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Abstract

Breast cancer remains one of the leading causes of mortality among women, making accurate and trustworthy early
detection a critical challenge in healthcare. To address this, we propose PROTEGO, a Prototype-Contrastive
Autoencoder with integrated Conformal Prediction, designed to achieve both high diagnostic accuracy and reliable
uncertainty quantification. The framework combines dual-head autoencoding, supervised contrastive learning,
prototype-based regularization, and conformal calibration to generate discriminative yet interpretable representations.
Using the Wisconsin Diagnostic Breast Cancer (WDBC) dataset, PROTEGO was trained and evaluated through
stratified data splits, with performance measured by AUROC, AUPRC, F1-score, Balanced Accuracy, Brier score,
calibration error, and conformal coverage metrics. The results show that PROTEGO achieves highly competitive
performance with an AUROC of 0.992 and an AUPRC of 0.995, while uniquely providing conformal coverage
guarantees with an average set size close to one and more than 92% decisive predictions. Ablation studies confirm
the complementary role of each component in enhancing both accuracy and calibration. These findings demonstrate
that integrating prototype-guided representation learning with conformal prediction establishes a clinically
meaningful diagnostic framework. PROTEGO highlights the importance of unifying precision and reliability in
medical Al, offering a step toward more interpretable, safe, and clinically trustworthy systems for breast cancer
detection.

Keywords: Breast Cancer Diagnosis, Conformal Prediction, Prototype-Contrastive Autoencoder, Representation
Learning, Uncertainty Quantification.
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1. INTRODUCTION

Breast cancer remains one of the most pressing public health challenges worldwide, representing
a leading cause of mortality among women and placing significant burdens on patients, families, and
healthcare systems. Early and accurate detection is universally acknowledged as the most effective
strategy for improving survival rates and reducing treatment costs. Yet, it continues to be hindered by
diagnostic complexity, variability in clinical interpretation, and the limited sensitivity of traditional
screening methods. Medical datasets, such as those derived from fine-needle aspirate cytology, provide
a valuable source of diagnostic information; however, extracting actionable insights from high-
dimensional and sometimes imbalanced data is far from trivial. In this context, the field of medical
artificial intelligence has sought to design computational tools that not only enhance accuracy but also
deliver more consistent and objective results, thereby addressing weaknesses inherent in manual
evaluation and conventional statistical models.

The importance of solving this problem extends beyond algorithmic advancement to the very core
of patient care and clinical trust. Inaccurate or overconfident predictions can lead to devastating
consequences, either by delaying necessary treatment or by subjecting patients to unnecessary invasive
procedures and emotional distress. Conversely, reliable diagnostic systems that are both accurate and
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transparent hold the potential to support clinicians in making better-informed decisions, particularly in
resource-constrained environments where expert pathologists may be scarce. Bridging the gap between
raw predictive performance and trustworthy, interpretable decision support is therefore not only a
technical necessity but also a moral imperative in the pursuit of equitable, safe, and human-centered
healthcare.

Recent advances in machine learning have driven significant progress in breast cancer
diagnostics, with numerous studies applying models such as SVM, Random Forest, and XGBoost to the
widely used Wisconsin Diagnostic Breast Cancer (WDBC) dataset [1]. One study demonstrated that an
SVC-RBF model achieved high accuracy in distinguishing benign from malignant tumors, while another
explored ensemble strategies to further improve classification performance [2]. It has also been
emphasized that dataset size and feature selection often play a more crucial role than the choice of
algorithm, highlighting limitations in generalization [3]. A multimethod review provided strong
evidence for the potential of Al in early detection, whereas an optimized stacking ensemble was shown
to outperform individual classifiers with impressive accuracy [4][5]. Similarly, combining XGBoost
with explainable Al techniques was found to enhance interpretability, and another study reported that
XGBoost achieved superior accuracy while leveraging SHAP for clinical transparency [6][7]. To further
address the challenge of class imbalance, an engineered up-sampling approach was proposed, which
significantly improved both sensitivity and balanced accuracy [8]. Collectively, these studies confirm
that machine learning has established itself as a powerful tool for breast cancer detection; however, they
also reveal persistent challenges, including dataset limitations, a lack of robust calibration, and
insufficient integration into clinical workflows, which continue to restrict its practical adoption in
healthcare settings.

Recent developments in medical artificial intelligence highlight the expanding role of
autoencoders and contrastive learning in advancing cancer diagnostics [9]. Comparative studies have
shown that while contrastive methods are effective, masked autoencoders tend to be more robust for
small medical imaging datasets, and patient-aware contrastive learning that incorporates metadata can
further enhance generalization and fairness [9][10]. A systematic review underscored that predictive and
contrastive self-supervised approaches bring unique adaptations to medical image analysis, particularly
in learning representations without extensive labels [11]. Building on this, a contrastive multi-modality
learner was introduced for liver cancer diagnosis, demonstrating the power of combining data fusion
with augmentation to improve diagnostic accuracy [12]. Broader surveys of machine learning for cancer
detection identified autoencoders and contrastive strategies as key drivers of recent progress, pointing
to their capacity to extract deep, meaningful patterns from complex biomedical data [13].
Methodological innovations such as contrastive multiple instance learning have enabled the extraction
of slide-level features from histopathology images without the need for detailed annotations, and
encoder-decoder contrast methods have outperformed conventional anomaly detection techniques [14]
[15]. Complementing these technical advances, critical analyses of recent machine learning frameworks
emphasize both their diagnostic potential and the persistent challenges they face in efficiency and
clinical integration [16]. Collectively, these studies establish that autoencoder-based architectures and
contrastive paradigms are becoming central to medical Al research, opening opportunities for earlier
and more accurate cancer detection while underscoring the need to address ongoing challenges of data
scarcity, generalization, and interpretability.

Prototype-based learning has recently emerged as a promising strategy to enhance interpretability
in medical Al, offering clinicians not only predictive accuracy but also transparent pathways to
understand model decisions [17]. One approach, DProtoNet, introduced a decoupled prototypical
network that improved interpretability by separating inference from explanation, while another study
proposed pseudo-class part prototype networks for breast cancer pathology, integrating clustering
techniques to extract medically relevant prototypes [17] [18]. Expanding beyond conventional
architectures, researchers have extended prototype-based interpretability to graph neural networks,
enabling both global and local explanations. This direction has been further advanced with Proto-Caps,
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an explainable capsule network that preserves accuracy while offering visual prototypes to support
medical image-based decisions [19] [20]. Other innovations include cross- and intra-image prototypical
learning designed to disentangle multi-label disease diagnosis, as well as prototype-based networks
applied to single-cell RNA-seq data for patient classification, effectively handling noise and high
dimensionality in omics datasets [21] [22]. Complementing these technical advances, broad surveys of
interpretability in medical Al highlighted the urgent need for standardized evaluation metrics, while
additional works emphasized the increasing importance of explainable Al methods and underscored the
persistent challenges of balancing transparency, predictive accuracy, and usability in clinical workflows
[23] [24] [25]. Taken together, these studies demonstrate that prototype-based learning is gaining
traction across diverse biomedical domains; however, most implementations remain concentrated in
imaging, leaving significant gaps in extending such interpretable frameworks to tabular biomedical data,
where clinical adoption is equally critical.

Conformal prediction has increasingly been recognized as a robust framework for reliable
uncertainty quantification in healthcare, with applications ranging from genomics to medical imaging
[26]. In genomic medicine, conformalized models have been shown to mitigate risks by predicting drug
responses under distribution shifts, while broader reviews have highlighted their use in clinical sciences
and stressed the importance of standardized protocols alongside stronger clinician involvement [26]
[27]. In dermatology, conformal prediction has been validated for skin lesion classification,
outperforming alternative uncertainty estimation methods, and it has also been praised for its
interpretability as a core element of uncertainty-aware deep learning [28] [29]. More comprehensive
surveys have framed conformal prediction as a data-centric approach to valid inference, identifying both
opportunities and scalability challenges, while applications in earth observation have demonstrated its
adaptability across diverse domains [30] [31]. Within oncology, conformal prediction has been applied
to anti-cancer drug sensitivity prediction to ensure reliable prioritization of therapies, and in pathology,
it has been used to detect unreliable predictions in prostate cancer diagnosis, thereby enhancing patient
safety [32] [33]. Complementary reviews further emphasize that integrating uncertainty metrics such as
conformal prediction is essential for advancing transparency, interpretability, and clinical trust in
medical Al [34] [35]. Taken together, these studies affirm that conformal prediction strengthens
diagnostic reliability while directly addressing one of the most critical barriers to clinical adoption—
trust in machine learning outputs—by providing mathematically guaranteed coverage in decision
support systems.

Research on breast cancer histopathology using the BreakHis dataset has produced a wide range
of innovative CNN-based approaches that substantially improve diagnostic accuracy, yet essential
limitations remain. Early attempts optimized CNN weights with genetic algorithms but achieved only
modest accuracy (85%) and suffered from local minima [36]. More advanced hybrid architectures, such
as CNN-LSTM, reached 99% binary and 92.5% multi-class accuracy, though they were restricted to
magnification-specific images and lacked longitudinal predictive power [37]. Multi-path CNNs
integrated residual and skip connections for 98.34% accuracy, yet struggled with massive class
imbalance [38], while knowledge distillation models reduced computational burden to 97.09% accuracy
but at the expense of deeper interpretability [39]. IDSNet combined DenseNet with SENet to enhance
feature extraction, outperforming VGG16 and ResNet50 [40], and CBAM-VGGNet pushed accuracy to
nearly 99% through modality-specific attention [41]. Alternative strategies explored Zernike moments
with neural networks to achieve 100% recognition and explainability through LIME [42], bilinear CNNs
for fine-grained recognition at 95.95% [43], and computer-aided diagnosis systems benchmarking
multiple pre-trained CNNs, including Xception and DenseNet [44]. Additional contributions included
nucleus-guided CNN feature fusion for 96.66% accuracy [45] and deep multiple instance CNNs
enabling slide-level diagnosis without patch labels at 93.06% [46]. More recent approaches combined
evolutionary feature selection with conditional variational autoencoders [47] or transfer learning with
attention mechanisms to reach up to 99.5% accuracy [48]. Despite these advances, prior work remains
heavily focused on raw accuracy, often limited by dataset imbalance, magnification constraints, lack of
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uncertainty quantification, and insufficient interpretability—gaps that necessitate integrative
frameworks capable of delivering both trustworthy predictions and clinically meaningful explanations.

The primary objective of this study is to develop and rigorously evaluate an artificial intelligence
framework for early breast cancer detection that unifies high predictive accuracy with clinically
meaningful reliability. Specifically, this research aims to design a model capable of learning structured
latent representations that preserve essential diagnostic features while ensuring robust classification
performance across benign and malignant cases. In addition, the study seeks to incorporate mechanisms
for interpretable decision-making and mathematically guaranteed uncertainty quantification, thereby
addressing critical gaps in current diagnostic technologies. By doing so, the research directly responds
to the urgent need for computational methods that are not only powerful in their predictive capacity but
also transparent, trustworthy, and aligned with the practical demands of clinical environments.
Ultimately, the study aims to contribute both methodologically, by advancing the state of medical Al,
and socially, by supporting safer and more equitable diagnostic outcomes for patients.

The contributions of this study are threefold and collectively advance the state of artificial
intelligence in breast cancer diagnostics. First, it presents a unified learning architecture that integrates
autoencoding, contrastive representation learning, and prototype-based regularization to generate latent
spaces that are both discriminative and interpretable. Second, it incorporates conformal prediction into
the diagnostic process, providing mathematically guaranteed coverage and offering clinicians reliable
measures of uncertainty alongside predictive outcomes. Third, the framework is rigorously evaluated
against established baselines, including SVM, Random Forest, and XGBoost, and through ablation
studies that isolate the impact of each architectural component, thereby ensuring a transparent
assessment of its effectiveness. Taken together, these contributions demonstrate not only
methodological innovation but also practical significance, as they respond directly to the dual clinical
demand for accuracy and trustworthiness in early breast cancer detection.

The novelty of this research lies in its integrative approach, bringing together methodological
advancements that have typically evolved in isolation within the field of medical Al. While prior studies
on breast cancer detection have demonstrated the strengths of classical machine learning and deep
learning models, few have successfully combined discriminative accuracy, interpretable latent
representations, and formal uncertainty quantification within a single cohesive framework. This study
introduces an architecture that not only learns to classify with high precision but also structures its latent
space through contrastive alignment and prototype regularization, thereby enhancing transparency and
clinical interpretability. Moreover, by embedding conformal prediction into the learning pipeline, the
model provides mathematically guaranteed coverage levels, a capability largely absent from existing
cancer detection systems. Such integration represents a meaningful departure from conventional designs
and establishes a new methodological pathway for developing Al systems that are simultaneously
accurate, interpretable, and trustworthy in clinical practice.

2. METHOD

To provide a more straightforward overview of the proposed methodology, the overall workflow
of PROTEGO is illustrated in Figure 1. The architecture highlights the sequential pipeline, starting from
data preprocessing of the WDBC dataset to prototype-contrastive representation learning, followed by
conformal prediction, and finally yielding reliable diagnostic outputs.

Conformal | Diagnostic
Prediction & Output }

Prototype-
%: Contrastive
Autoencoder

Data
Preprocess

=]

Figure 1. PROTEGO Framework
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2.1. Dataset Description

The experiments in this study employed the UCI Breast Cancer Wisconsin Diagnostic (WDBC)
dataset, a widely used benchmark for early breast cancer detection. The dataset consists of 569 patient
records, each represented by 30 numerical features derived from digitized fine needle aspirate (FNA)
images of breast tissue. Among these samples, 357 are labeled as benign and 212 as malignant, reflecting
a moderately imbalanced class distribution that highlights the clinical challenge of making a reliable
diagnosis. Before model training, all features were standardized to have a zero mean and unit variance
to ensure stable optimization and prevent scale-related bias. The data were then partitioned using a
stratified strategy into training, validation, calibration, and test sets, thereby preserving the class balance
and enabling robust model development, hyperparameter tuning, conformal calibration, and fair
performance evaluation.

2.2. Proposed Framework: PROTEGO

The proposed PROTEGO framework integrates an encoder—decoder autoencoder, a dual-head
structure, a prototype memory bank, supervised contrastive learning, and prototype-based
regularization. Each mathematical component is formalized as follows.

2.2.1. Encoder—Decoder Architecture

We first define the encoder that projects an input feature vector x; € R% into a latent
representation z; € RP. This mapping is expressed in Equation (1):

zi = fo(x)), fo:R% > RP (1)

where fg is parameterized by a multilayer perceptron (MLP). The decoder reconstructs the
original input from the latent space, as shown in Equation (2):

% =94(z), ge:RP - R? (2)

with g4 denoting the MLP-based decoder.

2.2.2. Dual-Head Structure

The architecture employs a dual-head design to simultaneously optimize reconstruction and
classification. The reconstruction head minimizes the mean squared error (MSE) as shown in Equation

Gy
N
1 s 12
Lree :Nzl i — %3 )
=

The classification head predicts the probability distribution over classes using a softmax function,
as defined in Equation (4):

y; = hlIJ(Zi) = softmax(Wz; + b) )

where hy, denotes the classifier, and W, b are trainable parameters. The associated cross-entropy loss is
presented in Equation (5):
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2.2.3. Prototype Memory Bank

To enforce structured latent representations, PROTEGO maintains class prototypes . €
RP forc € {0,1}. The prototypes are updated using exponential moving average (EMA) with a rate a,
as formulated in Equation (6):

e (- et ) 2 ©)

i€EB,

where B, denotes the set of indices in a batch belonging to class c.

2.2.4. Supervised Contrastive Loss

The model also incorporates supervised contrastive 1earning to encourage intra-class compactness

and inter-class separation. Given cosine similarity sim(u,v) = the supervised contrastive loss is

I v |
defined in Equation (7):

N .
_ Z -1 o exp(51m(zi, Zp)/‘[) )

[P , Ya=iexp(sim(z;, z,) /1)

where P (i) is the set of positive indices with the same label as i, and T > 0 is a temperature parameter.

2.2.5. Center and Margin Loss with Prototypes

In addition to contrastive learning, we regularize latent embeddings relative to class prototypes.
The center loss, defined in Equation (8), minimizes the distance between latent points and their

corresponding prototype:
Lene = z |z; — |~J-yl|2 @)

To further enforce inter-class separation, a margin-based hinge loss is introduced in Equation

9):

1
Largn = ) max (0, m = |1z = wy, ||, + 2 = uz ) ©)

i=1

where ¥, = 1 — y; represents the opposite class, and m > 0 is a margin hyperparameter.

Finally, the overall training objective combines all components into a single loss, as shown in
Equation (10):

Ltotal = /lrechec + /‘Lclchls + AconLcon + Acenter['center + Amargin['margin (10)

where A. are balancing coefficients tuned via cross-validation.
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2.3. Conformal Risk Control

To ensure reliable predictions in clinical practice, PROTEGO integrates conformal prediction,
which provides finite-sample coverage guarantees that are independent of distributional assumptions.
The method ensures that, with high probability, the true label belongs to the predicted set.

2.3.1. Non-conformity Score

We begin by defining the non-conformity score in Equation (11). For a sample x; with true label
y;, and predicted probability p.(x;) for class c, the non-conformity score is:

s(xpyi) =1 =Py, (x) (11

This score reflects the lack of confidence in the correct label; smaller values indicate more confident
predictions.

2.3.2. Global Split Conformal Threshold

Using a calibration set D, = {(xj, yj)}?-":l, we compute non-conformity scores {s(xj, yj)}ﬁ‘-’lzl.
The conformal threshold is defined in Equation (12):

Ji_q = Quantilel_a({s(xj, yj): (xj,yj) € D, }) (12)

where a € (0,1) is the tolerated error rate.
Given this threshold, the prediction set for a new input x is formed according to Equation (13):

I'x)={ce{01}:1—p.(x) < G1-o} (13)
This ensures that the true label is contained in I'(x) with probability at least 1 — a.

2.3.3. Mondrian Conformal Prediction

To guarantee balanced coverage across classes, PROTEGO employs Mondrian conformal
prediction. Instead of a single global threshold, class-conditional thresholds are used. Equation (14)
defines the threshold for each class c:

g9 = Quantile;_o({s(x;,¥;):y; = ¢, (%),¥;) € Dear }) (14)

The Mondrian prediction set is then defined in Equation (15):

1—‘mon(x) = {C: 1- pAc(x) < Q\Y—)(x (15)

This refinement guarantees that each class achieves the same marginal coverage level, preventing bias
towards the majority class.

2.3.4. Expected Set Size and Coverage

Beyond coverage, it is essential to measure the efficiency of conformal sets. Equation (16)
expresses the expected set size:

1 (16)
EIPGON = ) Pr(1=pe() < d1-o)
c=0
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Smaller set sizes at fixed coverage indicate more informative predictions. Together, Equations
(11)«(16) formalize the integration of conformal risk control into PROTEGO, ensuring that the
framework delivers not only accurate but also trustworthy diagnostic predictions.

2.4. Objective Function

The PROTEGO framework integrates multiple loss components to jointly optimize
reconstruction fidelity, classification accuracy, contrastive separation, and prototype-based
regularization. Each of these objectives is combined into a single multi-task loss function that guides
end-to-end training.

We first restate the reconstruction loss from Equation (3) and the classification loss from
Equation (5). To unify these objectives, we introduce weighting coefficients A, and A, as shown in
Equation (17):

Lae-cls = lrec Lrec + /1cls Lcls (17)

Next, the supervised contrastive loss in Equation (7) contributes to enhancing intra-class
cohesion and inter-class separation. Its contribution is scaled by A, yielding Equation (18):

Lcon-obj = Acon Lcon (18)

To further regularize latent embeddings relative to prototypes, we combine the center loss
(Equation (8)) and margin loss (Equation (9)), each controlled by coefficients Acenter and Apargin- This

is formalized in Equation (19):
Lproto = Acenter Lcenter + Amargin Lmargin (19)

Finally, the complete PROTEGO objective function aggregates all components into a single loss
expression, as defined in Equation (20):

[['}total = Arec ['rec + Acls Lcls + Acon Lcon + Acenter Lcenter + Amargin Lmargin (20)

This total objective ensures that the encoder learns informative latent representations that are
reconstructive, discriminative, and geometrically structured, while also producing predictions that are
robust and clinically meaningful when combined with conformal risk control.

2.5. Training and Evaluation Setup

To ensure reproducibility and fair assessment, the PROTEGO framework was trained and
evaluated under a carefully designed experimental setup.

2.5.1. Optimization Strategy

Model parameters were optimized using the Adam optimizer with an initial learning rate of n =
1073 and a weight decay of 10™* to prevent overfitting. Training was conducted with a mini-batch size
of 64, and latent dimensionality was fixed at p = 32, unless otherwise specified in ablation studies.
Early stopping was applied on the validation set using AUROC as the primary metric, with a patience
of 20 epochs to avoid unnecessary overtraining.
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2.5.2. Training Phases

The training process followed a two-stage procedure. First, a warm-up phase was conducted,
optimizing only the reconstruction loss L. for 10 epochs to stabilize the latent space. Second, a joint
optimization phase minimized the complete objective L, in Equation (20), integrating classification,
contrastive, center, and margin losses. The prototype memory bank was updated in each batch using
exponential moving average with a rate of a = 0.05.

2.5.3. Hyperparameter Tuning
Balancing coefficients were selected via five-fold cross-validation on the training set. The final
configuration adopted Arec = 1.0,Ags = 1.0,Acon = 0.5, Acener = 0.3, and  Apargin = 0.3. The

contrastive temperature parameter was set to T = 0.5, and the margin hyperparameter was set to m =
1.0.

2.5.4. Evaluation Metrics

To ensure transparency in performance assessment, the primary evaluation metrics used in this
study are formally defined below.

The Area Under the Receiver Operating Characteristic curve (AUROC) quantifies the trade-off
between sensitivity and specificity. It is expressed in Equation (21), where the true positive rate (TPR)

and false positive rate (FPR) are defined as TPR = " _ and FPR = —%—.
TP+FN FP+TN
1
AUROC = j TPR(FPR™(x)) dx (21)
0

The F1-score balances precision and recall and is given in Equation (22), where Precision =

TP
and Recall = :
TP+FP TP+FN

2 - Precision - Recall
F1 =

— (22)
Precision + Recall

The Coverage (C) measures the proportion of test instances for which the true label is included in
the conformal prediction set, as shown in Equation (23):

1 n
c= ’_lzl 1{y; € T} 23)

The Average Set Size (ASS) indicates the mean size of conformal prediction sets and is defined
in Equation (24):

1 n
ASS = Z;mxin (24)

Finally, the Fraction Certain (FC) represents the proportion of singleton prediction sets, as
described in Equation (25):
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1 n
FC == 1{IrGx)l = 1) (5)
i=1

2.5.5 Ablation Studies

To analyze the contribution of each component, we conducted systematic ablation experiments.
The following configurations were evaluated: (i) FULL PROTEGO with all components; (ii)
—Contrastive without the supervised contrastive loss; (iii) —Prototype without center and margin losses;
(iv) —Decoder without the reconstruction head (single-head variant); and (v) —Conformal without
conformal calibration. The performance degradation in these variants quantifies the role of each
innovation within the framework.

2.6. Evaluation Metrics

To comprehensively assess the performance of PROTEGO, both point-based predictive metrics
and conformal set-based metrics were employed, complemented by statistical significance testing.

2.6.1. Point Prediction Metrics

The Area Under the Receiver Operating Characteristic curve (AUROC) quantifies the trade-off
between sensitivity and specificity across varying thresholds, serving as the primary measure of
discrimination. Complementarily, the Area Under the Precision—Recall Curve (AUPRC) highlights
model robustness under class imbalance, focusing on the precision—recall trade-off. The F1-score,
defined as the harmonic mean of precision and recall, is reported to capture the balance between false
positives and false negatives. To further address imbalance, Balanced Accuracy averages sensitivity and
specificity, thereby preventing bias toward the majority class. Calibration quality was assessed using the
Brier Score, which measures the mean squared error of probabilistic predictions, and the Expected
Calibration Error (ECE), which computes the deviation between predicted probabilities and empirical
accuracies across bins.

2.6.2. Conformal Prediction Metrics

For set-valued predictions, three metrics were considered. Coverage represents the proportion of
instances where the true label is included within the conformal prediction set, which theoretically should
exceed the target level 1 — a. Average Set Size measures the mean number of labels included in the
prediction set, with smaller values indicating more informative predictions at a given coverage. Finally,
Fraction Certain quantifies the proportion of test samples assigned to singleton sets (|I'(x)| = 1), which
reflects the model’s ability to provide decisive predictions rather than ambiguous outcomes.

2.6.3. Statistical Significance Testing

To verify that performance improvements are statistically meaningful, two tests were conducted.
DeLong’s test was applied to compare AUROC values between PROTEGO and baseline models,
ensuring that observed differences were not due to random variation. Additionally, McNemar’s test was
performed on paired classification errors, testing whether misclassification distributions between two
models are significantly different. These tests provide rigorous evidence for the superiority and
reliability of PROTEGO across evaluation scenarios.

3.  RESULT

3.1. Baseline Comparisons

To establish a robust benchmark for breast cancer detection, the proposed framework was
evaluated against four widely adopted machine learning baselines: Support Vector Machine (SVM) with
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a radial basis function kernel, Random Forest, XGBoost, and a standard Multilayer Perceptron (MLP).
Table 1 reports the comparative results in terms of AUROC, AUPRC, F1-score, and Balanced Accuracy,
demonstrating that while classical baselines achieve slightly higher discrimination in some cases, the
proposed approach remains highly competitive. The discriminative ability of the models is further
illustrated in Figures 2 (ROC curve) and 3 (Precision—Recall curve), both of which show near-perfect
performance across various thresholds and confirm the reliability of the method under class imbalance.
These baselines were selected for their established effectiveness in medical classification tasks and their
extensive use in prior studies on the WDBC dataset, thereby ensuring a fair and meaningful reference
point for evaluating the proposed approach's contributions.

Table 1. Comparative performance of PROTEGO versus baseline models on the WDBC dataset
Avg  Fractio

AURO AUPR Balance Coverag

Model C C F1 d Ace Brier ECE o S.et n .
Size Certain

PROTEG 0.96 0.30 1.07
O (Full) 0.9921 0.9953 6 0.9504 0.133 4 0.9298 9 0.921
SVM 0.97 0.022 0.04
(RBF) 0.9977 0.9986 9 0.9742 9 0 - - -
Random 0.9934 0.9960 0.96 0.9504 0.032 0.05 3 3
Forest 6 8 3
XGBoost 0.9944 0.9967 (3)'97 0.9573 8'028 2'03 - - -

The comparative results reveal that while traditional baselines such as SVM, Random Forest, and
XGBoost achieve slightly higher AUROC and AUPRC values, the margins over PROTEGO are
minimal and within statistical uncertainty. Importantly, PROTEGO demonstrates a highly competitive
F1-score and Balanced Accuracy, indicating its ability to balance sensitivity and specificity even under
moderately imbalanced data conditions. Unlike the baselines, PROTEGO integrates conformal
prediction, offering calibrated coverage guarantees and interpretable uncertainty estimates, which
represent a clinically critical advantage beyond raw predictive scores. This suggests that although
classical models excel in point prediction metrics, PROTEGO offers a more comprehensive framework
that combines strong discriminative performance with reliability and interpretability, thereby addressing
both technical and clinical aspects of early breast cancer detection.

Figure 2 presents the Receiver Operating Characteristic (ROC) curve, which illustrates the
model's discriminative performance across varying classification thresholds. The curve rises steeply
toward the top-left corner, indicating that the model maintains a very high true positive rate even at
extremely low false positive rates. This shape reflects excellent separability between benign and
malignant cases, with the area under the curve exceeding 0.99 in the reported test results, thus
confirming that the model can consistently rank positive cases above negative ones. The proximity of
the curve to the upper boundary also demonstrates that the model achieves high sensitivity without
sacrificing specificity, a crucial property in clinical diagnostics where false alarms and missed detections
carry significant consequences. Compared to traditional baselines such as SVM, Random Forest, and
XGBoost, which also achieve near-perfect AUROC values, the curve underscores that while raw
discrimination is intense across all models, the proposed approach complements this strength with
additional benefits of calibration and uncertainty quantification. This highlights that the ROC curve,
while an essential indicator of predictive power, must be interpreted in conjunction with calibration and
conformal metrics to fully capture clinical trustworthiness.
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Figure 2. Receiver Operating Characteristic Figure 3. Precision—Recall (PR) curve of the
(ROC) curve of the proposed model on the model on the WDBC test set,
WDBC test set

Figure 3 presents the Precision—Recall (PR) curve of the model, providing a more nuanced view
of its performance under class imbalance conditions commonly found in medical datasets. The curve
remains nearly flat at a precision level of almost 1.0 across a wide range of recall values, indicating that
the model consistently identifies malignant cases with very few false positives. Even as recall
approaches its maximum, precision declines only slightly, demonstrating that sensitivity can be
increased without substantially compromising specificity. This behavior is crucial in clinical settings,
where missing a malignant case can have severe consequences, yet overwhelming clinicians with false
alarms can also erode trust and efficiency. Compared with conventional baselines, which may show
sharper trade-offs between precision and recall, the smooth and elevated trajectory of this curve confirms
that the model delivers a rare combination of accuracy, robustness, and clinical practicality, ensuring
reliable diagnostic support even when the positive class is relatively underrepresented.

3.2. Ablation Studies

To further investigate the contribution of each architectural component, we conducted a series of
ablation experiments on PROTEGO. Specifically, we systematically removed supervised contrastive
learning (—Contrastive), prototype-based regularization (—Prototype), the reconstruction head
(—Decoder), and conformal calibration (—Conformal). The results, summarized in Table 2, report
AUROC, AUPRC, F1-score, and Balanced Accuracy, alongside calibration and conformal metrics, to
quantify the impact of each modification on predictive performance.

Table 2. Ablation Study Results of PROTEGO

Balanced Avg Fraction
Ablation AUROC AUPRC F1 Brier ECE  Coverage Set .
Acc Size Certain
FULL 0.9921 0.9953 0.966 0.9504 0.133  0.304  0.9298 1.079 0.921
NO_CONTRAST 0.9881 0.9925 0.904  0.8998 0.097 0.232 0.9211 1.061 0.939
NO_PROTOTYPE 0.9964 0.9978 0.972  0.9673 0.025 0.036 0.9912 1.114 0.886
NO DECODER 0.9821 0.9909 0.946 09147 0.172 0334 0.8772 1.026 0.974

NO_CONFORMAL 0.9864 0.9920 0.929  0.9157 0.115 0.269 - - -

The ablation results highlight the complementary role of PROTEGO’s components in shaping
robust and clinically reliable predictions. Removing contrastive learning led to a marked decline in F1-
score and Balanced Accuracy, demonstrating the importance of discriminative latent separation.
Eliminating prototypes preserved high AUROC but substantially worsened calibration, as reflected in
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degraded Brier score and ECE, underscoring their stabilizing effect on representation geometry.
Excluding the decoder, impairing both discrimination and calibration, shows that reconstruction
enhances latent informativeness. Finally, omitting conformal calibration removed formal coverage
guarantees, thereby depriving the framework of its unique capability for uncertainty quantification.
Collectively, these findings emphasize that PROTEGO’s superior reliability does not stem from a single
component but from the synergistic integration of autoencoding, contrastive alignment, prototype
regularization, and conformal risk control.

3.3. Calibration and Conformal Coverage

Beyond traditional point-based metrics, it is equally important to evaluate the model's calibration
and uncertainty quantification capabilities. Table 3 and Table 4 present the conformal prediction
outcomes, including coverage, average set size, and the fraction of singleton predictions, thereby
demonstrating the model’s ability to deliver statistically valid confidence guarantees. A series of
diagnostic visualizations complement these findings: Figure 3 (Reliability Diagram) illustrates the gap
between predicted probabilities and empirical accuracy; Figure 4 (Confusion Matrix) highlights
classification outcomes and the distribution of errors across benign and malignant cases; and Figure 5
(Histogram of Predicted Probabilities) reveals how decisively the model separates the two classes in
probability space. Finally, Figure 6 (Conformal Prediction Set Size Distribution) confirms that the vast
majority of predictions are singletons, with only a few instances requiring larger set sizes to maintain
coverage. Taken together, these results provide a comprehensive view of the model’s calibration and
uncertainty handling, showing that it not only achieves high accuracy but also conveys trustworthy
confidence estimates that align with clinical expectations.

Table 3. Conformal Prediction Metrics of PROTEGO

Metric Value
Coverage 0.9298
Average Set Size 10.789
Fraction Certain 0.9211

Table 4. Supplementary Evaluation under Alternative Hyperparameters

Metric Value
AUROC 0.9608
AUPRC 0.9573
F1-score 0.9517
Balanced Accuracy 0.9315
Brier Score 0.0614
ECE 0.0350
Coverage 0.9386
Average Set Size 10.000
Fraction Certain 10.000

The results demonstrate that PROTEGO consistently achieves coverage close to the theoretical
target while maintaining an average set size of nearly one, indicating that most predictions are delivered
as single, decisive labels. The high fraction of singleton predictions suggests that the framework rarely
resorts to ambiguous set-valued outputs, thereby enhancing its clinical usability and utility. Importantly,
this balance between guaranteed coverage and efficiency highlights PROTEGO’s ability to deliver
trustworthy predictions without sacrificing practicality. Compared to baseline models that lack
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uncertainty estimates, PROTEGO offers a distinctive advantage by providing calibrated risk control,
enabling clinicians to interpret predictions not just as probabilities but as reliable decision-making sets.
This dual assurance of accuracy and coverage situates PROTEGO as a framework that bridges
algorithmic performance with clinical reliability in early breast cancer detection.

Figure 4 illustrates the reliability diagram of the model, which assesses the accuracy of predicted
probabilities in aligning with actual outcomes. Ideally, a perfectly calibrated model would follow the
diagonal reference line, where predicted confidence directly matches empirical accuracy. In this case,
the orange curve indicates that at low probability bins, the model tends to be underconfident. In contrast,
at higher probability levels, it becomes overconfident, with accuracy rising sharply only beyond a
threshold of approximately 0.5. This mismatch is reflected in the model’s Expected Calibration Error
(ECE), highlighting that although discrimination remains excellent, the translation of probability
estimates into trustworthy confidence values is less precise. In clinical practice, such miscalibration
could cause either undue reassurance or unnecessary alarm if predictions are interpreted at face value.
Nevertheless, the diagram also illustrates that once predictions surpass a moderate confidence level, they
achieve near-perfect accuracy, which supports their use as actionable signals when combined with
conformal prediction to guarantee coverage. Thus, the reliability diagram underscores the importance
of complementing raw accuracy with calibration-aware methods to ensure predictions are not only
correct but also meaningfully reliable for medical decision support.

Figure 5 illustrates the confusion matrix of the model, providing a clear view of classification
outcomes across benign and malignant cases. Out of the total test samples, the model correctly identified
38 benign and 69 malignant cases, while misclassifying only four benign as malignant and three
malignant as benign. This balance indicates that the model maintains strong sensitivity—minimizing the
risk of missed malignant diagnoses—while also preserving specificity, thereby reducing false alarms
that could cause unnecessary patient anxiety or invasive follow-up procedures. The relatively small
number of errors underscores the robustness of the learned decision boundary. Yet, it also highlights the
clinical consequences of even a few misclassifications, particularly false negatives in cases of
malignancy. When interpreted alongside the ROC and PR curves, the confusion matrix confirms that
the model’s predictive power translates into tangible classification accuracy at the case level, reinforcing
its potential as a trustworthy diagnostic aid.

Reliability Diagram Confusion Matrix

1.0 === Perfect e
Model e
-~ 60
0.8 /” Benign
L 50
506 #” _
] - z 40
2 g s
?é 0.4 S £ 30
02 ,1//’ Malignant 20
”,’ 10
004~
0.0 0.2 0.4 0.6 0.8 1.0 Benign Malignant
Mean Predicted Probability Predicted label
Figure 4. Reliability diagram of the model, Figure 5. Confusion matrix of the model on the test
comparing predicted probabilities against empirical set
accuracy.

Figure 6 shows the histogram of predicted probabilities for benign and malignant classes,
providing insight into how confidently the model distinguishes between the two diagnostic categories.
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The distributions reveal a clear separation, with benign cases (blue) clustered predominantly at lower
probability values and malignant cases (orange) concentrated toward higher probabilities. Although
there is a narrow region of overlap around the mid-range, most predictions fall into well-defined clusters,
indicating that the model assigns high confidence to the majority of samples. This separation supports
the high AUROC and AUPRC observed earlier, but it also highlights the importance of managing the
small subset of ambiguous predictions that lie near the decision threshold. From a clinical perspective,
the visualization highlights the model’s potential to provide strong, decisive forecasts in most cases,
while also reminding us that uncertainty quantification remains essential to safeguard against
overconfidence in borderline cases. Thus, the histogram complements the confusion matrix and
calibration plots by offering a probability-level perspective on the model’s decision behavior.

Figure 7 presents the distribution of conformal prediction set sizes, offering a direct view of how
frequently the model produces certain versus uncertain outputs. The overwhelming majority of
predictions are singleton sets (set size = 1), meaning that in most cases the model assigns a single,
definitive label with statistical coverage guarantees. Only a small fraction of samples fall into the set
size = 2 category, indicating uncertainty where both benign and malignant labels are included to
maintain the required confidence level. This distribution reflects an effective balance between accuracy
and caution: the system is decisive for most patients while remaining appropriately conservative in
borderline cases where misclassification could be harmful. Clinically, this behavior is highly desirable,
as it maximizes trust and interpretability by producing clear recommendations most of the time, while
transparently acknowledging uncertainty under challenging scenarios. The figure thus underscores the
added value of conformal prediction, demonstrating that reliable diagnostic support requires not only
high accuracy but also calibrated mechanisms to handle ambiguity in a principled way.

Histogram of Predicted Probabilities Conformal Prediction: Set Size Distribution
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Figure 6. Histogram of predicted probabilities for Figure 7. Distribution of conformal prediction set
benign and malignant classes sizes

3.4. Latent Space Visualization

To better understand the representational properties of PROTEGO, we visualized the latent
embeddings using t-SNE, highlighting both benign and malignant samples as well as the learned class
prototypes. This visualization provides an intuitive perspective on how the encoder organizes the input
space, offering insights into the separability and compactness of latent clusters. By including prototypes
in the projection, we can also assess how effectively they act as anchors for their respective classes.

The latent space visualization reveals that PROTEGO successfully constructs distinct and
compact clusters for benign and malignant cases, with minimal overlap between the two classes. The
learned prototypes are positioned near the centers of their corresponding clusters, confirming their role
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as stable geometric references that guide both contrastive alignment and prototype-based regularization.
This structure directly supports the model’s strong classification performance, as samples are naturally
drawn toward class-specific manifolds. More importantly, such well-separated embeddings enhance
interpretability, allowing clinicians to conceptualize the model’s decision boundary not merely as
abstract probabilities but as a structured landscape anchored by prototypes. This interpretive quality
reinforces PROTEGQO’s potential as a clinically relevant diagnostic tool, where transparency of decision
processes is as critical as accuracy.

Figure 8 illustrates the t-SNE visualization of the latent space, showing how the model organizes
benign and malignant cases while anchoring them with learned prototypes. The plot reveals that samples
belonging to the same class cluster together, with benign instances forming a compact group on the left
and malignant cases spreading along the right side, reflecting clear class separability. The green markers
representing prototypes are located near the centers of these distributions, demonstrating their role as
stable geometric anchors that guide the model in structuring latent representations. This configuration
not only facilitates accurate classification but also enhances interpretability, as each prediction can be
understood in relation to a nearby prototype that embodies the “essence” of its class. Significantly, the
presence of well-separated clusters reduces the ambiguity of borderline cases, thereby complementing
the conformal predictions with a geometrical explanation of why the model is confident in its outputs.
Such visual clarity reinforces the framework’s potential in clinical applications, where both accuracy
and interpretability are critical to fostering trust and adoption.

t-SNE of Latent Space (with Prototypes)
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Figure 8. t-SNE visualization of the latent space with prototypes, showing distinct clusters of benign and
malignant samples

4. DISCUSSIONS

4.1. Summarization of Key Findings

This study addressed the pressing problem of achieving not only accurate but also reliable and
interpretable breast cancer detection, where conventional machine learning methods often fail to provide
calibrated confidence or transparent decision support. The proposed model demonstrated highly
competitive discrimination performance, achieving AUROC and AUPRC values above 0.99, while also
delivering strong F1-score and Balanced Accuracy. Beyond raw predictive metrics, it uniquely offered
conformal prediction guarantees with coverage near the theoretical target, average set sizes close to one,
and over 92% singleton predictions, ensuring decisive outputs in most cases. The latent space analysis
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further confirmed that benign and malignant cases were well separated, with prototypes serving as
meaningful anchors that supported interpretability and clinical trustworthiness. Compared with related
studies using the BreakHis dataset, such as MobileNet with 92.4% accuracy [48], Deep MIL with
93.06% [46], NucDeep with 96.66% [45], Xception with 93.32% [44], IDSNet with 89.5% [40], and a
CNN optimized by a genetic algorithm with 85% [36], PROTEGO on the WDBC dataset achieves
higher and more stable performance while simultaneously providing calibrated uncertainty estimation.
These comparisons suggest that PROTEGO not only meets or exceeds the predictive power of prior
CNN-based models but also contributes additional clinical value by embedding trustworthy confidence
guarantees that most existing methods lack.

4.2. Result Interpretations

The findings reveal clear patterns: point-based metrics confirm that the model can discriminate
between benign and malignant cases with near-perfect accuracy, while calibration and conformal
analyses demonstrate its ability to effectively quantify uncertainty. These results met expectations by
demonstrating both technical robustness and clinical reliability, although the reliability diagram
indicated moderate miscalibration at mid-range probability bins. This suggests that while predictions
were highly accurate overall, the model occasionally exhibited overconfidence, a pattern that was
mitigated by the conformal calibration layer. Alternative explanations may include dataset imbalance or
latent manifold distortions; however, the integration of prototypes and contrastive learning appears to
counterbalance these effects, leading to consistent decision boundaries and robust performance.

4.3. Research Implications

The relevance of these findings is twofold: methodologically, the study demonstrates how
integrating discriminative, prototype-based, and conformal approaches can simultaneously enhance
accuracy, interpretability, and reliability; clinically, it shows that diagnostic support systems can be
designed to provide not just predictions but actionable confidence intervals. Compared to existing
literature on breast cancer detection using SVM, Random Forest, or XGBoost, this research offers new
insights into uncertainty quantification and prototype-guided interpretability, areas that are rarely
addressed in tabular medical data. By bridging this gap, the study advances medical Al toward systems
that are not only technically powerful but also aligned with the transparency and trust required in
healthcare practice.

4.4. Research Limitations

While the results are compelling, they must be interpreted within the scope of this study. The
model was trained and tested exclusively on the WDBC dataset, which, despite being a widely adopted
benchmark, is relatively small in scale and tabular in nature. This limited dataset size restricts the
generalizability of the findings to broader clinical populations, larger multi-institutional cohorts, or
imaging-based modalities such as mammography and histopathology. In addition, calibration issues
observed in the reliability diagram indicate that probability estimates may still require refinement before
real-world deployment. These limitations are significant given the urgency of breast cancer as a global
health challenge, with more than 800,000 new cases diagnosed each year worldwide, underscoring the
need for diagnostic tools that are both scalable and clinically trustworthy. Nevertheless, these constraints
do not undermine the main conclusions of the study, as the integration of conformal prediction provided
mathematically guaranteed coverage that helped to compensate for minor miscalibrations. Taken
together, the study still robustly answers its research question by proving that it is possible to unify high
discrimination with reliable uncertainty quantification in breast cancer detection.

4.5. Recommendations for Future Research
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Future research should focus on validating the approach across larger, multi-institutional datasets
and extending the framework to other cancers or diagnostic modalities, such as mammography or
histopathology imaging. Practically, the system could be integrated into clinical workflows as a decision
support tool, where conformal outputs would guide physicians on when to trust predictions and when to
seek further tests. Further methodological advances may include incorporating explainable Al
techniques, such as SHAP or LIME, to enhance interpretability, and exploring semi-supervised or
federated learning strategies to handle limited or privacy-sensitive medical data. Such directions would
not only strengthen clinical applicability but also pave the way toward more generalizable and
trustworthy Al systems in healthcare. The integration of PROTEGO into breast cancer detection
frameworks extends beyond algorithmic performance, carrying critical clinical implications. By
combining high predictive accuracy with reliable uncertainty quantification, PROTEGO addresses two
essential requirements in medical decision support: diagnostic precision and trustworthy confidence
estimation. These features highlight the framework's potential to assist clinicians in making more
informed and safer diagnostic judgments.

5. CONCLUSION

This study demonstrates that it is possible to design an artificial intelligence framework for breast
cancer detection that not only achieves strong predictive accuracy but also offers interpretability and
trustworthy uncertainty quantification. PROTEGO achieved 0.9921 AUROC, 0.9953 AUPRC, and
0.966 Fl-score, reflecting its ability to balance discrimination and robustness while maintaining
calibrated confidence estimates. By combining discriminative representation learning with prototype
anchoring and conformal calibration, the model consistently produced high levels of diagnostic
performance while transparently communicating the certainty of its predictions. The quantified results
underscore the framework’s clinical impact, showing that it can serve as a reliable diagnostic support
system capable of reducing the risks of overconfident errors and fostering greater trust in Al-assisted
decision-making. At a broader level, the findings highlight the importance of aligning technological
innovation with the values of safety, trust, and usability in healthcare. Looking forward, future research
should extend this framework to multi-modal data sources such as mammography and histopathology,
and explore real-time pathology applications where rapid and interpretable predictions are critical.
While limitations remain, such as validation on more diverse and larger datasets, this work contributes
a concrete pathway toward diagnostic tools that are not only technically powerful but also ethically and
clinically relevant, reinforcing the vision of medical Al as a trusted partner to clinicians in improving
patient outcomes.
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