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Abstract 

Breast cancer remains one of the leading causes of mortality among women, making accurate and trustworthy early 

detection a critical challenge in healthcare. To address this, we propose PROTEGO, a Prototype-Contrastive 

Autoencoder with integrated Conformal Prediction, designed to achieve both high diagnostic accuracy and reliable 

uncertainty quantification. The framework combines dual-head autoencoding, supervised contrastive learning, 

prototype-based regularization, and conformal calibration to generate discriminative yet interpretable representations. 

Using the Wisconsin Diagnostic Breast Cancer (WDBC) dataset, PROTEGO was trained and evaluated through 

stratified data splits, with performance measured by AUROC, AUPRC, F1-score, Balanced Accuracy, Brier score, 

calibration error, and conformal coverage metrics. The results show that PROTEGO achieves highly competitive 

performance with an AUROC of 0.992 and an AUPRC of 0.995, while uniquely providing conformal coverage 

guarantees with an average set size close to one and more than 92% decisive predictions. Ablation studies confirm 

the complementary role of each component in enhancing both accuracy and calibration. These findings demonstrate 

that integrating prototype-guided representation learning with conformal prediction establishes a clinically 

meaningful diagnostic framework. PROTEGO highlights the importance of unifying precision and reliability in 

medical AI, offering a step toward more interpretable, safe, and clinically trustworthy systems for breast cancer 

detection. 

 

Keywords: Breast Cancer Diagnosis, Conformal Prediction, Prototype-Contrastive Autoencoder, Representation 

Learning, Uncertainty Quantification. 

 

 

This work is an open access article and licensed under a Creative Commons Attribution-Non Commercial 

4.0 International License 

  

 

1. INTRODUCTION 

Breast cancer remains one of the most pressing public health challenges worldwide, representing 

a leading cause of mortality among women and placing significant burdens on patients, families, and 

healthcare systems. Early and accurate detection is universally acknowledged as the most effective 

strategy for improving survival rates and reducing treatment costs. Yet, it continues to be hindered by 

diagnostic complexity, variability in clinical interpretation, and the limited sensitivity of traditional 

screening methods. Medical datasets, such as those derived from fine-needle aspirate cytology, provide 

a valuable source of diagnostic information; however, extracting actionable insights from high-

dimensional and sometimes imbalanced data is far from trivial. In this context, the field of medical 

artificial intelligence has sought to design computational tools that not only enhance accuracy but also 

deliver more consistent and objective results, thereby addressing weaknesses inherent in manual 

evaluation and conventional statistical models. 

The importance of solving this problem extends beyond algorithmic advancement to the very core 

of patient care and clinical trust. Inaccurate or overconfident predictions can lead to devastating 

consequences, either by delaying necessary treatment or by subjecting patients to unnecessary invasive 

procedures and emotional distress. Conversely, reliable diagnostic systems that are both accurate and 
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transparent hold the potential to support clinicians in making better-informed decisions, particularly in 

resource-constrained environments where expert pathologists may be scarce. Bridging the gap between 

raw predictive performance and trustworthy, interpretable decision support is therefore not only a 

technical necessity but also a moral imperative in the pursuit of equitable, safe, and human-centered 

healthcare. 

Recent advances in machine learning have driven significant progress in breast cancer 

diagnostics, with numerous studies applying models such as SVM, Random Forest, and XGBoost to the 

widely used Wisconsin Diagnostic Breast Cancer (WDBC) dataset [1]. One study demonstrated that an 

SVC-RBF model achieved high accuracy in distinguishing benign from malignant tumors, while another 

explored ensemble strategies to further improve classification performance [2]. It has also been 

emphasized that dataset size and feature selection often play a more crucial role than the choice of 

algorithm, highlighting limitations in generalization [3]. A multimethod review provided strong 

evidence for the potential of AI in early detection, whereas an optimized stacking ensemble was shown 

to outperform individual classifiers with impressive accuracy [4][5]. Similarly, combining XGBoost 

with explainable AI techniques was found to enhance interpretability, and another study reported that 

XGBoost achieved superior accuracy while leveraging SHAP for clinical transparency [6][7]. To further 

address the challenge of class imbalance, an engineered up-sampling approach was proposed, which 

significantly improved both sensitivity and balanced accuracy [8]. Collectively, these studies confirm 

that machine learning has established itself as a powerful tool for breast cancer detection; however, they 

also reveal persistent challenges, including dataset limitations, a lack of robust calibration, and 

insufficient integration into clinical workflows, which continue to restrict its practical adoption in 

healthcare settings. 

Recent developments in medical artificial intelligence highlight the expanding role of 

autoencoders and contrastive learning in advancing cancer diagnostics [9]. Comparative studies have 

shown that while contrastive methods are effective, masked autoencoders tend to be more robust for 

small medical imaging datasets, and patient-aware contrastive learning that incorporates metadata can 

further enhance generalization and fairness [9][10]. A systematic review underscored that predictive and 

contrastive self-supervised approaches bring unique adaptations to medical image analysis, particularly 

in learning representations without extensive labels [11]. Building on this, a contrastive multi-modality 

learner was introduced for liver cancer diagnosis, demonstrating the power of combining data fusion 

with augmentation to improve diagnostic accuracy [12]. Broader surveys of machine learning for cancer 

detection identified autoencoders and contrastive strategies as key drivers of recent progress, pointing 

to their capacity to extract deep, meaningful patterns from complex biomedical data [13]. 

Methodological innovations such as contrastive multiple instance learning have enabled the extraction 

of slide-level features from histopathology images without the need for detailed annotations, and 

encoder-decoder contrast methods have outperformed conventional anomaly detection techniques [14] 

[15]. Complementing these technical advances, critical analyses of recent machine learning frameworks 

emphasize both their diagnostic potential and the persistent challenges they face in efficiency and 

clinical integration [16]. Collectively, these studies establish that autoencoder-based architectures and 

contrastive paradigms are becoming central to medical AI research, opening opportunities for earlier 

and more accurate cancer detection while underscoring the need to address ongoing challenges of data 

scarcity, generalization, and interpretability. 

Prototype-based learning has recently emerged as a promising strategy to enhance interpretability 

in medical AI, offering clinicians not only predictive accuracy but also transparent pathways to 

understand model decisions [17]. One approach, DProtoNet, introduced a decoupled prototypical 

network that improved interpretability by separating inference from explanation, while another study 

proposed pseudo-class part prototype networks for breast cancer pathology, integrating clustering 

techniques to extract medically relevant prototypes [17] [18]. Expanding beyond conventional 

architectures, researchers have extended prototype-based interpretability to graph neural networks, 

enabling both global and local explanations. This direction has been further advanced with Proto-Caps, 
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an explainable capsule network that preserves accuracy while offering visual prototypes to support 

medical image-based decisions [19] [20]. Other innovations include cross- and intra-image prototypical 

learning designed to disentangle multi-label disease diagnosis, as well as prototype-based networks 

applied to single-cell RNA-seq data for patient classification, effectively handling noise and high 

dimensionality in omics datasets [21] [22]. Complementing these technical advances, broad surveys of 

interpretability in medical AI highlighted the urgent need for standardized evaluation metrics, while 

additional works emphasized the increasing importance of explainable AI methods and underscored the 

persistent challenges of balancing transparency, predictive accuracy, and usability in clinical workflows 

[23] [24] [25]. Taken together, these studies demonstrate that prototype-based learning is gaining 

traction across diverse biomedical domains; however, most implementations remain concentrated in 

imaging, leaving significant gaps in extending such interpretable frameworks to tabular biomedical data, 

where clinical adoption is equally critical. 

Conformal prediction has increasingly been recognized as a robust framework for reliable 

uncertainty quantification in healthcare, with applications ranging from genomics to medical imaging 

[26]. In genomic medicine, conformalized models have been shown to mitigate risks by predicting drug 

responses under distribution shifts, while broader reviews have highlighted their use in clinical sciences 

and stressed the importance of standardized protocols alongside stronger clinician involvement [26] 

[27]. In dermatology, conformal prediction has been validated for skin lesion classification, 

outperforming alternative uncertainty estimation methods, and it has also been praised for its 

interpretability as a core element of uncertainty-aware deep learning [28] [29]. More comprehensive 

surveys have framed conformal prediction as a data-centric approach to valid inference, identifying both 

opportunities and scalability challenges, while applications in earth observation have demonstrated its 

adaptability across diverse domains [30] [31]. Within oncology, conformal prediction has been applied 

to anti-cancer drug sensitivity prediction to ensure reliable prioritization of therapies, and in pathology, 

it has been used to detect unreliable predictions in prostate cancer diagnosis, thereby enhancing patient 

safety [32] [33]. Complementary reviews further emphasize that integrating uncertainty metrics such as 

conformal prediction is essential for advancing transparency, interpretability, and clinical trust in 

medical AI [34] [35]. Taken together, these studies affirm that conformal prediction strengthens 

diagnostic reliability while directly addressing one of the most critical barriers to clinical adoption—

trust in machine learning outputs—by providing mathematically guaranteed coverage in decision 

support systems. 

Research on breast cancer histopathology using the BreakHis dataset has produced a wide range 

of innovative CNN-based approaches that substantially improve diagnostic accuracy, yet essential 

limitations remain. Early attempts optimized CNN weights with genetic algorithms but achieved only 

modest accuracy (85%) and suffered from local minima [36]. More advanced hybrid architectures, such 

as CNN-LSTM, reached 99% binary and 92.5% multi-class accuracy, though they were restricted to 

magnification-specific images and lacked longitudinal predictive power [37]. Multi-path CNNs 

integrated residual and skip connections for 98.34% accuracy, yet struggled with massive class 

imbalance [38], while knowledge distillation models reduced computational burden to 97.09% accuracy 

but at the expense of deeper interpretability [39]. IDSNet combined DenseNet with SENet to enhance 

feature extraction, outperforming VGG16 and ResNet50 [40], and CBAM-VGGNet pushed accuracy to 

nearly 99% through modality-specific attention [41]. Alternative strategies explored Zernike moments 

with neural networks to achieve 100% recognition and explainability through LIME [42], bilinear CNNs 

for fine-grained recognition at 95.95% [43], and computer-aided diagnosis systems benchmarking 

multiple pre-trained CNNs, including Xception and DenseNet [44]. Additional contributions included 

nucleus-guided CNN feature fusion for 96.66% accuracy [45] and deep multiple instance CNNs 

enabling slide-level diagnosis without patch labels at 93.06% [46]. More recent approaches combined 

evolutionary feature selection with conditional variational autoencoders [47] or transfer learning with 

attention mechanisms to reach up to 99.5% accuracy [48]. Despite these advances, prior work remains 

heavily focused on raw accuracy, often limited by dataset imbalance, magnification constraints, lack of 
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uncertainty quantification, and insufficient interpretability—gaps that necessitate integrative 

frameworks capable of delivering both trustworthy predictions and clinically meaningful explanations. 

The primary objective of this study is to develop and rigorously evaluate an artificial intelligence 

framework for early breast cancer detection that unifies high predictive accuracy with clinically 

meaningful reliability. Specifically, this research aims to design a model capable of learning structured 

latent representations that preserve essential diagnostic features while ensuring robust classification 

performance across benign and malignant cases. In addition, the study seeks to incorporate mechanisms 

for interpretable decision-making and mathematically guaranteed uncertainty quantification, thereby 

addressing critical gaps in current diagnostic technologies. By doing so, the research directly responds 

to the urgent need for computational methods that are not only powerful in their predictive capacity but 

also transparent, trustworthy, and aligned with the practical demands of clinical environments. 

Ultimately, the study aims to contribute both methodologically, by advancing the state of medical AI, 

and socially, by supporting safer and more equitable diagnostic outcomes for patients. 

The contributions of this study are threefold and collectively advance the state of artificial 

intelligence in breast cancer diagnostics. First, it presents a unified learning architecture that integrates 

autoencoding, contrastive representation learning, and prototype-based regularization to generate latent 

spaces that are both discriminative and interpretable. Second, it incorporates conformal prediction into 

the diagnostic process, providing mathematically guaranteed coverage and offering clinicians reliable 

measures of uncertainty alongside predictive outcomes. Third, the framework is rigorously evaluated 

against established baselines, including SVM, Random Forest, and XGBoost, and through ablation 

studies that isolate the impact of each architectural component, thereby ensuring a transparent 

assessment of its effectiveness. Taken together, these contributions demonstrate not only 

methodological innovation but also practical significance, as they respond directly to the dual clinical 

demand for accuracy and trustworthiness in early breast cancer detection. 

The novelty of this research lies in its integrative approach, bringing together methodological 

advancements that have typically evolved in isolation within the field of medical AI. While prior studies 

on breast cancer detection have demonstrated the strengths of classical machine learning and deep 

learning models, few have successfully combined discriminative accuracy, interpretable latent 

representations, and formal uncertainty quantification within a single cohesive framework. This study 

introduces an architecture that not only learns to classify with high precision but also structures its latent 

space through contrastive alignment and prototype regularization, thereby enhancing transparency and 

clinical interpretability. Moreover, by embedding conformal prediction into the learning pipeline, the 

model provides mathematically guaranteed coverage levels, a capability largely absent from existing 

cancer detection systems. Such integration represents a meaningful departure from conventional designs 

and establishes a new methodological pathway for developing AI systems that are simultaneously 

accurate, interpretable, and trustworthy in clinical practice. 

2. METHOD 

To provide a more straightforward overview of the proposed methodology, the overall workflow 

of PROTEGO is illustrated in Figure 1. The architecture highlights the sequential pipeline, starting from 

data preprocessing of the WDBC dataset to prototype-contrastive representation learning, followed by 

conformal prediction, and finally yielding reliable diagnostic outputs. 

 
Figure 1. PROTEGO Framework 
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2.1. Dataset Description 

The experiments in this study employed the UCI Breast Cancer Wisconsin Diagnostic (WDBC) 

dataset, a widely used benchmark for early breast cancer detection. The dataset consists of 569 patient 

records, each represented by 30 numerical features derived from digitized fine needle aspirate (FNA) 

images of breast tissue. Among these samples, 357 are labeled as benign and 212 as malignant, reflecting 

a moderately imbalanced class distribution that highlights the clinical challenge of making a reliable 

diagnosis. Before model training, all features were standardized to have a zero mean and unit variance 

to ensure stable optimization and prevent scale-related bias. The data were then partitioned using a 

stratified strategy into training, validation, calibration, and test sets, thereby preserving the class balance 

and enabling robust model development, hyperparameter tuning, conformal calibration, and fair 

performance evaluation. 

2.2. Proposed Framework: PROTEGO 

The proposed PROTEGO framework integrates an encoder–decoder autoencoder, a dual-head 

structure, a prototype memory bank, supervised contrastive learning, and prototype-based 

regularization. Each mathematical component is formalized as follows. 

2.2.1.  Encoder–Decoder Architecture 

We first define the encoder that projects an input feature vector 𝑥𝑖 ∈ ℝ𝑑 into a latent 

representation 𝑧𝑖 ∈ ℝ𝑝. This mapping is expressed in Equation (1): 

 

𝑧𝑖 = 𝑓𝜃(𝑥𝑖),  𝑓𝜃: ℝ𝑑 → ℝ𝑝 (1) 

 

where 𝑓θ is parameterized by a multilayer perceptron (MLP). The decoder reconstructs the 

original input from the latent space, as shown in Equation (2): 

 

𝑥𝑖 = 𝑔𝜙(𝑧𝑖),  𝑔𝜙: ℝ𝑝 → ℝ𝑑 (2) 

 

with 𝑔ϕ denoting the MLP-based decoder. 

2.2.2.  Dual-Head Structure 

The architecture employs a dual-head design to simultaneously optimize reconstruction and 

classification. The reconstruction head minimizes the mean squared error (MSE) as shown in Equation 

(3): 

ℒrec =
1

𝑁
∑ |𝑥𝑖

𝑁

𝑖=1

− 𝑥𝑖|2
2 (3) 

 

The classification head predicts the probability distribution over classes using a softmax function, 

as defined in Equation (4): 

 

𝑦̂𝑖 = ℎψ(𝑧𝑖) = softmax(𝑊𝑧𝑖 + 𝑏) (4) 

 

where ℎψ denotes the classifier, and 𝑊, 𝑏 are trainable parameters. The associated cross-entropy loss is 

presented in Equation (5): 
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ℒcls = −
1

𝑁
∑ ∑ 1[𝑦𝑖 = 𝑐]

𝑐∈{0,1}

𝑁

𝑖=1

  log 𝑦̂𝑖,𝑐 (5) 

2.2.3.  Prototype Memory Bank 

To enforce structured latent representations, PROTEGO maintains class prototypes μ𝑐 ∈

ℝ𝑝𝑓𝑜𝑟𝑐 ∈ {0,1}. The prototypes are updated using exponential moving average (EMA) with a rate α, 

as formulated in Equation (6): 

 

μ𝑐 ← (1 − α)μ𝑐 + α ⋅
1

|𝐵𝑐|
∑ 𝑧𝑖

𝑖∈𝐵𝑐

 (6) 

 

where 𝐵𝑐 denotes the set of indices in a batch belonging to class 𝑐. 

2.2.4.  Supervised Contrastive Loss 

The model also incorporates supervised contrastive learning to encourage intra-class compactness 

and inter-class separation. Given cosine similarity  sim(𝑢, 𝑣) =
𝑢⊤𝑣

|𝑢||𝑣|
, the supervised contrastive loss is 

defined in Equation (7): 

 

ℒcon = ∑
−1

|𝑃(𝑖)|

𝑁

𝑖=1

∑ log
exp(sim(𝑧𝑖, 𝑧𝑝)/τ)

∑ exp(sim(𝑧𝑖, 𝑧𝑎)/τ)𝑎≠𝑖
𝑝∈𝑃(𝑖)

 (7) 

 

where 𝑃(𝑖) is the set of positive indices with the same label as 𝑖, and τ >  0 is a temperature parameter. 

2.2.5.  Center and Margin Loss with Prototypes 

In addition to contrastive learning, we regularize latent embeddings relative to class prototypes. 

The center loss, defined in Equation (8), minimizes the distance between latent points and their 

corresponding prototype: 

ℒcne =
1

𝑁
∑ |𝑧𝑖

𝑁

𝑖=1

− μ𝑦𝑖
|2
2 (8) 

 

To further enforce inter-class separation, a margin-based hinge loss is introduced in Equation 

(9): 

ℒmargin =
1

𝑁
∑ max (0,  𝑚 − ‖𝑧𝑖 − μ𝑦𝑖

‖
2

+ ‖𝑧𝑖 − μ𝑦𝑖̅
‖

2
)

𝑁

𝑖=1

 (9) 

 

where 𝑦𝑖̅ = 1 − 𝑦𝑖 represents the opposite class, and 𝑚 >  0 is a margin hyperparameter. 

Finally, the overall training objective combines all components into a single loss, as shown in 

Equation (10): 

 

ℒtotal = 𝜆recℒrec + 𝜆clsℒcls + 𝜆conℒcon + 𝜆centerℒcenter + 𝜆marginℒmargin (10) 

 

where λ⋅ are balancing coefficients tuned via cross-validation. 
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2.3. Conformal Risk Control 

To ensure reliable predictions in clinical practice, PROTEGO integrates conformal prediction, 

which provides finite-sample coverage guarantees that are independent of distributional assumptions. 

The method ensures that, with high probability, the true label belongs to the predicted set. 

2.3.1.  Non-conformity Score 

We begin by defining the non-conformity score in Equation (11). For a sample 𝑥𝑖 with true label 

𝑦𝑖, and predicted probability 𝑝̂𝑐(𝑥𝑖) for class c, the non-conformity score is: 

 

𝑠(𝑥𝑖, 𝑦𝑖) = 1 − 𝑝̂𝑦𝑖
(𝑥𝑖) (11) 

 

This score reflects the lack of confidence in the correct label; smaller values indicate more confident 

predictions. 

2.3.2.  Global Split Conformal Threshold 

Using a calibration set 𝒟cal = {(𝑥𝑗, 𝑦𝑗)}𝑗=1
𝑀 , we compute non-conformity scores {𝑠(𝑥𝑗, 𝑦𝑗)}𝑗=1

𝑀 . 

The conformal threshold is defined in Equation (12): 

 

𝑞̂1−α = Quantile1−α({ 𝑠(𝑥𝑗, 𝑦𝑗): (𝑥𝑗, 𝑦𝑗) ∈ 𝒟cal }) (12) 

 

where α ∈ (0,1) is the tolerated error rate. 

Given this threshold, the prediction set for a new input 𝑥 is formed according to Equation (13): 

 

Γ(𝑥) = { 𝑐 ∈ {0,1}: 1 − 𝑝̂𝑐(𝑥) ≤ 𝑞̂1−α} (13) 

 

This ensures that the true label is contained in Γ(𝑥) with probability at least 1 − α. 

2.3.3.  Mondrian Conformal Prediction 

To guarantee balanced coverage across classes, PROTEGO employs Mondrian conformal 

prediction. Instead of a single global threshold, class-conditional thresholds are used. Equation (14) 

defines the threshold for each class c: 

𝑞̂1−α
(𝑐)

= Quantile1−α({ 𝑠(𝑥𝑗, 𝑦𝑗): 𝑦𝑗 = 𝑐,  (𝑥𝑗, 𝑦𝑗) ∈ 𝒟cal }) (14) 

 

The Mondrian prediction set is then defined in Equation (15): 

 

Γmon(𝑥) = { 𝑐: 1 − 𝑝̂𝑐(𝑥) ≤ 𝑞̂1−α
(𝑐)

 } (15) 

This refinement guarantees that each class achieves the same marginal coverage level, preventing bias 

towards the majority class. 

2.3.4. Expected Set Size and Coverage 

Beyond coverage, it is essential to measure the efficiency of conformal sets. Equation (16) 

expresses the expected set size: 

𝐸[|Γ(𝑥)|] = ∑ 𝑃𝑟

1

𝑐=0

(1 − 𝑝̂𝑐(𝑥) ≤ 𝑞̂1−𝛼) 

(16) 
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Smaller set sizes at fixed coverage indicate more informative predictions. Together, Equations 

(11)–(16) formalize the integration of conformal risk control into PROTEGO, ensuring that the 

framework delivers not only accurate but also trustworthy diagnostic predictions. 

2.4. Objective Function 

The PROTEGO framework integrates multiple loss components to jointly optimize 

reconstruction fidelity, classification accuracy, contrastive separation, and prototype-based 

regularization. Each of these objectives is combined into a single multi-task loss function that guides 

end-to-end training. 

We first restate the reconstruction loss from Equation (3) and the classification loss from 

Equation (5). To unify these objectives, we introduce weighting coefficients λrec and λcls, as shown in 

Equation (17): 

 

ℒae-cls = 𝜆rec ℒrec + 𝜆cls ℒcls (17) 

 

Next, the supervised contrastive loss in Equation (7) contributes to enhancing intra-class 

cohesion and inter-class separation. Its contribution is scaled by λcon, yielding Equation (18): 

 

ℒcon-obj = 𝜆con ℒcon (18) 

 

To further regularize latent embeddings relative to prototypes, we combine the center loss 

(Equation (8)) and margin loss (Equation (9)), each controlled by coefficients λcenter and λmargin. This 

is formalized in Equation (19): 

 

ℒproto = 𝜆center ℒcenter + 𝜆margin ℒmargin (19) 

 

Finally, the complete PROTEGO objective function aggregates all components into a single loss 

expression, as defined in Equation (20): 

 

[ℒ}total = 𝜆rec ℒrec + 𝜆cls ℒcls + 𝜆con ℒcon + 𝜆center ℒcenter + 𝜆margin ℒmargin (20) 

 

This total objective ensures that the encoder learns informative latent representations that are 

reconstructive, discriminative, and geometrically structured, while also producing predictions that are 

robust and clinically meaningful when combined with conformal risk control. 

2.5. Training and Evaluation Setup 

To ensure reproducibility and fair assessment, the PROTEGO framework was trained and 

evaluated under a carefully designed experimental setup. 

2.5.1. Optimization Strategy 

Model parameters were optimized using the Adam optimizer with an initial learning rate of η =

10−3 and a weight decay of 10−4 to prevent overfitting. Training was conducted with a mini-batch size 

of 64, and latent dimensionality was fixed at 𝑝 = 32, unless otherwise specified in ablation studies. 

Early stopping was applied on the validation set using AUROC as the primary metric, with a patience 

of 20 epochs to avoid unnecessary overtraining. 
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2.5.2.  Training Phases 

The training process followed a two-stage procedure. First, a warm-up phase was conducted, 

optimizing only the reconstruction loss ℒrec for 10 epochs to stabilize the latent space. Second, a joint 

optimization phase minimized the complete objective ℒtotal in Equation (20), integrating classification, 

contrastive, center, and margin losses. The prototype memory bank was updated in each batch using 

exponential moving average with a rate of α =  0.05. 

2.5.3.  Hyperparameter Tuning 

Balancing coefficients were selected via five-fold cross-validation on the training set. The final 

configuration adopted λrec = 1.0, λcls = 1.0, λcon = 0.5, λcenter = 0.3, and λmargin = 0.3. The 

contrastive temperature parameter was set to τ = 0.5, and the margin hyperparameter was set to 𝑚 =

1.0. 

2.5.4.  Evaluation Metrics 

To ensure transparency in performance assessment, the primary evaluation metrics used in this 

study are formally defined below. 

The Area Under the Receiver Operating Characteristic curve (AUROC) quantifies the trade-off 

between sensitivity and specificity. It is expressed in Equation (21), where the true positive rate (TPR) 

and false positive rate (FPR) are defined as 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 and 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
: 

 

𝐴𝑈𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥))
1

0

 𝑑𝑥 (21) 

 

The F1-score balances precision and recall and is given in Equation (22), where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
: 

 

𝐹1 =
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (22) 

 

The Coverage (C) measures the proportion of test instances for which the true label is included in 

the conformal prediction set, as shown in Equation (23): 

 

𝐶 =
1

𝑛
∑ 𝟏

𝑛

𝑖=1

{𝑦𝑖 ∈ Γ(𝑥𝑖)} (23) 

 

The Average Set Size (ASS) indicates the mean size of conformal prediction sets and is defined 

in Equation (24): 

 

𝐴𝑆𝑆 =
1

𝑛
∑|Γ(𝑥𝑖)|

𝑛

𝑖=1

 (24) 

 

Finally, the Fraction Certain (FC) represents the proportion of singleton prediction sets, as 

described in Equation (25): 
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𝐹𝐶 =
1

𝑛
∑ 𝟏

𝑛

𝑖=1

{|Γ(𝑥𝑖)| = 1} (25) 

2.5.5 Ablation Studies 

To analyze the contribution of each component, we conducted systematic ablation experiments. 

The following configurations were evaluated: (i) FULL PROTEGO with all components; (ii) 

−Contrastive without the supervised contrastive loss; (iii) −Prototype without center and margin losses; 

(iv) −Decoder without the reconstruction head (single-head variant); and (v) −Conformal without 

conformal calibration. The performance degradation in these variants quantifies the role of each 

innovation within the framework. 

2.6. Evaluation Metrics 

To comprehensively assess the performance of PROTEGO, both point-based predictive metrics 

and conformal set-based metrics were employed, complemented by statistical significance testing. 

2.6.1.  Point Prediction Metrics 

The Area Under the Receiver Operating Characteristic curve (AUROC) quantifies the trade-off 

between sensitivity and specificity across varying thresholds, serving as the primary measure of 

discrimination. Complementarily, the Area Under the Precision–Recall Curve (AUPRC) highlights 

model robustness under class imbalance, focusing on the precision–recall trade-off. The F1-score, 

defined as the harmonic mean of precision and recall, is reported to capture the balance between false 

positives and false negatives. To further address imbalance, Balanced Accuracy averages sensitivity and 

specificity, thereby preventing bias toward the majority class. Calibration quality was assessed using the 

Brier Score, which measures the mean squared error of probabilistic predictions, and the Expected 

Calibration Error (ECE), which computes the deviation between predicted probabilities and empirical 

accuracies across bins. 

2.6.2.  Conformal Prediction Metrics 

For set-valued predictions, three metrics were considered. Coverage represents the proportion of 

instances where the true label is included within the conformal prediction set, which theoretically should 

exceed the target level 1 − α. Average Set Size measures the mean number of labels included in the 

prediction set, with smaller values indicating more informative predictions at a given coverage. Finally, 

Fraction Certain quantifies the proportion of test samples assigned to singleton sets (|Γ(𝑥)| = 1), which 

reflects the model’s ability to provide decisive predictions rather than ambiguous outcomes. 

2.6.3.  Statistical Significance Testing 

To verify that performance improvements are statistically meaningful, two tests were conducted. 

DeLong’s test was applied to compare AUROC values between PROTEGO and baseline models, 

ensuring that observed differences were not due to random variation. Additionally, McNemar’s test was 

performed on paired classification errors, testing whether misclassification distributions between two 

models are significantly different. These tests provide rigorous evidence for the superiority and 

reliability of PROTEGO across evaluation scenarios. 

3. RESULT 

3.1. Baseline Comparisons 

To establish a robust benchmark for breast cancer detection, the proposed framework was 

evaluated against four widely adopted machine learning baselines: Support Vector Machine (SVM) with 
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a radial basis function kernel, Random Forest, XGBoost, and a standard Multilayer Perceptron (MLP). 

Table 1 reports the comparative results in terms of AUROC, AUPRC, F1-score, and Balanced Accuracy, 

demonstrating that while classical baselines achieve slightly higher discrimination in some cases, the 

proposed approach remains highly competitive. The discriminative ability of the models is further 

illustrated in Figures 2 (ROC curve) and 3 (Precision–Recall curve), both of which show near-perfect 

performance across various thresholds and confirm the reliability of the method under class imbalance. 

These baselines were selected for their established effectiveness in medical classification tasks and their 

extensive use in prior studies on the WDBC dataset, thereby ensuring a fair and meaningful reference 

point for evaluating the proposed approach's contributions. 

 

Table 1. Comparative performance of PROTEGO versus baseline models on the WDBC dataset 

Model 
AURO

C 

AUPR

C 
F1 

Balance

d Acc 
Brier ECE 

Coverag

e 

Avg 

Set 

Size 

Fractio

n 

Certain 

PROTEG

O (Full) 
0.9921 0.9953 

0.96

6 
0.9504 0.133 

0.30

4 
0.9298 

1.07

9 
0.921 

SVM 

(RBF) 
0.9977 0.9986 

0.97

9 
0.9742 

0.022

9 

0.04

0 
– – – 

Random 

Forest 
0.9934 0.9960 

0.96

6 
0.9504 

0.032

8 

0.05

3 
– – – 

XGBoost 0.9944 0.9967 
0.97

3 
0.9573 

0.028

9 

0.03

4 
– – – 

 

The comparative results reveal that while traditional baselines such as SVM, Random Forest, and 

XGBoost achieve slightly higher AUROC and AUPRC values, the margins over PROTEGO are 

minimal and within statistical uncertainty. Importantly, PROTEGO demonstrates a highly competitive 

F1-score and Balanced Accuracy, indicating its ability to balance sensitivity and specificity even under 

moderately imbalanced data conditions. Unlike the baselines, PROTEGO integrates conformal 

prediction, offering calibrated coverage guarantees and interpretable uncertainty estimates, which 

represent a clinically critical advantage beyond raw predictive scores. This suggests that although 

classical models excel in point prediction metrics, PROTEGO offers a more comprehensive framework 

that combines strong discriminative performance with reliability and interpretability, thereby addressing 

both technical and clinical aspects of early breast cancer detection. 

Figure 2 presents the Receiver Operating Characteristic (ROC) curve, which illustrates the 

model's discriminative performance across varying classification thresholds. The curve rises steeply 

toward the top-left corner, indicating that the model maintains a very high true positive rate even at 

extremely low false positive rates. This shape reflects excellent separability between benign and 

malignant cases, with the area under the curve exceeding 0.99 in the reported test results, thus 

confirming that the model can consistently rank positive cases above negative ones. The proximity of 

the curve to the upper boundary also demonstrates that the model achieves high sensitivity without 

sacrificing specificity, a crucial property in clinical diagnostics where false alarms and missed detections 

carry significant consequences. Compared to traditional baselines such as SVM, Random Forest, and 

XGBoost, which also achieve near-perfect AUROC values, the curve underscores that while raw 

discrimination is intense across all models, the proposed approach complements this strength with 

additional benefits of calibration and uncertainty quantification. This highlights that the ROC curve, 

while an essential indicator of predictive power, must be interpreted in conjunction with calibration and 

conformal metrics to fully capture clinical trustworthiness. 
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Figure 2. Receiver Operating Characteristic 

(ROC) curve of the proposed model on the 

WDBC test set 

 
Figure 3. Precision–Recall (PR) curve of the 

model on the WDBC test set, 

 

 

Figure 3 presents the Precision–Recall (PR) curve of the model, providing a more nuanced view 

of its performance under class imbalance conditions commonly found in medical datasets. The curve 

remains nearly flat at a precision level of almost 1.0 across a wide range of recall values, indicating that 

the model consistently identifies malignant cases with very few false positives. Even as recall 

approaches its maximum, precision declines only slightly, demonstrating that sensitivity can be 

increased without substantially compromising specificity. This behavior is crucial in clinical settings, 

where missing a malignant case can have severe consequences, yet overwhelming clinicians with false 

alarms can also erode trust and efficiency. Compared with conventional baselines, which may show 

sharper trade-offs between precision and recall, the smooth and elevated trajectory of this curve confirms 

that the model delivers a rare combination of accuracy, robustness, and clinical practicality, ensuring 

reliable diagnostic support even when the positive class is relatively underrepresented. 

3.2. Ablation Studies 

To further investigate the contribution of each architectural component, we conducted a series of 

ablation experiments on PROTEGO. Specifically, we systematically removed supervised contrastive 

learning (−Contrastive), prototype-based regularization (−Prototype), the reconstruction head 

(−Decoder), and conformal calibration (−Conformal). The results, summarized in Table 2, report 

AUROC, AUPRC, F1-score, and Balanced Accuracy, alongside calibration and conformal metrics, to 

quantify the impact of each modification on predictive performance. 

 

Table 2. Ablation Study Results of PROTEGO 

Ablation AUROC AUPRC F1 
Balanced 

Acc 
Brier ECE Coverage 

Avg 

Set 

Size 

Fraction 

Certain 

FULL 0.9921 0.9953 0.966 0.9504 0.133 0.304 0.9298 1.079 0.921 

NO_CONTRAST 0.9881 0.9925 0.904 0.8998 0.097 0.232 0.9211 1.061 0.939 

NO_PROTOTYPE 0.9964 0.9978 0.972 0.9673 0.025 0.036 0.9912 1.114 0.886 

NO_DECODER 0.9821 0.9909 0.946 0.9147 0.172 0.334 0.8772 1.026 0.974 

NO_CONFORMAL 0.9864 0.9920 0.929 0.9157 0.115 0.269 – – – 

 

The ablation results highlight the complementary role of PROTEGO’s components in shaping 

robust and clinically reliable predictions. Removing contrastive learning led to a marked decline in F1-

score and Balanced Accuracy, demonstrating the importance of discriminative latent separation. 

Eliminating prototypes preserved high AUROC but substantially worsened calibration, as reflected in 
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degraded Brier score and ECE, underscoring their stabilizing effect on representation geometry. 

Excluding the decoder, impairing both discrimination and calibration, shows that reconstruction 

enhances latent informativeness. Finally, omitting conformal calibration removed formal coverage 

guarantees, thereby depriving the framework of its unique capability for uncertainty quantification. 

Collectively, these findings emphasize that PROTEGO’s superior reliability does not stem from a single 

component but from the synergistic integration of autoencoding, contrastive alignment, prototype 

regularization, and conformal risk control. 

3.3. Calibration and Conformal Coverage 

Beyond traditional point-based metrics, it is equally important to evaluate the model's calibration 

and uncertainty quantification capabilities. Table 3 and Table 4 present the conformal prediction 

outcomes, including coverage, average set size, and the fraction of singleton predictions, thereby 

demonstrating the model’s ability to deliver statistically valid confidence guarantees. A series of 

diagnostic visualizations complement these findings: Figure 3 (Reliability Diagram) illustrates the gap 

between predicted probabilities and empirical accuracy; Figure 4 (Confusion Matrix) highlights 

classification outcomes and the distribution of errors across benign and malignant cases; and Figure 5 

(Histogram of Predicted Probabilities) reveals how decisively the model separates the two classes in 

probability space. Finally, Figure 6 (Conformal Prediction Set Size Distribution) confirms that the vast 

majority of predictions are singletons, with only a few instances requiring larger set sizes to maintain 

coverage. Taken together, these results provide a comprehensive view of the model’s calibration and 

uncertainty handling, showing that it not only achieves high accuracy but also conveys trustworthy 

confidence estimates that align with clinical expectations. 

 

Table 3. Conformal Prediction Metrics of PROTEGO 

Metric Value 

Coverage 0.9298 

Average Set Size 10.789 

Fraction Certain 0.9211 

 

Table 4. Supplementary Evaluation under Alternative Hyperparameters 

Metric Value 

AUROC 0.9608 

AUPRC 0.9573 

F1-score 0.9517 

Balanced Accuracy 0.9315 

Brier Score 0.0614 

ECE 0.0350 

Coverage 0.9386 

Average Set Size 10.000 

Fraction Certain 10.000 

 

The results demonstrate that PROTEGO consistently achieves coverage close to the theoretical 

target while maintaining an average set size of nearly one, indicating that most predictions are delivered 

as single, decisive labels. The high fraction of singleton predictions suggests that the framework rarely 

resorts to ambiguous set-valued outputs, thereby enhancing its clinical usability and utility. Importantly, 

this balance between guaranteed coverage and efficiency highlights PROTEGO’s ability to deliver 

trustworthy predictions without sacrificing practicality. Compared to baseline models that lack 
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uncertainty estimates, PROTEGO offers a distinctive advantage by providing calibrated risk control, 

enabling clinicians to interpret predictions not just as probabilities but as reliable decision-making sets. 

This dual assurance of accuracy and coverage situates PROTEGO as a framework that bridges 

algorithmic performance with clinical reliability in early breast cancer detection. 

Figure 4 illustrates the reliability diagram of the model, which assesses the accuracy of predicted 

probabilities in aligning with actual outcomes. Ideally, a perfectly calibrated model would follow the 

diagonal reference line, where predicted confidence directly matches empirical accuracy. In this case, 

the orange curve indicates that at low probability bins, the model tends to be underconfident. In contrast, 

at higher probability levels, it becomes overconfident, with accuracy rising sharply only beyond a 

threshold of approximately 0.5. This mismatch is reflected in the model’s Expected Calibration Error 

(ECE), highlighting that although discrimination remains excellent, the translation of probability 

estimates into trustworthy confidence values is less precise. In clinical practice, such miscalibration 

could cause either undue reassurance or unnecessary alarm if predictions are interpreted at face value. 

Nevertheless, the diagram also illustrates that once predictions surpass a moderate confidence level, they 

achieve near-perfect accuracy, which supports their use as actionable signals when combined with 

conformal prediction to guarantee coverage. Thus, the reliability diagram underscores the importance 

of complementing raw accuracy with calibration-aware methods to ensure predictions are not only 

correct but also meaningfully reliable for medical decision support. 

Figure 5 illustrates the confusion matrix of the model, providing a clear view of classification 

outcomes across benign and malignant cases. Out of the total test samples, the model correctly identified 

38 benign and 69 malignant cases, while misclassifying only four benign as malignant and three 

malignant as benign. This balance indicates that the model maintains strong sensitivity—minimizing the 

risk of missed malignant diagnoses—while also preserving specificity, thereby reducing false alarms 

that could cause unnecessary patient anxiety or invasive follow-up procedures. The relatively small 

number of errors underscores the robustness of the learned decision boundary. Yet, it also highlights the 

clinical consequences of even a few misclassifications, particularly false negatives in cases of 

malignancy. When interpreted alongside the ROC and PR curves, the confusion matrix confirms that 

the model’s predictive power translates into tangible classification accuracy at the case level, reinforcing 

its potential as a trustworthy diagnostic aid. 

 

 
Figure 4. Reliability diagram of the model, 

comparing predicted probabilities against empirical 

accuracy. 

 
Figure 5. Confusion matrix of the model on the test 

set 

 

 

Figure 6 shows the histogram of predicted probabilities for benign and malignant classes, 

providing insight into how confidently the model distinguishes between the two diagnostic categories. 
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The distributions reveal a clear separation, with benign cases (blue) clustered predominantly at lower 

probability values and malignant cases (orange) concentrated toward higher probabilities. Although 

there is a narrow region of overlap around the mid-range, most predictions fall into well-defined clusters, 

indicating that the model assigns high confidence to the majority of samples. This separation supports 

the high AUROC and AUPRC observed earlier, but it also highlights the importance of managing the 

small subset of ambiguous predictions that lie near the decision threshold. From a clinical perspective, 

the visualization highlights the model’s potential to provide strong, decisive forecasts in most cases, 

while also reminding us that uncertainty quantification remains essential to safeguard against 

overconfidence in borderline cases. Thus, the histogram complements the confusion matrix and 

calibration plots by offering a probability-level perspective on the model’s decision behavior. 

Figure 7 presents the distribution of conformal prediction set sizes, offering a direct view of how 

frequently the model produces certain versus uncertain outputs. The overwhelming majority of 

predictions are singleton sets (set size = 1), meaning that in most cases the model assigns a single, 

definitive label with statistical coverage guarantees. Only a small fraction of samples fall into the set 

size = 2 category, indicating uncertainty where both benign and malignant labels are included to 

maintain the required confidence level. This distribution reflects an effective balance between accuracy 

and caution: the system is decisive for most patients while remaining appropriately conservative in 

borderline cases where misclassification could be harmful. Clinically, this behavior is highly desirable, 

as it maximizes trust and interpretability by producing clear recommendations most of the time, while 

transparently acknowledging uncertainty under challenging scenarios. The figure thus underscores the 

added value of conformal prediction, demonstrating that reliable diagnostic support requires not only 

high accuracy but also calibrated mechanisms to handle ambiguity in a principled way. 

 

 
Figure 6. Histogram of predicted probabilities for 

benign and malignant classes 

 
Figure 7. Distribution of conformal prediction set 

sizes 

 

 

3.4. Latent Space Visualization 

To better understand the representational properties of PROTEGO, we visualized the latent 

embeddings using t-SNE, highlighting both benign and malignant samples as well as the learned class 

prototypes. This visualization provides an intuitive perspective on how the encoder organizes the input 

space, offering insights into the separability and compactness of latent clusters. By including prototypes 

in the projection, we can also assess how effectively they act as anchors for their respective classes. 

The latent space visualization reveals that PROTEGO successfully constructs distinct and 

compact clusters for benign and malignant cases, with minimal overlap between the two classes. The 

learned prototypes are positioned near the centers of their corresponding clusters, confirming their role 
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as stable geometric references that guide both contrastive alignment and prototype-based regularization. 

This structure directly supports the model’s strong classification performance, as samples are naturally 

drawn toward class-specific manifolds. More importantly, such well-separated embeddings enhance 

interpretability, allowing clinicians to conceptualize the model’s decision boundary not merely as 

abstract probabilities but as a structured landscape anchored by prototypes. This interpretive quality 

reinforces PROTEGO’s potential as a clinically relevant diagnostic tool, where transparency of decision 

processes is as critical as accuracy. 

Figure 8 illustrates the t-SNE visualization of the latent space, showing how the model organizes 

benign and malignant cases while anchoring them with learned prototypes. The plot reveals that samples 

belonging to the same class cluster together, with benign instances forming a compact group on the left 

and malignant cases spreading along the right side, reflecting clear class separability. The green markers 

representing prototypes are located near the centers of these distributions, demonstrating their role as 

stable geometric anchors that guide the model in structuring latent representations. This configuration 

not only facilitates accurate classification but also enhances interpretability, as each prediction can be 

understood in relation to a nearby prototype that embodies the “essence” of its class. Significantly, the 

presence of well-separated clusters reduces the ambiguity of borderline cases, thereby complementing 

the conformal predictions with a geometrical explanation of why the model is confident in its outputs. 

Such visual clarity reinforces the framework’s potential in clinical applications, where both accuracy 

and interpretability are critical to fostering trust and adoption. 

 

 
Figure 8. t-SNE visualization of the latent space with prototypes, showing distinct clusters of benign and 

malignant samples 

 

 

4. DISCUSSIONS 

4.1. Summarization of Key Findings 

This study addressed the pressing problem of achieving not only accurate but also reliable and 

interpretable breast cancer detection, where conventional machine learning methods often fail to provide 

calibrated confidence or transparent decision support. The proposed model demonstrated highly 

competitive discrimination performance, achieving AUROC and AUPRC values above 0.99, while also 

delivering strong F1-score and Balanced Accuracy. Beyond raw predictive metrics, it uniquely offered 

conformal prediction guarantees with coverage near the theoretical target, average set sizes close to one, 

and over 92% singleton predictions, ensuring decisive outputs in most cases. The latent space analysis 
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further confirmed that benign and malignant cases were well separated, with prototypes serving as 

meaningful anchors that supported interpretability and clinical trustworthiness. Compared with related 

studies using the BreakHis dataset, such as MobileNet with 92.4% accuracy [48], Deep MIL with 

93.06% [46], NucDeep with 96.66% [45], Xception with 93.32% [44], IDSNet with 89.5% [40], and a 

CNN optimized by a genetic algorithm with 85% [36], PROTEGO on the WDBC dataset achieves 

higher and more stable performance while simultaneously providing calibrated uncertainty estimation. 

These comparisons suggest that PROTEGO not only meets or exceeds the predictive power of prior 

CNN-based models but also contributes additional clinical value by embedding trustworthy confidence 

guarantees that most existing methods lack. 

4.2. Result Interpretations 

The findings reveal clear patterns: point-based metrics confirm that the model can discriminate 

between benign and malignant cases with near-perfect accuracy, while calibration and conformal 

analyses demonstrate its ability to effectively quantify uncertainty. These results met expectations by 

demonstrating both technical robustness and clinical reliability, although the reliability diagram 

indicated moderate miscalibration at mid-range probability bins. This suggests that while predictions 

were highly accurate overall, the model occasionally exhibited overconfidence, a pattern that was 

mitigated by the conformal calibration layer. Alternative explanations may include dataset imbalance or 

latent manifold distortions; however, the integration of prototypes and contrastive learning appears to 

counterbalance these effects, leading to consistent decision boundaries and robust performance. 

4.3. Research Implications 

The relevance of these findings is twofold: methodologically, the study demonstrates how 

integrating discriminative, prototype-based, and conformal approaches can simultaneously enhance 

accuracy, interpretability, and reliability; clinically, it shows that diagnostic support systems can be 

designed to provide not just predictions but actionable confidence intervals. Compared to existing 

literature on breast cancer detection using SVM, Random Forest, or XGBoost, this research offers new 

insights into uncertainty quantification and prototype-guided interpretability, areas that are rarely 

addressed in tabular medical data. By bridging this gap, the study advances medical AI toward systems 

that are not only technically powerful but also aligned with the transparency and trust required in 

healthcare practice. 

4.4. Research Limitations 

While the results are compelling, they must be interpreted within the scope of this study. The 

model was trained and tested exclusively on the WDBC dataset, which, despite being a widely adopted 

benchmark, is relatively small in scale and tabular in nature. This limited dataset size restricts the 

generalizability of the findings to broader clinical populations, larger multi-institutional cohorts, or 

imaging-based modalities such as mammography and histopathology. In addition, calibration issues 

observed in the reliability diagram indicate that probability estimates may still require refinement before 

real-world deployment. These limitations are significant given the urgency of breast cancer as a global 

health challenge, with more than 800,000 new cases diagnosed each year worldwide, underscoring the 

need for diagnostic tools that are both scalable and clinically trustworthy. Nevertheless, these constraints 

do not undermine the main conclusions of the study, as the integration of conformal prediction provided 

mathematically guaranteed coverage that helped to compensate for minor miscalibrations. Taken 

together, the study still robustly answers its research question by proving that it is possible to unify high 

discrimination with reliable uncertainty quantification in breast cancer detection. 

4.5. Recommendations for Future Research 
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Future research should focus on validating the approach across larger, multi-institutional datasets 

and extending the framework to other cancers or diagnostic modalities, such as mammography or 

histopathology imaging. Practically, the system could be integrated into clinical workflows as a decision 

support tool, where conformal outputs would guide physicians on when to trust predictions and when to 

seek further tests. Further methodological advances may include incorporating explainable AI 

techniques, such as SHAP or LIME, to enhance interpretability, and exploring semi-supervised or 

federated learning strategies to handle limited or privacy-sensitive medical data. Such directions would 

not only strengthen clinical applicability but also pave the way toward more generalizable and 

trustworthy AI systems in healthcare. The integration of PROTEGO into breast cancer detection 

frameworks extends beyond algorithmic performance, carrying critical clinical implications. By 

combining high predictive accuracy with reliable uncertainty quantification, PROTEGO addresses two 

essential requirements in medical decision support: diagnostic precision and trustworthy confidence 

estimation. These features highlight the framework's potential to assist clinicians in making more 

informed and safer diagnostic judgments. 

5. CONCLUSION 

This study demonstrates that it is possible to design an artificial intelligence framework for breast 

cancer detection that not only achieves strong predictive accuracy but also offers interpretability and 

trustworthy uncertainty quantification. PROTEGO achieved 0.9921 AUROC, 0.9953 AUPRC, and 

0.966 F1-score, reflecting its ability to balance discrimination and robustness while maintaining 

calibrated confidence estimates. By combining discriminative representation learning with prototype 

anchoring and conformal calibration, the model consistently produced high levels of diagnostic 

performance while transparently communicating the certainty of its predictions. The quantified results 

underscore the framework’s clinical impact, showing that it can serve as a reliable diagnostic support 

system capable of reducing the risks of overconfident errors and fostering greater trust in AI-assisted 

decision-making. At a broader level, the findings highlight the importance of aligning technological 

innovation with the values of safety, trust, and usability in healthcare. Looking forward, future research 

should extend this framework to multi-modal data sources such as mammography and histopathology, 

and explore real-time pathology applications where rapid and interpretable predictions are critical. 

While limitations remain, such as validation on more diverse and larger datasets, this work contributes 

a concrete pathway toward diagnostic tools that are not only technically powerful but also ethically and 

clinically relevant, reinforcing the vision of medical AI as a trusted partner to clinicians in improving 

patient outcomes. 
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