were
retained to avoid including noise or irrelevant objects. The resulting cropped images contained only the
fruit of interest with the background removed, ensuring that the model could focus solely on features
pertinent to ripeness classification. An example of this can be seen in Figure 3.

Mask

Cropped

Figure 3. Example of A Cocoa Pod image, Its Corresponding Segmentation Mask, and The Resulting
Cropped Output

Figure 3 shows an example of a cocoa fruit image, its segmentation, and its cropping results. Each
isolated fruit image was then converted to a standardized format by resizing it to a fixed resolution of
128 x 128 pixels. Additionally, pixel values were normalized to a [0,1] scale to facilitate stable neural
network training [62]. The cropped images were saved with transparent backgrounds to eliminate any
residual noise from the surrounding environment. This step not only improved the quality of the training
data but also contributed to reducing overfitting and enhancing generalization performance during the
learning phase. The combination of instance-level cropping, background removal, and image
normalization provided a clean and consistent dataset for training deep learning models with improved
accuracy and robustness. Figure 4 illustrates representative samples of cocoa fruit across four ripeness
stages, categorized based on chronological age since fruit set.

Figure 4. Sample of Cocoa Ripeness Stages

Figure 4 shows an example of cocoa fruit ripeness levels from stages 1 to 4. Stage 1 (0—2 months)
is characterized by a predominantly green surface with minimal pigmentation, indicating the early
developmental phase where physiological changes are minimal. In Stage 2 (2—4 months), fruits begin to
show purplish discoloration or streaks, marking the onset of biochemical maturation processes such as
chlorophyll degradation and anthocyanin accumulation. These visual cues provide early indicators of
internal physiological changes relevant for harvest timing. As the fruit progresses to Stage 3 (46
months), the color transition intensifies toward a reddish-brown hue with more uniform distribution,
reflecting the progression of sugar accumulation and pericarp softening. In the final Stage 4 (>6 months),
cocoa pods exhibit a dominant yellow coloration, indicating full ripeness and optimal harvest readiness.
These color and texture transformations are critical markers for classifying ripeness in image-based
analysis systems. Leveraging these visual features through convolutional neural networks enables non-
destructive, automated assessment of ripeness stages with high accuracy.
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3.3. Data Augmentation

To address the issue of limited dataset size and to improve the model's generalization capability,
this study applied a comprehensive data augmentation strategy to the training images. Data
augmentation artificially increases the diversity and volume of training data by applying a range of
transformations that simulate real-world variabilities. This process is especially crucial in image
classification tasks involving agricultural products, where external factors like lighting, orientation, and
background may influence model performance. The visual outcomes of various data augmentation
techniques are shown in Table 2.

Table 2. Results of Data Augmentation
No Augmentation Method Original Image Vs Augmented Image

Rotation

Original

1 rotation_range

2 width_shift range

3 height shift range

4 Zoom_range

5 shear_range

6 brightness_range o
7 horizontal _flip

8 fill_mode

Each augmentation operation was applied randomly during training, ensuring that the model
encountered a different transformed version of the image on each epoch. This stochasticity plays a key
role in reducing overfitting by preventing the model from memorizing fixed patterns and instead forcing
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it to learn more robust, abstract features. The inclusion of spatial (rotation, shift, shear), photometric
(brightness), and geometric (zoom, flip) transformations simulates real-world variability that might
occur in uncontrolled agricultural environments. These augmentations also help the model become
invariant to irrelevant factors such as pod alignment, illumination differences, and slight occlusions,
which are common in field conditions. Ultimately, this augmentation strategy significantly contributes
to increasing the effective size and richness of the training dataset, leading to improved classification
performance, as reflected in the evaluation metrics reported in the experimental results.

3.4. Modelling

As illustrated in Figure 5, the pipeline begins with a set of input images, which can be either raw
or augmented, depending on the experimental configuration. These images are fed into a base CNN
model, which acts as a feature extractor.

N

R R—— Convolutional Neural
3 Network

ey

H i Global Average
H : Pooling Droupout ~ Softmax

1

With or Without Augmented Images
Base Model

The base models used in this study include MobileNetV2, XceptionNet, ResNet50, DenseNet121,
and DenseNet169. Each of these models was pre-trained on the ImageNet dataset and fine-tuned for the
cocoa dataset by replacing their original classification layers with a new custom head. The convolutional
blocks of the base model act as feature extractors [63], transforming the input image into high-level
feature maps that capture spatial patterns and important structures. These feature maps are then passed
to a Global Average Pooling (GAP) layer, which compresses each map into a single value by computing
the average across all spatial dimensions. This approach significantly reduces the number of parameters
and helps prevent overfitting while maintaining spatial invariance. Following the GAP layer, a dropout
layer is applied with a dropout rate (e.g., 0.3) to further mitigate overfitting by randomly deactivating a
subset of neurons during training. The final layer is a dense softmax classifier with four output neurons,
corresponding to the four maturity stages of cocoa fruits. This layer computes the probability distribution
over the ripeness classes, and the class with the highest probability is selected as the predicted maturity
level.

The model was trained for a maximum of 50 epochs using a batch size of 32. The Adam optimizer
with a learning rate of 1e-4 was employed to ensure stable and efficient convergence during training.
To prevent overfitting, early stopping was applied with a patience value of 10, allowing the training
process to halt automatically if no improvement in validation loss was observed for 10 consecutive
epochs. This modular architecture not only leverages the strong representational capabilities of pre-
trained CNNs but also introduces lightweight adaptations through global average pooling and dropout,
making it highly effective and computationally efficient for the target classification task.
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3.5. Evaluation

To assess the effectiveness of the proposed classification model in identifying cocoa ripeness
stages, a series of performance metrics were evaluated. These include accuracy, precision, recall, and
F1-score, which provide a comprehensive view of the model's predictive capabilities across all classes.
Table 3 summarizes the evaluation metrics obtained from the test dataset.

Table 3. Model Performance Evaluation Results

No Model Performance Without Augmentation Performance With Augmentation
Precision Recall F1-Score Accuracy Precision Recall FI1-Score Accuracy
1 MobileNetv2 81,07 81,35 81,09 81,35 82,30 82,28 82,26 82,28
2 XceptionNet 80,02 80,28 79,89 80,28 83,75 83,84 83,72 83,84
3 ResNet50 80,32 80,64 79,94 80,64 83,35 83,49 83,26 83,49
4  DenseNetl21 82,04 82,28 82,02 82,28 84,05 84,06 84,04 84,06
5  DenseNetl169 84,79 84,91 84,82 84,91 84,94 85,05 84,92 85,05

The performance evaluation results demonstrate that the proposed deep learning-based
classification models exhibit significant improvements when augmented training data is applied,
confirming the importance of data diversity in image-based agricultural tasks. Furthermore, the superior
performance of transfer learning-based models highlights the benefits of leveraging pretrained
convolutional neural networks for domain specific classification tasks. Transfer learning has proven
particularly useful in agricultural contexts where acquiring large annotated datasets is often difficult. To
better illustrate the comparative performance of the proposed CNN models in classifying cocoa pod
ripeness, a graphical visualization of the evaluation metrics is presented in Figure 5 and Figure 6. These
figures display the precision, recall, F1-score, and accuracy achieved by each model before and after
applying data augmentation, respectively. The purpose of these visual comparisons is to highlight not
only the relative strength of each architecture but also the positive impact of augmentation strategies on
model generalization. The comparison results for each architecture without data augmentation can be
seen in Figure 6 and the comparison result for each architecture with data augmentation can be seen in
Figure 7.

Model Performance Comparison without Data Augmentation

9
S &
Z 83
5 g% Accuracy
E 80 F1-Score
% 79 Recall
o ;g Precision
x N
& & &£ & F
'%ée Sl Q;& @ée) e}@
& +Q®Q <& & &
< < &
MODEL
mPrecision mRecall mF1-Score ©Accuracy

Figure 6. Model Performance Comparison Without Data Augmentation
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Model Performance Comparison with Data Augmentation

Bl

ResNet50 JenseNet121  DenseNet169

MODEL

B Precision @ Recall F1-Score

Figure 7. Model Performance Comparison with Data Augmentation

Figure 6 visualizes model performance without data augmentation. Here, DenseNet169 clearly
outperforms the other models across all metrics, achieving the highest accuracy (84.91%) and F1-score
(84.82%). This suggests that its densely connected structure is particularly effective in extracting fine-
grained visual features from raw RGB images of cocoa pods. Other models, such as MobileNetV2 and
ResNet50, show comparatively lower scores, indicating a limited ability to capture subtle ripeness cues
in the absence of enriched training data. In contrast, Figure 7 illustrates the performance with data
augmentation applied. All models demonstrate noticeable improvements, especially Xception, which
experiences a sharp rise in F1-score from 79.89% to 83.72%. This underscores the sensitivity of certain
lightweight or depthwise convolution-based models to the diversity and variability of input data.
Interestingly, while DenseNet169 maintains its position as the top performing model, the performance
gap between it and the other architectures narrows after augmentation, validating the hypothesis that
appropriate augmentation can partially compensate for model complexity.

The figures also support the observation that data augmentation enhances not only accuracy but
also model balance, as evident from the consistent rise in recall and F1 score across models. This
indicates that the models are improving not only in identifying positive cases but also in reducing false
negatives, which is an essential aspect for real world agricultural decision support systems where
missing a ripe pod can lead to economic loss. Overall, the visualizations in Figure 5 and Figure 6 provide
clear empirical support for the combined benefits of proper model selection and data augmentation. The
strong baseline performance of DenseNet architectures, along with the performance improvements
brought by augmentation techniques, reaffirms the effectiveness of a transfer learning based multi model
approach for addressing complex classification challenges in agricultural domains. A comparison of the
accuracy of the model performance with and without data augmentation can be seen in Figure 8.

Model Accuracy Comparison Without and With Data
Augmentation
86 85,05
85 83,84

83,49 8491

= 82.28
S 83 .

81,35

MobileNetv2 XceptionNet ResNet50 DenseNet121 DenseNet169
MODEL

=8 \\Vithout Augmentation  =#==WVith Augmentation

Figure 8. Model Performance Comparison with and Without Data Augmentation
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To further illustrate the impact of data augmentation on model performance, Figure 8 presents a
comparative line graph of classification accuracy across five CNN architectures, evaluated with and
without augmentation techniques. This visualization provides a clear empirical overview of how each
model responds to augmented training data in the context of cocoa ripeness classification. As shown in
Figure 8, all models experienced improvements in accuracy when trained with augmented data. The
most notable increase was observed in XceptionNet, which improved from 80.28% to 83.84%, reflecting
an absolute gain of 4.43%. This substantial enhancement confirms that models utilizing depthwise
separable convolutions benefit significantly from expanded and varied training distributions. Similarly,
ResNet50 and DenseNet121 improved by 3.53% and 2.16% respectively, while MobileNetV2 followed
with a 1.14% gain. This highlights their capacity to generalize more effectively when exposed to a richer
set of image conditions, including variations in brightness, orientation, scale, and perspective that were
introduced during augmentation.

The DenseNet169 model remained the top performing architecture in both training scenarios.
Although the performance gain appears marginal at 0.16%, it is important to note that the model had
already achieved a high baseline accuracy without augmentation. This suggests a saturation point where
further increases in data diversity yield diminishing returns. It also indicates that dense connectivity
architectures are inherently robust, even when trained on limited samples. Overall, Figure 7 visually
reinforces the argument that data augmentation is not only beneficial but essential for improving model
accuracy, particularly for architectures that are more dependent on diverse and enriched training data.
These results also underscore the potential of combining augmentation strategies with transfer learning
to develop scalable, robust image classification systems for precision agriculture applications.

3.6. Discussion

Among the tested architectures, DenseNet169 achieved the highest classification performance
with an accuracy of 85.05% and 84.91%, both with and without data augmentation. This outcome is
consistent with prior studies indicating that densely connected networks enable more efficient feature
propagation and reuse, making them highly effective for capturing subtle inter-class differences in
agricultural imagery [64]. Meanwhile, Xception demonstrated the most notable performance gain post-
augmentation. This suggests that depthwise separable convolutions used in Xception may benefit more
from augmented data variability, a finding that aligns with the work of [52]. The consistent performance
improvements observed across all models validate the effectiveness of the applied augmentation
strategies, including rotation, width and height shifts, zooming, shearing, brightness adjustments,
horizontal flipping, and pixel filling, as these collectively simulate diverse real-world field conditions
commonly encountered in agricultural imagery. These results support previous findings by, which
demonstrate that augmentation techniques substantially enhance the generalizability of deep learning
models, especially in domains with limited or imbalanced datasets such as fruit quality assessment [65].

The success of DenseNet169 and DenseNet121 in this study also reinforces the idea that deeper
and more complex models, when adequately supported by data augmentation, are better suited for high
resolution visual discrimination tasks such as ripeness detection, which typically involve subtle texture
and color variations. From an application perspective, the findings suggest that DenseNet169 is the most
suitable model for deployment in controlled environments with sufficient computational resources. On
the other hand, MobileNetV2 can serve as a lightweight alternative for edge computing scenarios,
including mobile based field assessment tools. This differentiation supports the development of tiered
systems that aim to balance classification performance with computational efficiency depending on field
conditions and available infrastructure. Nevertheless, even though the achieved accuracy exceeds 85
percent, further improvements are still necessary to ensure reliable deployment across diverse
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agroecological zones. Variability in lighting, occlusion from leaves, and differences among cultivar
phenotypes remain potential sources of classification errors that need to be addressed in future research.

4. CONCLUSION

This study presents a deep learning-based approach for classifying cocoa fruit maturity levels
using transfer learning with multiple convolutional neural network architectures. The method effectively
extracts discriminative visual features relevant to four ripe stages derived from the fruit's chronological
age. The integration of comprehensive image data augmentation techniques, including geometric and
photometric transformations, significantly enhanced the models' generalization capabilities and
performance consistency across varying visual conditions. Among the evaluated models, DenseNet169
consistently achieved the highest classification performance, with an accuracy reaching 85.05%,
demonstrating its superior feature extraction and representational capacity when combined with data
augmentation. The empirical results confirm that applying augmentation strategies not only enriches the
training set diversity but also leads to measurable improvements in classification robustness across all
tested architectures. The findings underscore the effectiveness of a multi-model transfer learning
framework enhanced by image augmentation for supporting automated, non-destructive assessment of
cocoa ripeness. This approach offers practical implications for agricultural technology, particularly in
optimizing harvest timing and improving post-harvest processing decisions. Future work may explore
combining multimodal data such as spectral or textural cues and integrating lightweight architectures
for real-time field deployment.
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