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Abstract 

Chronic Kidney Disease (CKD) is a progressive medical disorder that requires timely and precise identification to 

avoid permanent impairment of kidney function. However, Decision Tree models, although widely used in clinical 

applications due to their transparency, ease of implementation, and ability to handle both categorical and numerical 

data, are prone to overfitting and instability when applied to small or imbalanced datasets. The purpose of this study 

is to optimize CKD classification by integrating Bootstrap Aggregating (Bagging) with Decision Tree to enhance 

accuracy and robustness. The methodology involves testing two model variants a standalone Decision Tree and a 

Bagging-supported Decision Tree using 10-fold cross-validation and evaluating performance with accuracy, 

precision, recall, F1-score, and the area under the ROC curve (AUC-ROC). Findings reveal that Bagging enhances 

model accuracy from 0.980 to 0.987, raises precision from 0.976 to 1.000, and improves recall from 0.954 to 0.954, 

and increases F1-score from 0.965 to 0.976. These results demonstrate that Bagging significantly improves the 

reliability and generalizability of Decision Tree classifiers, making them more effective for CKD prediction. 
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1. INTRODUCTION 

According to the KDIGO 2024 Clinical Practice Guidelines [1] Chronic Kidney Disease (CKD) 

is a progressive disorder characterised by a decrease in glomerular filtration rate (eGFR) of less than 60 

mL/minute/1.73 m² for at least 3 months or the presence of biomarker abnormalities, such as 

albuminuria.  CKD poses a significant global health burden, with a prevalence of 8 to 16% and caused 

3.16 million deaths in 2019 [2],[3]. This burden continues to increase, especially in low- to middle-

income countries, recording 434 million cases in 2021 (108 million related to type 2 diabetes) [3]. 

Longitudinal analysis shows an increase in incidence, mortality, and Disability-Adjusted Life Years 

(DALYs) since 1990, with projections that it will be the fifth leading cause of death globally by 2040 

[4]. In addition, CKD also exacerbates cardiovascular disease and gout, further exacerbating its clinical 

and economic impact. Therefore, systematic policy interventions are urgently needed, especially in areas 

with low sociodemographic indices, to improve early detection and management of CKD [4]. Lai et al. 

[5] also emphasised this in their systematic analysis for the Global Burden of Disease (GBD) Study 

2021, which showed a significant and steadily increasing global burden of CKD from 1990 to 2021. 

More specifically, the global burden of Chronic Kidney Disease caused by glomerulonephritis also 
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shows a significant increasing trend from 1990 to 2021, with projections to 2036, as outlined by Wang 

et al. [6], which also uses GBD data. 

Factors like diabetes, hypertension, obesity, and the use of herbal remedies hasten the 

advancement of CKD, particularly in developing nations  [7],[8],[9]. Timely identification is essential 

in averting progression to terminal kidney failure. Nevertheless, traditional diagnostic techniques, such 

as measuring serum creatinine concentrations and the albumin-to-creatinine ratio (ACR), often face 

constraints related to expense, duration, and interpretive complexity [10]. Cavalier et al. [1] highlight 

that early detection of CKD is possible. Nonetheless, its cause still lacks clarity, and the existence of 

albuminuria is still closely associated with a negative prognosis. To tackle these challenges, machine 

learning methods provide smart solutions due to their capability to automatically, accurately, and 

measurably identify clinical patterns, thereby surpassing the constraints of traditional techniques. 

[5],[9],[10].  Machine learning–based approaches therefore play a crucial role in providing rapid, 

accurate, and cost-effective diagnostic support for nephrologists, while offering interpretability that 

facilitates clinical trust and practical integration into electronic health records (EHR) and digital health 

systems, particularly in resource-limited settings. 

Mahajan et al. [9] highlight the use of algorithms such as Decision Tree, Random Forests, and 

Support Vector Machine for various applications, including CKD stage classification, kidney 

transplantation, and dialysis management. Various ML algorithms have been used for the classification 

of CKD, both single and ensemble. Kalupukuru and Natarajan [12] evaluated multiple methods, 

including Decision Tree, Random Forest, and Naïve Bayes, for predicting the prognosis of CKD. 

Meanwhile, the effectiveness of classical algorithms (Decision Tree, K-Nearest Neighbors, Random 

Forest) in the early detection of CKD has been demonstrated by Ullah and Jamjoom [13] as well as 

Mendapara [14].  

Among these algorithms, Decision Tree is a popular choice due to its ability to handle both 

numerical and categorical data and produce predictions that are easy to interpret [13]. Garonga et al. 

[15], demonstrated that Decision Tree has been effectively applied in various domains, including 

classification tasks with structured datasets, due to its straightforward rule-based decision paths, which 

can also be adapted for medical applications such as CKD classification. Beyond CKD, Decision Tree 

has also been successfully applied in other medical domains. For example, Biddinika et al. [16] 

demonstrated reasonable performance in heart disease prediction, further highlighting the adaptability 

of Decision Tree for healthcare classification tasks. Several studies have also shown that the Decision 

Tree algorithm exhibits good tolerance to noise and is capable of producing clear, rule-based decisions, 

making it an ideal choice for medical classification applications [17]. However, Decision Tree is prone 

to overfitting, especially on small, unbalanced datasets [18]. Single Decision Tree have limitations in 

terms of objectivity and consistency, making it challenging to replicate classification results and retest 

by other researchers. Additionally, Decision Tree is less capable of capturing complex relationships 

between features compared to more advanced models, such as artificial neural networks [19].  

To overcome the weaknesses of Decision Tree, the application of ensemble techniques such as 

Bootstrap Aggregating (Bagging) has been proven to improve classification performance by reducing 

model variance, while improving its accuracy [9],[20],[21], stabilize performance [21],[22] and 

minimize overfitting [21],[23]. Various studies have demonstrated the effectiveness of this approach. 

For example, Kaur et al. [25]  showed that the implementation of Bagging significantly improved the 

accuracy of the CKG prediction model compared to individual algorithms, such as Support Vector 

Machine and K-Nearest Neighbors. Meanwhile, Elshewey et al. [26] applied ensemble techniques by 

combining the Extra Trees Classifier with the selection of Binary Bat Swarm Search (BBSS) features to 

improve accuracy and interpretability, including through the explainable AI (XAI) approach in Decision 

Tree-based CKD classification. Recent works also reported superior performance using Random Forest 
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with AUC 0.99 [14], Extra Trees with AUC 0.998 [26], hybrid ensemble models achieving F1-scores 

above 0.97, and an ensemble framework integrating twelve classifiers that achieved up to 99% accuracy 

in CKD prediction [27]. In addition, a deep learning–based ensemble combining CNN, LSTM, and 

BLSTM architectures reported 98% accuracy for 6-month prediction and 97% for 12-month prediction 

horizons [28]. These benchmarks provide a strong reference point for evaluating the competitiveness of 

our proposed Bagging-Decision Tree approach. 

The combination of various classification algorithms with ensemble techniques can enhance the 

prediction accuracy and generalisation capabilities of the model, resulting in improved performance 

[29]. Therefore, combining Decision Tree with Bagging is an effective strategy to maintain Decision 

Tree interpretability while enhancing its stability and accuracy on complex medical data. The 

effectiveness of the ensemble approach in predicting CKD was also strengthened by the findings of 

Bijoy et al. [30], which reported up to 99.5% accuracy through a combination of several algorithms, 

including Decision Tree, with stacking and voting. Some studies report that the integration between 

Decision Tree and Bagging results in superior performance over a single Decision Tree, with an 

accuracy of up to 97.5% [26].  Debal and Sitote [31] even found that although Random Forest and 

Support Vector Machine achieved the best accuracy in both binary and multiclass CKD classifications, 

the Decision Tree model remained competitive, with accuracies of 98.5% for binary classification and 

77.5% for five-stage classification of CKD based on the severity of kidney function. The stages of CKD 

are generally divided into five stages based on the eGFR score, namely Stage 1 (≥90) to Stage 5 (<15), 

which reflect a progressive decline in kidney function [1]. Importantly, while these advanced ensembles 

achieve very high metrics, their “black-box” nature makes clinical deployment difficult. In contrast, 

Bagging with Decision Tree maintains interpretability, enabling clinicians to trace decision paths, which 

is crucial for integration into electronic health records (EHR) and digital health systems, particularly in 

resource-limited hospitals. 

This study is designed to enhance the predictive performance of Chronic Kidney Disease (CKD) 

classification by integrating the Bagging ensemble technique with the Decision Tree algorithm. The 

objective is not only to improve model robustness and accuracy but also to compare its outcomes with 

those of a traditional single Decision Tree. The evaluation relies on multiple metrics, including accuracy, 

precision, recall, F1-score, and the AUC-ROC curve, ensuring a comprehensive assessment of each 

model’s effectiveness. 

2. METHOD 

 

 
Figure 1.  Research Diagram of Stages. 
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This study applies the Decision Tree algorithm combined with the Bagging method to improve 

Chronic Kidney Disease (CKD) classification. Two approaches are examined: the standard Decision 

Tree as the reference model, and a Bagging enhanced version for greater predictive robustness.  A 10-

fold cross-validation strategy ensures result reliability. Model performance is evaluated using common  

classification metrics, including accuracy, precision, recall, F1-score, and the ROC curve (AUC). In 

addition, figure 1 presents a research diagram of stages that illustrates the overall experimental pipeline, 

starting from dataset collection and preprocessing to model development and evaluation. 

2.1. Dataset Collection 

Table  1. Attribute Used in The CKD Dataset 

No Feature Description Feature Name Data Type 
Measurement 

Unit 

1 Patient’s age in years Age of the patient Numeric Years 

2 
Arterial blood pressure 

measurement 
Blood pressure level Continuous numerical mmHg 

3 
Urine concentration relative to 

water density 
Urine specific gravity Ordinal (discrete scale) 1.005–1.025 

4 Albumin concentration in urine Urine albumin content Ordered categorical Levels 0–5 

5 Glucose level detected in urine Urine sugar presence Ordered categorical Levels 0–5 

6 
Observation of red blood cell 

shape 
RBC morphology Nominal (categorical) 

Normal / 

Abnormal 

7 
White blood cells in urine 

(suggests infection) 
Pus cell detection Nominal 

Normal / 

Abnormal 

8 Pus cell clumping in urine Clustered pus cells Nominal 
Present / Not 

Present 

9 Presence of bacteria in urine 
Bacterial infection 

marker 
Binary indicator 

Present / Not 

Present 

10 Random glucose concentration Random blood glucose Numerical mg/dL 

11 Blood urea content Urea level Numerical mg/dL 

12 Creatinine in blood serum Serum creatinine value Numerical mg/dL 

13 Sodium level in blood Sodium concentration Numerical mEq/L 

14 Potassium level in blood 
Potassium 

concentration 
Numerical mEq/L 

15 Hemoglobin quantity in blood Hemoglobin reading Numerical g/dL 

16 Ratio of RBC volume in blood Packed cell volume Numerical Percentage (%) 

17 White blood cell count WBC count Numerical Cells per mm³ 

18 Red blood cell count RBC count Numerical 
Million 

cells/mm³ 

19 History of high blood pressure Hypertension status Binary (yes = 1, no = 0) - 

20 Diabetes diagnosis status Diabetes indication Binary (yes = 1, no = 0) - 

21 Presence of heart disease 
Coronary artery 

disease (CAD) 
Binary (yes = 1, no = 0) - 

22 Appetite status Appetite condition Nominal Good / Poor 

23 Swelling in legs or ankles Pedal edema Binary (yes = 1, no = 0) - 

24 Reduced red blood cell count Anemia indicator Binary (yes = 1, no = 0) - 

25 Final classification outcome CKD status Nominal target variable 
CKD (1) / Not- 

CKD (0) 

https://jutif.if.unsoed.ac.id/
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The dataset used in this study was obtained from the UCI Machine Learning Repository, titled  

Chronic Kidney Disease Dataset (https://archive.ics.uci.edu/dataset/336/chronic+kidney+disease). It 

consists  400 patient records with 24 input attributes and one target attribute (CKD/Not-CKD). The data, 

derived from medical and laboratory examinations, represent patients with suspected Chronic Kidney 

Disease. Table 1 lists the attributes, including numerical and nominal features, such as age, blood 

pressure, albumin levels, and haemoglobin, among others. The dataset contains missing values and 

format inconsistencies, which are addressed during preprocessing. It is also important to note that the 

dataset is imbalanced (approximately 62.5% CKD vs. 37.5% non-CKD). In this study, the Bagging 

approach inherently addresses this issue by resampling bootstrap subsets with replacement, thereby 

reducing variance and mitigating the adverse effects of imbalance while maintaining model stability. 

 

2.2. Data Preprocessing 

The preprocessing stage ensures that the dataset is clean, consistent, and in a suitable condition 

for use in the machine learning model training process. The first step is to handle blank values. Since 

their proportion is relatively small and does not significantly impact class distribution, rows containing 

empty values are removed from the dataset. Furthermore, categorical features such as rbc, pc, pcc, htn, 

and others are converted into numerical format using label encoding techniques, allowing them to be 

processed by classification algorithms, such as Decision Tree, that require numerical input. Although 

the Decision Tree algorithm does not depend on feature scaling, numerical attributes are still normalized 

using the Z-score method. This normalization prepares the data for exploratory statistical analysis and 

modeling, and helps identify characteristics of the data distribution, including potential outliers and 

imbalances, which will be discussed further in the Results and Discussion section. It is also important 

to note that the dataset is imbalanced, with a higher proportion of CKD cases. In this study, the Bagging 

approach helps mitigate this issue by resampling bootstrap subsets with replacement, reducing variance 

and minimizing the adverse effects of imbalance while maintaining model stability. 

2.3. Application of Decision Tree and Bootstrap Aggregating 

This research utilizes the Decision Tree algorithm as the primary classifier, with performance 

enhancement achieved through the application of the Bootstrap Aggregating (Bagging) method. 

Bagging operates by generating multiple decision trees using bootstrap samples random subsets of the 

training data selected with replacement. Each tree is trained independently, and the final prediction is 

determined by majority voting across the ensemble. Formally, the Bagging prediction for classification 

can be written as: 

𝑓𝑏𝑎𝑔(𝑋) =
1

𝐵
  ∑ 𝑓𝑏 (𝑋)

𝐵

𝑏=1

 

 

 

(1) 

where B is the number of bootstrap samples, 𝑓𝑏(X) is the prediction of the  b-th tree. This aggregation 

reduces prediction variance while maintaining interpretability.  

In this study, the Bagging method was implemented using Decision Tree as the base learner, 

without incorporating any feature selection or hyperparameter tuning. The evaluation of model 

performance before and after applying Bagging was carried out using 10-fold cross-validation, and 

assessed through standard classification metrics: accuracy, precision, recall, F1-score, and the area under 

the ROC curve (AUC). For benchmarking purposes, reported performances of alternative ensemble 

techniques such as Random Forest  [14] and XGBoost are also referenced in the discussion, though not 

directly implemented in this study.  
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2.4. Model Evaluation 

To assess how well the models perform in classifying Chronic Kidney Disease (CKD), this study 

compares two primary approaches: a standard Decision Tree model and an enhanced version integrated 

with the Bagging ensemble technique. Each model’s effectiveness was evaluated using four core 

classification metrics. Accuracy measures the proportion of correctly classified instances across the 

entire dataset. Precision reflects the model’s ability to avoid false positives, while recall (or sensitivity) 

indicates how successfully it identifies true positive cases. The F1-score, a harmonic average of 

precision and recall, helps balance both aspects. To provide a deeper understanding of model 

performance per class, confusion matrices and detailed classification reports were also employed. These 

tools allow for more granular analysis beyond overall scores. In order to ensure the reliability and 

fairness of the evaluation, a 10-fold cross-validation scheme was applied throughout the experiments. 

This method helps minimize bias and variation caused by how the data is split.  

Finally, the results from both models were directly compared to determine how significantly the 

Bagging technique improved predictive performance, particularly in terms of accuracy, sensitivity, and 

resistance to overfitting in CKD classification tasks. 

3. RESULT 

3.1. Summary of Data Preprocessing Results 

The preprocessing phase is carried out to enhance the quality and reliability of the data prior to 

model training. During this process, question mark symbols (‘?’) indicating invalid values are converted 

into standard Not a Number (NaN) format. All rows containing missing values are then removed, as 

they are relatively few and do not significantly affect class distribution. Categorical features are 

transformed into numerical format using label encoding, while numerical features are normalized using 

the Z-score method to support statistical visualizations such as boxplots.  

Table 2 presents sample data from the CKD dataset after all preprocessing steps have been 

completed. At this stage, the data has been cleaned of missing values, categorical variables have been 

encoded into numerical form, and numerical variables have been normalized using the Z-score method. 

The target class column, which indicates the presence or absence of CKD, has been separated from the 

feature set and is not displayed in the table. These results indicate that the dataset is ready to be used for 

training and evaluating classification models. 

 

Table 2. Preprocessed Data Samples from the CKD Dataset 

Age bp sg al su rbc pc pcc ba Bgr bu sc sod pot hemo pcv wc rc htn dm cad appet pe ane 

-0.1011 -0.3636 -2.7134 2.2735 -0.3122 1 0 1 0 -0.2215 0.0725 0.5252 -3.7301 -0.6166 -0.8657 11 42 14 1 0 0 1 1 1 

0.2223 1.4317 0.0231 0.8537 -0.3122 0 0 1 0 -0.9476 1.1519 1.6335 -3.3283 -0.2703 -1.4574 8 11 12 1 1 0 1 0 1 

0.8690 -0.3636 -1.8012 1.5636 -0.3122 0 0 1 0 3.8412 0.1571 0.1667 -1.0512 -0.1260 -1.0050 11 25 13 1 1 0 1 1 0 

1.1923 0.5341 -1.8012 1.5636 2.1544 1 0 1 1 0.3964 0.7921 0.6230 -1.1852 0.5088 -2.8149 0 8 2 1 1 1 1 1 0 

 

3.2. Data Distribution Visualisation 

To explore the dataset characteristics, a boxplot was used to visualize the distribution of numerical 

features in the CKD data, as shown in figure 2. The visualization revealed that variables such as blood 

glucose random (bgr) and blood urea (bu) contain notable outliers, indicating high variance among 

patients. Serum creatinine (sc) and sodium (sod) also showed skewed distributions with inconsistent 

scales across observations. These irregularities reflect the clinical diversity in CKD datasets and pose 
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challenges for Decision Tree models, which are sensitive to extreme values and unstable in noise or 

imbalance data [16],[30]. Since traditional Decision Trees can be overly influenced by such variations, 

their predictive performance may become inconsistent. To address this, Bagging is introduced to 

enhance model stability. By combining predictions from smultiple trees built on varied bootstrap 

subsets, Bagging reduces variance and mitigates the influence of outliers or imbalanced distributions 

[24], making it effective for clinical datasets where irregularity are common. 

 

 

Figure 2. Boxplots of Numerical Features in the CKD Dataset 

3.3. Decision Tree Baseline Model Evaluation Results 

 

 
Figure 3. Confusion Matrix for Baseline Decision Tree 

 

To evaluate the classification capability of the algorithm for Chronic Kidney Disease, a baseline 

model using the Decision Tree without any ensemble method was first implemented. Performance 

assessment through a 10-fold cross-validation process yielded an accuracy of 0.980, precision of 0.976, 

recall of 0.953, and F1-score of 0.964. These metrics suggest that the model is highly effective in 

detecting CKD cases, with a relatively low rate of classification error. As depicted in figure 3, the 

confusion matrix indicates that while the majority of samples were accurately classified, a small number 

of CKD cases were misclassified as Not-CKD. 

This is reinforced by the classification report, which shows that the CKD class has a recall of 

0.953, indicating that the model still fails to recognize a small number of positive cases. Meanwhile, the 

Not-CKD class achieves a higher recall of 0.991, demonstrating more consistent performance in 

identifying negative cases. The precision values for both classes are strong, with 0.976 for CKD and 

https://jutif.if.unsoed.ac.id/
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0.983 for Not-CKD, resulting in an F1-score of 0.964 for the CKD class and 0.987 for the Not-CKD 

class. The model also attains an overall accuracy of 0.981, with macro and weighted average scores for 

all metrics consistently ranging from 0.972 to 0.979. 

These results suggest that although the default Decision Tree model performs well overall, it still 

shows a mild preference for the majority class, which reflects a slight class imbalance in the dataset. 

Therefore, ensemble techniques such as Bagging are recommended to further enhance the model’s 

generalization performance and reduce potential bias toward the minority class. 

3.4. Bagging and Decision Tree Model Evaluation Results 

 

 

Figure 4. Confusion Matrix for Bagging and Decision Tree 

 

The application of the Bagging ensemble method to the Decision Tree algorithm led to a notable 

enhancement in classifying Chronic Kidney Disease (CKD) cases. Evaluation using the 10-fold cross-

validation approach showed that the Bagging model achieved 0.987 accuracy, indicating high predictive 

performance. For CKD cases (class 1), the model attained 1.000 precision, 0.953 recall, and an F1-score 

of 0.976. Meanwhile, for Not-CKD cases (class 0), it achieved 0.983 precision, 1.000 recall, and an F1-

score of 0.991. These results reflect the model’s excellent capability to correctly identify both classes, 

with no false negatives in the Not-CKD class and only a minimal number of misclassifications in the 

CKD class. These outcomes are visually represented in the confusion matrix shown in figure 4.  

3.5. Comparative Analysis of Model Performance 

A comparative analysis was conducted to assess the impact of applying the Bagging technique on 

the performance of the Decision Tree model in classifying Chronic Kidney Disease. As visually 

represented in figure 5, the Bagging model demonstrates superior performance across key metrics. The 

Bagging model achieves an accuracy of 0.987, surpassing the standard Decision Tree model’s accuracy 

of 0.980. This improvement demonstrates that Bagging makes a positive contribution to the overall 

accuracy of predictions.  

The precision performance for the CKD class has also increased significantly with the use of 

Bagging. While the standard Decision Tree model yielded a precision of 0.976 for the CKD class, the 

Bagging model achieved a perfect 1.000 precision. This crucial improvement means that all optimistic 

predictions generated by the Bagging model are indeed CKD cases, effectively eliminating false 

positives (reducing them from 1 in the standard Decision Tree to 0 in Bagging). Meanwhile, the recall 

for the CKD class remained consistent at 0.953 for both models, indicating that the number of undetected 

https://jutif.if.unsoed.ac.id/
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CKD cases (false negatives) remained the same. The increase in F1-score from 0.964 to 0.976 further 

illustrates that the Bagging model achieves a better balance between precision and recall. 

Overall, these results, visually reinforced by figure 5, demonstrate that the Bagging technique 

enhances prediction accuracy, particularly in reducing Type I errors (false positives), while also 

providing model stability under data variability. Figure 5 clearly shows that the Bagging model 

consistently scores higher on all key metrics, particularly precision and F1-score. This visualization 

confirms the advantages of the ensemble approach in improving classification performance, especially 

in terms of predictive balance and resilience to uneven data distribution. 

 

 
Figure 5. Comparative Bar Plot of Model Performance Metrics 

 

Figure 6 illustrates the Receiver Operating Characteristic (ROC) curves for both the standalone 

Decision Tree model and the Bagging enhanced Decision Tree model. This curve represents the trade-

off between the True Positive Rate (Sensitivity) and the False Positive Rate across a range of 

classification thresholds. 

 

 
Figure 6. ROC Curve 

https://jutif.if.unsoed.ac.id/
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Based on the visualisation, the standalone Decision Tree model achieved an Area Under the Curve 

(AUC) score of 0.972, indicating strong classification capability. In comparison, the Bagging + Decision 

Tree model reached an AUC of 1.000, reflecting improved discriminative power through the ensemble 

technique. A curve approaching the top-left corner signifies better separation between classes. These 

findings suggest that integrating Bagging into the Decision Tree approach enhances generalisation and 

predictive performance, particularly in addressing overfitting and high variance. 

4. DISCUSSIONS 

The experimental results highlight the advantages of integrating the Bagging ensemble technique 

with the Decision Tree algorithm in the classification of Chronic Kidney Disease (CKD). The superior 

performance, evidenced by an accuracy of 0.987, 1.000 precision for the CKD class, and an AUC score 

of 1.000, demonstrates that Bagging enhances model robustness, stability, and predictive reliability. 

These findings align with Debal and Sitote [31] and Moreno-Sanchez [22], who reported similar  

improvements through ensemble-based approaches. 

By reducing variance and mitigating overfitting, a common issue in single-tree models, Bagging 

enables better generalization, especially for noisy or imbalanced datasets. This is crucial in early CKD 

detection, where minimizing false negatives and false positives has direct clinical consequences. 

Compared to the baseline Decision Tree, the Bagging-DT model achieved lower false positive rates and 

consistent sensitivity, making it more suitable for deployment in decision support systems or automated 

screening tools in primary healthcare. 

Despite these encouraging results, this study has several limitations. The dataset, though rich in 

features, is relatively small and may not reflect the full clinical diversity of real-world populations. 

Moreover, the model was validated only on internal data; external validation with independent datasets 

is necessary to assess generalizability. The dataset from Kaggle, while well-structured, may not fully 

capture the variability, demographic diversity, and diagnostic nuances of clinical settings, which should 

be considered when interpreting applicability. 

Future research should use larger, multi-institutional datasets and real-time clinical data such as 

electronic health records (EHRs). Exploring advanced ensemble strategies boosting, stacking, or hybrid 

frameworks along with improved feature engineering and hyperparameter tuning may further refine 

performance and interpretability. Beyond technical improvements, evaluating integration into clinical 

workflows is essential, including healthcare professional acceptance, impact on decision-making, and 

the potential to slow CKD progression in at-risk populations. 

Practically, the Bagging-enhanced Decision Tree model offers advantages in low-resource 

healthcare environments. Its interpretability, computational efficiency, and high sensitivity make it 

suitable for rapid CKD screening in primary care, particularly where advanced laboratory facilities are 

limited. As an early-warning mechanism, it could prompt timely referrals for confirmatory testing and 

intervention, potentially improving outcomes and reducing the long-term economic burden on 

healthcare systems. 

5. CONCLUSION 

This study evaluated Chronic Kidney Disease (CKD) classification using the Decision Tree 

algorithm and the Bagging ensemble method. The standard Decision Tree achieved 0.980 accuracy, 

0.976 precision, 0.953 recall, and 0.964 F1-score, with several misclassifications in the confusion 

matrix. With Bagging, performance improved to 0.987 accuracy, 1.000 precision for CKD, 0.953 recall, 

and 0.976 F1-score. The confusion matrix showed complete elimination of false positives and a marked 

reduction in false negatives crucial in clinical diagnosis, it is important to acknowledge the potential risk 

of overfitting associated with a perfect precision score. The Bagging-DT model also achieved a perfect 
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AUC score of 1.000, demonstrating strong discriminative power between CKD and Not-CKD. These 

results confirm that combining Decision Trees with Bagging enhances predictive performance, 

robustness, and generalization, especially with complex, imbalanced medical datasets. This study 

underscores the value of interpretable models in decision-support systems and how ensembles mitigate 

overfitting and data variability, reinforcing the importance of explainable AI (XAI) in healthcare. Future 

work should explore other ensemble techniques, integrate advanced feature selection and 

hyperparameter optimization, and validate the model with large-scale, external datasets for scalability 

and generalizability. 
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