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Abstract

Chronic Kidney Disease (CKD) is a progressive medical disorder that requires timely and precise identification to
avoid permanent impairment of kidney function. However, Decision Tree models, although widely used in clinical
applications due to their transparency, ease of implementation, and ability to handle both categorical and numerical
data, are prone to overfitting and instability when applied to small or imbalanced datasets. The purpose of this study
is to optimize CKD classification by integrating Bootstrap Aggregating (Bagging) with Decision Tree to enhance
accuracy and robustness. The methodology involves testing two model variants a standalone Decision Tree and a
Bagging-supported Decision Tree using 10-fold cross-validation and evaluating performance with accuracy,
precision, recall, F1-score, and the area under the ROC curve (AUC-ROC). Findings reveal that Bagging enhances
model accuracy from 0.980 to 0.987, raises precision from 0.976 to 1.000, and improves recall from 0.954 to 0.954,
and increases Fl-score from 0.965 to 0.976. These results demonstrate that Bagging significantly improves the
reliability and generalizability of Decision Tree classifiers, making them more effective for CKD prediction.
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1. INTRODUCTION

According to the KDIGO 2024 Clinical Practice Guidelines [1] Chronic Kidney Disease (CKD)
is a progressive disorder characterised by a decrease in glomerular filtration rate (¢GFR) of less than 60
mL/minute/1.73 m? for at least 3 months or the presence of biomarker abnormalities, such as
albuminuria. CKD poses a significant global health burden, with a prevalence of 8 to 16% and caused
3.16 million deaths in 2019 [2],[3]. This burden continues to increase, especially in low- to middle-
income countries, recording 434 million cases in 2021 (108 million related to type 2 diabetes) [3].
Longitudinal analysis shows an increase in incidence, mortality, and Disability-Adjusted Life Years
(DALYs) since 1990, with projections that it will be the fifth leading cause of death globally by 2040
[4]. In addition, CKD also exacerbates cardiovascular disease and gout, further exacerbating its clinical
and economic impact. Therefore, systematic policy interventions are urgently needed, especially in areas
with low sociodemographic indices, to improve early detection and management of CKD [4]. Lai et al.
[5] also emphasised this in their systematic analysis for the Global Burden of Disease (GBD) Study
2021, which showed a significant and steadily increasing global burden of CKD from 1990 to 2021.
More specifically, the global burden of Chronic Kidney Disease caused by glomerulonephritis also
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shows a significant increasing trend from 1990 to 2021, with projections to 2036, as outlined by Wang
et al. [6], which also uses GBD data.

Factors like diabetes, hypertension, obesity, and the use of herbal remedies hasten the
advancement of CKD, particularly in developing nations [7],[8],[9]. Timely identification is essential
in averting progression to terminal kidney failure. Nevertheless, traditional diagnostic techniques, such
as measuring serum creatinine concentrations and the albumin-to-creatinine ratio (ACR), often face
constraints related to expense, duration, and interpretive complexity [10]. Cavalier et al. [1] highlight
that early detection of CKD is possible. Nonetheless, its cause still lacks clarity, and the existence of
albuminuria is still closely associated with a negative prognosis. To tackle these challenges, machine
learning methods provide smart solutions due to their capability to automatically, accurately, and
measurably identify clinical patterns, thereby surpassing the constraints of traditional techniques.
[5],[91,[10]. Machine learning—based approaches therefore play a crucial role in providing rapid,
accurate, and cost-effective diagnostic support for nephrologists, while offering interpretability that
facilitates clinical trust and practical integration into electronic health records (EHR) and digital health
systems, particularly in resource-limited settings.

Mahajan et al. [9] highlight the use of algorithms such as Decision Tree, Random Forests, and
Support Vector Machine for various applications, including CKD stage classification, kidney
transplantation, and dialysis management. Various ML algorithms have been used for the classification
of CKD, both single and ensemble. Kalupukuru and Natarajan [12] evaluated multiple methods,
including Decision Tree, Random Forest, and Naive Bayes, for predicting the prognosis of CKD.
Meanwhile, the effectiveness of classical algorithms (Decision Tree, K-Nearest Neighbors, Random
Forest) in the early detection of CKD has been demonstrated by Ullah and Jamjoom [13] as well as
Mendapara [14].

Among these algorithms, Decision Tree is a popular choice due to its ability to handle both
numerical and categorical data and produce predictions that are easy to interpret [13]. Garonga et al.
[15], demonstrated that Decision Tree has been effectively applied in various domains, including
classification tasks with structured datasets, due to its straightforward rule-based decision paths, which
can also be adapted for medical applications such as CKD classification. Beyond CKD, Decision Tree
has also been successfully applied in other medical domains. For example, Biddinika et al. [16]
demonstrated reasonable performance in heart disease prediction, further highlighting the adaptability
of Decision Tree for healthcare classification tasks. Several studies have also shown that the Decision
Tree algorithm exhibits good tolerance to noise and is capable of producing clear, rule-based decisions,
making it an ideal choice for medical classification applications [17]. However, Decision Tree is prone
to overfitting, especially on small, unbalanced datasets [18]. Single Decision Tree have limitations in
terms of objectivity and consistency, making it challenging to replicate classification results and retest
by other researchers. Additionally, Decision Tree is less capable of capturing complex relationships
between features compared to more advanced models, such as artificial neural networks [19].

To overcome the weaknesses of Decision Tree, the application of ensemble techniques such as
Bootstrap Aggregating (Bagging) has been proven to improve classification performance by reducing
model variance, while improving its accuracy [9],[20],[21], stabilize performance [21],[22] and
minimize overfitting [21],[23]. Various studies have demonstrated the effectiveness of this approach.
For example, Kaur et al. [25] showed that the implementation of Bagging significantly improved the
accuracy of the CKG prediction model compared to individual algorithms, such as Support Vector
Machine and K-Nearest Neighbors. Meanwhile, Elshewey et al. [26] applied ensemble techniques by
combining the Extra Trees Classifier with the selection of Binary Bat Swarm Search (BBSS) features to
improve accuracy and interpretability, including through the explainable Al (XAI) approach in Decision
Tree-based CKD classification. Recent works also reported superior performance using Random Forest
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with AUC 0.99 [14], Extra Trees with AUC 0.998 [26], hybrid ensemble models achieving F1-scores
above 0.97, and an ensemble framework integrating twelve classifiers that achieved up to 99% accuracy
in CKD prediction [27]. In addition, a deep learning—based ensemble combining CNN, LSTM, and
BLSTM architectures reported 98% accuracy for 6-month prediction and 97% for 12-month prediction
horizons [28]. These benchmarks provide a strong reference point for evaluating the competitiveness of
our proposed Bagging-Decision Tree approach.

The combination of various classification algorithms with ensemble techniques can enhance the
prediction accuracy and generalisation capabilities of the model, resulting in improved performance
[29]. Therefore, combining Decision Tree with Bagging is an effective strategy to maintain Decision
Tree interpretability while enhancing its stability and accuracy on complex medical data. The
effectiveness of the ensemble approach in predicting CKD was also strengthened by the findings of
Bijoy et al. [30], which reported up to 99.5% accuracy through a combination of several algorithms,
including Decision Tree, with stacking and voting. Some studies report that the integration between
Decision Tree and Bagging results in superior performance over a single Decision Tree, with an
accuracy of up to 97.5% [26]. Debal and Sitote [31] even found that although Random Forest and
Support Vector Machine achieved the best accuracy in both binary and multiclass CKD classifications,
the Decision Tree model remained competitive, with accuracies of 98.5% for binary classification and
77.5% for five-stage classification of CKD based on the severity of kidney function. The stages of CKD
are generally divided into five stages based on the eGFR score, namely Stage 1 (>90) to Stage 5 (<15),
which reflect a progressive decline in kidney function [1]. Importantly, while these advanced ensembles
achieve very high metrics, their “black-box” nature makes clinical deployment difficult. In contrast,
Bagging with Decision Tree maintains interpretability, enabling clinicians to trace decision paths, which
is crucial for integration into electronic health records (EHR) and digital health systems, particularly in
resource-limited hospitals.

This study is designed to enhance the predictive performance of Chronic Kidney Disease (CKD)
classification by integrating the Bagging ensemble technique with the Decision Tree algorithm. The
objective is not only to improve model robustness and accuracy but also to compare its outcomes with
those of a traditional single Decision Tree. The evaluation relies on multiple metrics, including accuracy,
precision, recall, F1-score, and the AUC-ROC curve, ensuring a comprehensive assessment of each
model’s effectiveness.

2. METHOD

| Data Collection |

1

| Data Preprocessing l

| Model Development I

Decision Tree Decision Tree +
(Baseline) Bagging
\ /

| Model Evalualion]

T

Figure 1. Research Diagram of Stages.
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This study applies the Decision Tree algorithm combined with the Bagging method to improve
Chronic Kidney Disease (CKD) classification. Two approaches are examined: the standard Decision
Tree as the reference model, and a Bagging enhanced version for greater predictive robustness. A 10-
fold cross-validation strategy ensures result reliability. Model performance is evaluated using common
classification metrics, including accuracy, precision, recall, F1-score, and the ROC curve (AUC). In
addition, figure 1 presents a research diagram of stages that illustrates the overall experimental pipeline,
starting from dataset collection and preprocessing to model development and evaluation.

2.1. Dataset Collection
Table 1. Attribute Used in The CKD Dataset

No Feature Description Feature Name Data Type Mea%l;?tment
1 Patient’s age in years Age of the patient Numeric Years
2 Arterial blood pressure Blood pressure level ~ Continuous numerical mmHg

measurement
Urine concentration relative to

3 water density Urine specific gravity Ordinal (discrete scale) 1.005-1.025
4 Albumin concentration in urine Urine albumin content  Ordered categorical Levels 0-5
5 Glucose level detected in urine  Urine sugar presence  Ordered categorical Levels 0-5
Observation of red blood cell . . Normal /
6 shape RBC morphology Nominal (categorical) Abnormal
7 White blood (.:ells ' urine Pus cell detection Nominal Normal /
(suggests infection) Abnormal
8 Pus cell clumping in urine Clustered pus cells Nominal Present / Not
Present
9  Presence of bacteria in urine Bacterial infection Binary indicator Present / Not
marker Present
10 Random glucose concentration Random blood glucose Numerical mg/dL
11 Blood urea content Urea level Numerical mg/dL
12 Creatinine in blood serum  Serum creatinine value Numerical mg/dL
13 Sodium level in blood Sodium concentration Numerical mEq/L
14 Potassium level in blood Potassmrp Numerical mEq/L
concentration
15 Hemoglobin quantity in blood Hemoglobin reading Numerical g/dL
16 Ratio of RBC volume in blood  Packed cell volume Numerical Percentage (%)
17 White blood cell count WBC count Numerical Cells per mm?
18 Red blood cell count RBC count Numerical Million
cells/mm?

19 History of high blood pressure  Hypertension status  Binary (yes = 1, no =0) -

20 Diabetes diagnosis status Diabetes indication  Binary (yes = 1, no =0) -
. Coronary artery . _ _
21 Presence of heart disease disease (CAD) Binary (yes = 1, no =0) -
22 Appetite status Appetite condition Nominal Good / Poor
23 Swelling in legs or ankles Pedal edema Binary (yes = 1, no =0) -
24 Reduced red blood cell count Anemia indicator ~ Binary (yes = 1, no =0) -
25  Final classification outcome CKD status Nominal target variable CKCDK(IID) (/OI;IOt_
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The dataset used in this study was obtained from the UCI Machine Learning Repository, titled
Chronic Kidney Disease Dataset (https://archive.ics.uci.edu/dataset/336/chronictkidney+disease). It
consists 400 patient records with 24 input attributes and one target attribute (CKD/Not-CKD). The data,
derived from medical and laboratory examinations, represent patients with suspected Chronic Kidney
Disease. Table 1 lists the attributes, including numerical and nominal features, such as age, blood
pressure, albumin levels, and haemoglobin, among others. The dataset contains missing values and
format inconsistencies, which are addressed during preprocessing. It is also important to note that the
dataset is imbalanced (approximately 62.5% CKD vs. 37.5% non-CKD). In this study, the Bagging
approach inherently addresses this issue by resampling bootstrap subsets with replacement, thereby

reducing variance and mitigating the adverse effects of imbalance while maintaining model stability.

2.2. Data Preprocessing

The preprocessing stage ensures that the dataset is clean, consistent, and in a suitable condition
for use in the machine learning model training process. The first step is to handle blank values. Since
their proportion is relatively small and does not significantly impact class distribution, rows containing
empty values are removed from the dataset. Furthermore, categorical features such as rbc, pc, pcc, htn,
and others are converted into numerical format using label encoding techniques, allowing them to be
processed by classification algorithms, such as Decision Tree, that require numerical input. Although
the Decision Tree algorithm does not depend on feature scaling, numerical attributes are still normalized
using the Z-score method. This normalization prepares the data for exploratory statistical analysis and
modeling, and helps identify characteristics of the data distribution, including potential outliers and
imbalances, which will be discussed further in the Results and Discussion section. It is also important
to note that the dataset is imbalanced, with a higher proportion of CKD cases. In this study, the Bagging
approach helps mitigate this issue by resampling bootstrap subsets with replacement, reducing variance
and minimizing the adverse effects of imbalance while maintaining model stability.

2.3. Application of Decision Tree and Bootstrap Aggregating

This research utilizes the Decision Tree algorithm as the primary classifier, with performance
enhancement achieved through the application of the Bootstrap Aggregating (Bagging) method.
Bagging operates by generating multiple decision trees using bootstrap samples random subsets of the
training data selected with replacement. Each tree is trained independently, and the final prediction is
determined by majority voting across the ensemble. Formally, the Bagging prediction for classification

can be written as:
B
D hHm M

b=1

fbag(X) =

x| -

where B is the number of bootstrap samples, f;,(X) is the prediction of the b-th tree. This aggregation
reduces prediction variance while maintaining interpretability.

In this study, the Bagging method was implemented using Decision Tree as the base learner,
without incorporating any feature selection or hyperparameter tuning. The evaluation of model
performance before and after applying Bagging was carried out using 10-fold cross-validation, and
assessed through standard classification metrics: accuracy, precision, recall, F1-score, and the area under
the ROC curve (AUC). For benchmarking purposes, reported performances of alternative ensemble
techniques such as Random Forest [14] and XGBoost are also referenced in the discussion, though not
directly implemented in this study.
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2.4. Model Evaluation

To assess how well the models perform in classifying Chronic Kidney Disease (CKD), this study
compares two primary approaches: a standard Decision Tree model and an enhanced version integrated
with the Bagging ensemble technique. Each model’s effectiveness was evaluated using four core
classification metrics. Accuracy measures the proportion of correctly classified instances across the
entire dataset. Precision reflects the model’s ability to avoid false positives, while recall (or sensitivity)
indicates how successfully it identifies true positive cases. The Fl-score, a harmonic average of
precision and recall, helps balance both aspects. To provide a deeper understanding of model
performance per class, confusion matrices and detailed classification reports were also employed. These
tools allow for more granular analysis beyond overall scores. In order to ensure the reliability and
fairness of the evaluation, a 10-fold cross-validation scheme was applied throughout the experiments.
This method helps minimize bias and variation caused by how the data is split.

Finally, the results from both models were directly compared to determine how significantly the
Bagging technique improved predictive performance, particularly in terms of accuracy, sensitivity, and
resistance to overfitting in CKD classification tasks.

3. RESULT

3.1. Summary of Data Preprocessing Results

The preprocessing phase is carried out to enhance the quality and reliability of the data prior to
model training. During this process, question mark symbols (‘?”) indicating invalid values are converted
into standard Not a Number (NaN) format. All rows containing missing values are then removed, as
they are relatively few and do not significantly affect class distribution. Categorical features are
transformed into numerical format using label encoding, while numerical features are normalized using
the Z-score method to support statistical visualizations such as boxplots.

Table 2 presents sample data from the CKD dataset after all preprocessing steps have been
completed. At this stage, the data has been cleaned of missing values, categorical variables have been
encoded into numerical form, and numerical variables have been normalized using the Z-score method.
The target class column, which indicates the presence or absence of CKD, has been separated from the
feature set and is not displayed in the table. These results indicate that the dataset is ready to be used for
training and evaluating classification models.

Table 2. Preprocessed Data Samples from the CKD Dataset

Age bp sg al su rbc pc pcc ba Bgr bu sc sod pot hemo pcv we rc htn dm cad appet pe ane

-0.1011 -0.3636 -2.7134 2.2735 -0.3122 1 0 1 0 -0.2215 0.0725 0.5252 -3.7301 -0.6166 -0.8657 11 42 14 1 0 0 1 1
0.2223 1.4317 0.0231 0.8537 -0.3122 0 O 1 0 -0.9476 1.1519 1.6335 -3.3283 -0.2703 -14574 8 1112 1 1 0 1 O
0.8690 -0.3636 -1.8012 1.5636 -0.3122 0 0 1 0 3.8412 0.1571 0.1667 -1.0512 -0.1260 -1.0050 11 25 13 1 1 0 1 1

1.1923 0.5341 -1.8012 1.5636 2.1544 1 0 1 1 0.3964 0.7921 0.6230 -1.1852 0.5088 -2.8149 0 8 2 1 1 1 1 1

3.2. Data Distribution Visualisation

To explore the dataset characteristics, a boxplot was used to visualize the distribution of numerical
features in the CKD data, as shown in figure 2. The visualization revealed that variables such as blood
glucose random (bgr) and blood urea (bu) contain notable outliers, indicating high variance among
patients. Serum creatinine (sc) and sodium (sod) also showed skewed distributions with inconsistent
scales across observations. These irregularities reflect the clinical diversity in CKD datasets and pose
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challenges for Decision Tree models, which are sensitive to extreme values and unstable in noise or
imbalance data [16],[30]. Since traditional Decision Trees can be overly influenced by such variations,
their predictive performance may become inconsistent. To address this, Bagging is introduced to
enhance model stability. By combining predictions from smultiple trees built on varied bootstrap
subsets, Bagging reduces variance and mitigates the influence of outliers or imbalanced distributions
[24], making it effective for clinical datasets where irregularity are common.

Boxplot of Numerical Feature Distributions (After Preprocessing)
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Figure 2. Boxplots of Numerical Features in the CKD Dataset

3.3. Decision Tree Baseline Model Evaluation Results

Confusion Matrix - Decision Tree

Not CKD

True label

CKD 2 41

T T
Not CKD CKD
Predicted label

Figure 3. Confusion Matrix for Baseline Decision Tree

To evaluate the classification capability of the algorithm for Chronic Kidney Disease, a baseline
model using the Decision Tree without any ensemble method was first implemented. Performance
assessment through a 10-fold cross-validation process yielded an accuracy of 0.980, precision of 0.976,
recall of 0.953, and Fl-score of 0.964. These metrics suggest that the model is highly effective in
detecting CKD cases, with a relatively low rate of classification error. As depicted in figure 3, the
confusion matrix indicates that while the majority of samples were accurately classified, a small number
of CKD cases were misclassified as Not-CKD.

This is reinforced by the classification report, which shows that the CKD class has a recall of
0.953, indicating that the model still fails to recognize a small number of positive cases. Meanwhile, the
Not-CKD class achieves a higher recall of 0.991, demonstrating more consistent performance in
identifying negative cases. The precision values for both classes are strong, with 0.976 for CKD and
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0.983 for Not-CKD, resulting in an F1-score of 0.964 for the CKD class and 0.987 for the Not-CKD
class. The model also attains an overall accuracy of 0.981, with macro and weighted average scores for
all metrics consistently ranging from 0.972 to 0.979.

These results suggest that although the default Decision Tree model performs well overall, it still
shows a mild preference for the majority class, which reflects a slight class imbalance in the dataset.
Therefore, ensemble techniques such as Bagging are recommended to further enhance the model’s
generalization performance and reduce potential bias toward the minority class.

3.4. Bagging and Decision Tree Model Evaluation Results

Confusion Matrix - Bagging + DT

Not CKD

True label

CKD 2 41

T T
Not CKD CKD
Predicted label

Figure 4. Confusion Matrix for Bagging and Decision Tree

The application of the Bagging ensemble method to the Decision Tree algorithm led to a notable
enhancement in classifying Chronic Kidney Disease (CKD) cases. Evaluation using the 10-fold cross-
validation approach showed that the Bagging model achieved 0.987 accuracy, indicating high predictive
performance. For CKD cases (class 1), the model attained 1.000 precision, 0.953 recall, and an F1-score
0f 0.976. Meanwhile, for Not-CKD cases (class 0), it achieved 0.983 precision, 1.000 recall, and an F1-
score of 0.991. These results reflect the model’s excellent capability to correctly identify both classes,
with no false negatives in the Not-CKD class and only a minimal number of misclassifications in the
CKD class. These outcomes are visually represented in the confusion matrix shown in figure 4.

3.5. Comparative Analysis of Model Performance

A comparative analysis was conducted to assess the impact of applying the Bagging technique on
the performance of the Decision Tree model in classifying Chronic Kidney Disease. As visually
represented in figure 5, the Bagging model demonstrates superior performance across key metrics. The
Bagging model achieves an accuracy of 0.987, surpassing the standard Decision Tree model’s accuracy
of 0.980. This improvement demonstrates that Bagging makes a positive contribution to the overall
accuracy of predictions.

The precision performance for the CKD class has also increased significantly with the use of
Bagging. While the standard Decision Tree model yielded a precision of 0.976 for the CKD class, the
Bagging model achieved a perfect 1.000 precision. This crucial improvement means that all optimistic
predictions generated by the Bagging model are indeed CKD cases, effectively eliminating false
positives (reducing them from 1 in the standard Decision Tree to 0 in Bagging). Meanwhile, the recall
for the CKD class remained consistent at 0.953 for both models, indicating that the number of undetected
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CKD cases (false negatives) remained the same. The increase in F1-score from 0.964 to 0.976 further
illustrates that the Bagging model achieves a better balance between precision and recall.

Overall, these results, visually reinforced by figure 5, demonstrate that the Bagging technique
enhances prediction accuracy, particularly in reducing Type I errors (false positives), while also
providing model stability under data variability. Figure 5 clearly shows that the Bagging model
consistently scores higher on all key metrics, particularly precision and F1-score. This visualization
confirms the advantages of the ensemble approach in improving classification performance, especially
in terms of predictive balance and resilience to uneven data distribution.

Comparison of Model Performance Metrics

Accuracy
Precision
Recall

F1-Score

1.00

0.98 -

0.96 1

Score

0.94

0.92

0.90 -

Decision Tree Bagging + DT

Figure 5. Comparative Bar Plot of Model Performance Metrics

Figure 6 illustrates the Receiver Operating Characteristic (ROC) curves for both the standalone
Decision Tree model and the Bagging enhanced Decision Tree model. This curve represents the trade-
off between the True Positive Rate (Sensitivity) and the False Positive Rate across a range of
classification thresholds.
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Figure 6. ROC Curve
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Based on the visualisation, the standalone Decision Tree model achieved an Area Under the Curve
(AUC) score 0of 0.972, indicating strong classification capability. In comparison, the Bagging + Decision
Tree model reached an AUC of 1.000, reflecting improved discriminative power through the ensemble
technique. A curve approaching the top-left corner signifies better separation between classes. These
findings suggest that integrating Bagging into the Decision Tree approach enhances generalisation and
predictive performance, particularly in addressing overfitting and high variance.

4. DISCUSSIONS

The experimental results highlight the advantages of integrating the Bagging ensemble technique
with the Decision Tree algorithm in the classification of Chronic Kidney Disease (CKD). The superior
performance, evidenced by an accuracy of 0.987, 1.000 precision for the CKD class, and an AUC score
of 1.000, demonstrates that Bagging enhances model robustness, stability, and predictive reliability.
These findings align with Debal and Sitote [31] and Moreno-Sanchez [22], who reported similar
improvements through ensemble-based approaches.

By reducing variance and mitigating overfitting, a common issue in single-tree models, Bagging
enables better generalization, especially for noisy or imbalanced datasets. This is crucial in early CKD
detection, where minimizing false negatives and false positives has direct clinical consequences.
Compared to the baseline Decision Tree, the Bagging-DT model achieved lower false positive rates and
consistent sensitivity, making it more suitable for deployment in decision support systems or automated
screening tools in primary healthcare.

Despite these encouraging results, this study has several limitations. The dataset, though rich in
features, is relatively small and may not reflect the full clinical diversity of real-world populations.
Moreover, the model was validated only on internal data; external validation with independent datasets
is necessary to assess generalizability. The dataset from Kaggle, while well-structured, may not fully
capture the variability, demographic diversity, and diagnostic nuances of clinical settings, which should
be considered when interpreting applicability.

Future research should use larger, multi-institutional datasets and real-time clinical data such as
electronic health records (EHRs). Exploring advanced ensemble strategies boosting, stacking, or hybrid
frameworks along with improved feature engineering and hyperparameter tuning may further refine
performance and interpretability. Beyond technical improvements, evaluating integration into clinical
workflows is essential, including healthcare professional acceptance, impact on decision-making, and
the potential to slow CKD progression in at-risk populations.

Practically, the Bagging-enhanced Decision Tree model offers advantages in low-resource
healthcare environments. Its interpretability, computational efficiency, and high sensitivity make it
suitable for rapid CKD screening in primary care, particularly where advanced laboratory facilities are
limited. As an early-warning mechanism, it could prompt timely referrals for confirmatory testing and
intervention, potentially improving outcomes and reducing the long-term economic burden on
healthcare systems.

5. CONCLUSION

This study evaluated Chronic Kidney Disease (CKD) classification using the Decision Tree
algorithm and the Bagging ensemble method. The standard Decision Tree achieved 0.980 accuracy,
0.976 precision, 0.953 recall, and 0.964 Fl-score, with several misclassifications in the confusion
matrix. With Bagging, performance improved to 0.987 accuracy, 1.000 precision for CKD, 0.953 recall,
and 0.976 F1-score. The confusion matrix showed complete elimination of false positives and a marked
reduction in false negatives crucial in clinical diagnosis, it is important to acknowledge the potential risk
of overfitting associated with a perfect precision score. The Bagging-DT model also achieved a perfect
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AUC score of 1.000, demonstrating strong discriminative power between CKD and Not-CKD. These
results confirm that combining Decision Trees with Bagging enhances predictive performance,
robustness, and generalization, especially with complex, imbalanced medical datasets. This study
underscores the value of interpretable models in decision-support systems and how ensembles mitigate
overfitting and data variability, reinforcing the importance of explainable AI (XAI) in healthcare. Future
work should explore other ensemble techniques, integrate advanced feature selection and
hyperparameter optimization, and validate the model with large-scale, external datasets for scalability
and generalizability.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest, either among the authors or with respect
to the research object presented in this paper.

REFERENCES

[1] E. Cavalier, T. Zima, P. Datta, and K. Makris, “Recommendations for European laboratories
based on the KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of
Chronic Kidney Disease,” Clinical Chemistry and Laboratory Medicine (CCLM), vol. 63, no. 3,
pp. 525-534, Feb. 2025, doi: 10.1515/cclm-2024-1082.

[2] C. Ke,J. Liang, M. Liu, S. Liu, and C. Wang, “Burden of chronic kidney disease and its risk-
attributable burden in 137 low-and middle-income countries, 1990-2019: results from the global
burden of disease study 2019,” BMC Nephrology, vol. 23, no. 1, pp. 1-12, 2022, doi:
10.1186/512882-021-02597-3.

[3] J.Guo, Z. Liu, P. Wang, and H. Wu, “Global, regional, and national burden inequality of chronic
kidney disease, 1990-2021: a systematic analysis for the global burden of disease study 2021,”
Frontiers in  Medicine, vol. 11, mno. January, pp. 1-25, Jan. 2025, doi:
10.3389/fmed.2024.1501175.

[4] B. Bikbov, C. A. Purcell, A. S. Levey, and M. Smith, “Global, regional, and national burden of
chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study
2017,” The Lancet, vol. 395, no. 10225, pp. 709-733, Feb. 2020, doi: 10.1016/S0140-
6736(20)30045-3.

[5] Y.Lai, H. Long, Z. Liang, and C. Wu, “Global burden and risk factors of chronic kidney disease
due to hypertension in adults aged 20 plus years, 1990-2021,” Frontiers in Public Health, vol.
13, no. May, pp. 1-12, May 2025, doi: 10.3389/fpubh.2025.1503837.

[6] X. Wang, Z. Liu, N. Yi, and L. Li, “The global burden of chronic kidney disease due to
glomerulonephritis: trends and predictions,” International Urology and Nephrology, Mar. 2025,
doi: 10.1007/s11255-025-04440-2.

[7] A.Makmun, B. Satirapoj, D. G. Tuyen, and M. W. Y. Foo, “The burden of chronic kidney disease
in Asia region: a review of the evidence, current challenges, and future directions.,” Kidney
research and clinical practice, vol. 44, no. 3, pp. 411433, 2024, doi: 10.23876/j.krcp.23.194.

[8] N.M. Hustrini, E. Susalit, F. F. Widjaja, and A. I. Khumaedi, “The Etiology of Advanced Chronic
Kidney Disease in Southeast Asia: A Meta-analysis,” Journal of Epidemiology and Global
Health, vol. 14, no. 3, pp. 740-764, 2024, doi: 10.1007/s44197-024-00209-5.

[9] P. Mahajan, S. Uddin, F. Hajati, and M. A. Moni, “Ensemble Learning for Disease Prediction: A
Review,” Healthcare, vol. 11, no. 12, p. 1808, Jun. 2023, doi: 10.3390/healthcare11121808.

[10] F. Keshvari-Shad, S. Hajebrahimi, and M. P. Laguna Pes, “A Systematic Review of Screening
Tests for Chronic Kidney Disease: An Accuracy Analysis,” Galen Medical Journal, vol. 9, p.
el1573, 2020, doi: 10.31661/gm;.v9i10.1573.

[11] B. Zhou, J. Zhang, and G. Li, “The Global, Regional, and National Burden of Pancreatitis From
1990 to 2021: A Systematic Analysis for the Global Burden of Disease Study 2021,” Journal of
Gastroenterology and Hepatology, vol. 40, no. 5, pp. 1297-1306, May 2025, doi:
10.1111/jgh.16906.

[12] S.R. Kalupukuru and K. Natarajan, “Machine Learning Methods for Predicting the Prognosis of

3121


https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3111-3123
P-ISSN: 2723-3863 https://jutif.if unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.6.5.5271

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[22]

(23]

[24]

[25]

Chronic Kidney Disease,” Procedia Computer Science, vol. 258, pp. 1372—1382, 2025, doi:
10.1016/j.procs.2025.04.370.

Z. Ullah and M. Jamjoom, “Early Detection and Diagnosis of Chronic Kidney Disease Based on,”
Journal of Healthcare Engineering, vol. 2023, 2023.

K. Mendapara, “Development and evaluation of a chronic kidney disease risk prediction model
using random forest,” Frontiers in Genetics, vol. 15, no. June, pp. 1-11, Jun. 2024, doi:
10.3389/fgene.2024.1409755.

M. Garonga and Rita Tanduk, “Comparison of Naive Bayes, Decision Tree, and Random Forest
Algorithms in Classifying Learning Styles of Universitas Kristen Indonesia Toraja Students,”
Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1507-1514, 2023, doi:
10.52436/1 jutif.2023.4.6.1020.

M. K. Biddinika, A. Masitha, H. Herman, and V. A. N. Fatimah, “Machine Learning Techniques
for Heart Disease Prediction Using a Multi-Algorithm Approach,” JUITA: Jurnal Informatika,
vol. 12, no. 2, p. 149, 2024, doi: 10.30595/juita.v12i2.24153.

G. Blang, J. Lange, A. Malik, and L. Y. Tan, “Popular decision tree algorithms are provably noise
tolerant,” Proceedings of Machine Learning Research, vol. 162, pp. 2091-2106, 2022, doi:
https://doi.org/10.48550/arXiv.2206.08899.

M. Alizade-harakiyan, A. Khodaei, A. Yousefi, H. Zamani, and A. Mesbabhi, “Decision tree-based
machine learning algorithm for prediction of acute radiation esophagitis,” vol. 42, no. January,
2025, [Online]. Available: https://doi.org/10.1016/j.bbrep.2025.101991

D. Bertsimas and V. Digalakis, “Improving Stability in Decision Tree Models,” pp. 1-37, 2023,
[Online]. Available: http://arxiv.org/abs/2305.17299

M. M. M. Hassan, M. M. M. Hassan, S. Mollick, and M. A. R. Khan, “A Comparative Study,
Prediction and Development of Chronic Kidney Disease Using Machine Learning on Patients
Clinical Records,” Human-Centric Intelligent Systems, vol. 3, no. 2, pp. 92-104, 2023, doi:
10.1007/s44230-023-00017-3.

S. Y. Irianto, D. Linda, I. I. M. Rizki, S. Karnila, and D. Yuliawati, “Chronic Kidney Disease
Classification Using Bagging and Particle Swarm Optimization Techniques,” International
Journal of Advanced Computer Science and Applications, vol. 16, no. 3, pp. 689—698, 2025, doi:
10.14569/1JACSA.2025.0160368.

P. A. Moreno-Sanchez, “Chronic Kidney Disease Early Diagnosis Enhancing by using Data
Mining  Classification and  Features  Selection,” pp. 460-467, 2021, doi:
https://doi.org/10.1007/978-3-030-69963-5 5.

P. A. Moreno-Sanchez, “Data-Driven Early Diagnosis of Chronic Kidney Disease: Development
and Evaluation of an Explainable Al Model,” IEEE Access, vol. 11, no. Ml, pp. 38359-38369,
2023, doi: 10.1109/ACCESS.2023.3264270.

S. Pal, “Chronic Kidney Disease Prediction Using Machine Learning Techniques,” Biomedical
Materials and Devices, vol. 1, no. 1, pp. 534540, 2023, doi: 10.1007/s44174-022-00027-y.

C. Kaur, M. S. Kumar, A. Anjum, M. B. Binda, M. R. Mallu, and M. S. Al Ansari, “Chronic
Kidney Disease Prediction Using Machine Learning,” Journal of Advances in Information
Technology, vol. 14, no. 2, pp. 384-391, 2023, doi: 10.12720/jait.14.2.384-391.

A. M. Elshewey, E. Selem, and A. H. Abed, “Improved CKD classification based on explainable
artificial intelligence with extra trees and BBFS,” Scientific Reports, vol. 15,n0. 1, p. 17861, May
2025, doi: 10.1038/s41598-025-02355-7.

D. Chhabra, M. Juneja, and G. Chutani, “An Efficient Ensemble-based Machine Learning
approach for Predicting Chronic Kidney Disease,” Current Medical Imaging Reviews, vol. 20,
pp. 1-12, 2023, doi: 10.2174/1573405620666230508104538.

D. Saif, A. M. Sarhan, and N. M. Elshennawy, “Early prediction of chronic kidney disease based
on ensemble of deep learning models and optimizers,” Journal of Electrical Systems and
Information Technology, vol. 11, no. 1, 2024, doi: 10.1186/s43067-024-00142-4.

S. Imran Ali, B. Ali, J. Hussain, M. Hussain, and F. A. Satti, “Cost-Sensitive Ensemble Feature
Ranking and Automatic Threshold Selection for Chronic Kidney Disease Diagnosis,” Applied
Sciences, vol. 10, no. 16, p. 5663, Aug. 2020, doi: 10.3390/app10165663.

M. H. L. Bijoy, M. J. Mia, M. M. Rahman, M. S. Arefin, P. K. Dhar, and T. Shimamura, 4 robot

3122


https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3111-3123

P-ISSN: 2723-3863 https://jutif.if unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.6.5.5271

process automation based mobile application for early prediction of chronic kidney disease using
machine learning, vol. 7, no. 6. Springer International Publishing, 2025. doi: 10.1007/s42452-
025-06980-9.

[31] D. A. Debal and T. M. Sitote, “Chronic kidney disease prediction using machine learning
techniques,” Journal of Big Data, vol. 9, no. 1, 2022, doi: 10.1186/s40537-022-00657-5.

[32] S.C. Tan, “Decision Tree Regression with Residual Outlier Detection,” Journal of Data Science
and Intelligent Systems, vol. 3, no. 2, pp. 126—135, 2024, doi: 10.47852/bonviewjdsis42023861.

3123


https://jutif.if.unsoed.ac.id/

