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Abstract

This study presents an integrated predictive—prescriptive framework for improving workforce management in the
garment industry by combining machine learning classification with linear programming optimization. Using a
publicly available dataset of 1,197 production records, productivity levels were categorized into low, medium, and
high classes. Data preprocessing included handling missing values, one-hot encoding of categorical variables, and
class balancing using SMOTE. Eleven classification algorithms were evaluated, with LightGBM achieving the
highest performance (accuracy 78.3%, weighted F1-score 78.3%, Cohen’s Kappa 63.4%) after hyperparameter tuning
via Bayesian Optimization. The optimized model’s predictions were then incorporated into a linear programming
model, implemented with PuLP, to maximize the allocation of high-productivity workers across production
departments under capacity constraints. The results yielded an allocation plan assigning 117 high-productivity
workers, significantly enhancing potential operational efficiency. The novelty of this work lies in integrating an
optimized ensemble learning model with mathematical programming for end-to-end productivity classification and
resource allocation, a combination rarely explored in labor-intensive manufacturing contexts. This framework offers
a scalable decision-support tool for data-driven workforce planning and could be adapted to other manufacturing
domains with similar operational structures.

Keywords : Bayesian Optimization, Garment Industry, Linear Programming, Machine Learning, Productivity
Classification, Random Forest
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1. INTRODUCTION

The garment industry remains a vital driver of economic growth in many developing countries,
characterized by labor-intensive production processes where worker productivity plays a pivotal role in
determining operational efficiency, cost control, and competitiveness in global markets [1].
Conventional productivity assessment methods—such as manual observation and basic statistical
analysis—are often limited in their ability to process large-scale, complex datasets, which may lead to
inaccurate evaluations and suboptimal resource allocation [2]. In the era of Industry 4.0, data-driven
approaches supported by advanced machine learning (ML) algorithms provide a promising pathway to
address these challenges.

Recent studies have demonstrated the effectiveness of machine learning models in predicting and
classifying worker productivity within garment manufacturing. For instance, Balla et al. [3] applied the
Random Forest algorithm to predict garment worker productivity, achieving superior performance in
terms of mean absolute error (MAE = 0.0787) compared to linear regression and neural network
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approaches. Similarly, Saad [4] reported that ensemble techniques such as bagging, when applied to
decision-tree-based models, significantly improved accuracy in textile worker performance evaluation,
achieving an accuracy rate of approximately 99.2%. Parallel to predictive modeling, optimization
methods have been explored to enhance resource allocation in garment production. Shakirullah et al. [5]
developed a linear programming (LP) model for the garment industry in Bangladesh, resulting in a 22%
increase in profit and a 37% reduction in operational costs. More recently, Kong et al. [6] employed
mixed-integer linear programming (MILP) for garment line balancing under Lean manufacturing
principles, achieving over 50% reductions in labor costs while meeting production constraints. On the
machine learning optimization front, Bayesian Optimization has emerged as an efficient and accurate
approach for hyperparameter tuning. Zlobin and Bazylevych [7] demonstrated that Bayesian
Optimization improved the performance of best models while reducing computational overhead
compared to grid search or random search methods. This aligns with broader literature identifying
Bayesian Optimization as a leading hyperparameter tuning method due to its ability to achieve strong
results with fewer, more informative evaluations [8].

The complexity and high-dimensionality of modern manufacturing datasets pose significant
challenges for traditional machine learning models. Consequently, ensemble methods, particularly
gradient boosting algorithms like LightGBM, have gained prominence due to their robustness and ability
to capture intricate non-linear relationships without extensive feature engineering [9]. However, the
predictive power of these models is highly dependent on the careful tuning of their numerous
hyperparameters, a task that is computationally expensive and often intractable with conventional
methods like grid search. This is precisely where Bayesian Optimization offers a distinct advantage,
providing a principled and sample-efficient strategy to navigate the complex hyperparameter space and
identify optimal model configurations, thereby ensuring that the full predictive potential of the
underlying model is harnessed for industrial applications [10].

Zhang et al. [11] utilized XGBoost with Gaussian Process-based Bayesian tuning to predict
maximum stress in lattice structures produced by additive manufacturing, achieving high accuracy and
generalizability. Similarly, Mahani et al. [12] combined Bayesian Optimization with Singular Value
Decomposition (SVD) and XGBoost in optical design, reducing computational burden while
maintaining predictivim,e precision. More broadly, Bayesian-optimized XGBoost has been shown to
efficiently optimize complex, expensive-to-evaluate processes in manufacturing, such as configuring
atmospheric plasma spraying and fused deposition modeling, through a batch Bayesian optimization
framework [13]. Recent advances also include multi-objective Bayesian optimization frameworks that
enable autonomous decision-making in smart manufacturing by guiding sequential experimentation
[14], and constrained Bayesian optimization techniques applied to curing process control in
manufacturing settings [15].

In workforce planning and production scheduling, mathematical optimization methods remain
central. A 2025 survey in Annals of Operations Research [16] reviewed workforce modeling
methodologies—covering recruitment, training, attrition, scheduling—and highlighted the continued
relevance of analytical and simulation-based decision models. Reconfigurable manufacturing systems
have leveraged Mixed-Integer Linear Programming (MILP) to simultaneously allocate workers,
machines, and job schedules [17]. Workforce size determination using dynamic programming
demonstrated cost savings and staffing efficiency in manufacturing [18]. Moreover, workforce
scheduling in shift-based workshops has successfully applied MILP to minimize labor cost while
respecting regulations and demand constraints [19].

Beyond predictive accuracy, a significant barrier to the adoption of advanced models like gradient
boosting in high-stakes industrial settings is their inherent 'black box' nature. For workforce
management, where decisions directly impact personnel and operational outcomes, this lack of
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transparency can lead to mistrust and hinder effective implementation by managers who need to
understand the rationale behind a model's predictions. This challenge has spurred the development of
Explainable Al (XAI) techniques, such as SHAP (SHapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations), which provide crucial insights into which features most
influence a model's output [20]. By illuminating the key drivers of productivity predictions—such as a
worker's tenure, department, or specific task performance—XAI not only enhances model transparency
and fosters stakeholder trust but also provides actionable insights for targeted training and process
improvements [21].

Integration of predictive analytics with prescriptive optimization has emerged in related domains.
An explainable, Bayesian-optimized model improved component failure detection in predictive
maintenance, enhancing decision transparency [22]. In the context of resource allocation beyond
manufacturing, a decision-support framework applied Bayesian-optimized XGBoost and Optuna for
budget distribution, demonstrating potential applicability to workforce allocation problems [23]. These
studies highlight three converging trends:

1. The effectiveness of Bayesian-optimized in modeling complex manufacturing processes and
structural predictions.

2. The robustness of optimization methods (LP, MILP, dynamic programming) in workforce/resource
scheduling under constraints.

3. The growing interest in integrated predictive—prescriptive frameworks that support real-time
decision-making in industrial operations.

Despite these advances, most studies have treated predictive modeling and optimization as
separate domains, with limited research integrating the two into a cohesive, end-to-end decision-support
framework. Furthermore, only a few works have incorporated both advanced ensemble learning
methods, such as LightGBM, with Bayesian Optimization for model enhancement, followed by
mathematical programming for actionable resource allocation [24]. Addressing these gaps, this study
proposes an integrated framework that classifies garment worker productivity using an optimized model
and subsequently applies integer linear programming via PuLP to optimize workforce allocation [25].
Specifically, the research objectives are:

(1) to develop a high-accuracy worker productivity classification model,

(2) to enhance its performance through Bayesian Optimization, and

(3) to implement resource allocation optimization to maximize high-productivity workforce
deployment.

This combined predictive—prescriptive approach offers both methodological novelty and practical
relevance to the data-driven management of labor-intensive manufacturing operations. The research
addresses the problem of inconsistent productivity assessment and inefficient resource allocation, which
are prevalent in labor-intensive industries. By leveraging a dataset of garment worker performance, we
employ advanced machine learning models to predict productivity and use linear programming to
allocate workers optimally across departments. This study contributes to the growing body of literature
on data-driven decision-making in industrial settings.

2. METHOD

The methodological framework adopted in this study combines predictive analytics and
prescriptive optimization to address the dual objectives of classifying worker productivity and
determining optimal resource allocation in the garment industry. The process begins with data
preparation, including preprocessing, feature transformation, and handling of class imbalance, followed
by the development and benchmarking of multiple machine learning models. The best-performing
model is then fine-tuned through hyperparameter optimization to maximize predictive performance [26].
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The output of this classification stage—predicted productivity classes—is subsequently used as input to
a linear programming model designed to optimize workforce distribution across production
departments.
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Figure 1. Proposed Method

2.1. Data Preparation and Model Development

The dataset utilized in this study comprised 1,197 production records obtained from a publicly
available garment industry dataset compiled by Imran et al. [27]. Each record included multiple
attributes relevant to worker productivity assessment, namely department (finishing or sewing),
production quarter, day of the week, work-in-progress (WIP), number of workers assigned, and actual
productivity achieved during the recorded period. To enable the classification process, the continuous
productivity variable was discretized into three classes: Low (< 0.5), Medium (0.5-0.8 inclusive), and
High (> 0.8), based on established industry performance thresholds. This categorization allowed for
targeted analysis and more interpretable decision-making in the subsequent optimization stage.

The preprocessing stage was conducted to ensure data integrity and compatibility with machine
learning algorithms [28]. Initially, date attributes were converted to a standardized datetime format and
excluded from further processing, as temporal identifiers were not considered predictive features.
Missing WIP values were replaced with zero to preserve dataset completeness. Nominal categorical
features, including quarter, department, and day, were transformed into numerical form via one-hot
encoding. This transformation allowed algorithms to interpret categorical distinctions without imposing
ordinal relationships.

The preprocessed data was then divided into training (80%) and testing (20%) sets using stratified
sampling to maintain class proportions in both sets. A critical challenge in the dataset was class
imbalance, where certain productivity classes, particularly High, were underrepresented. To mitigate the
bias introduced by this imbalance, the Synthetic Minority Oversampling Technique (SMOTE) [29] was
applied. SMOTE generated synthetic samples for minority classes by interpolating between existing
minority class instances in feature space, resulting in a balanced dataset of 1,341 records.

A comprehensive model benchmarking was conducted to identify the most effective classification
algorithm. Eleven classifiers were evaluated, encompassing linear models (Logistic Regression), non-
linear algorithms (Support Vector Machine, K-Nearest Neighbors, Gaussian Naive Bayes, Decision
Tree) [30], ensemble methods (Random Forest, Gradient Boosting, AdaBoost) [31], and advanced
gradient boosting implementations (XGBoost, CatBoost, LightGBM) [32]. Model performance was
evaluated using three complementary metrics: overall accuracy, weighted F1-score, and Cohen’s Kappa.
The weighted F1-score was prioritized as the primary metric due to its ability to account for both class
imbalance and precision—recall trade-offs, while Cohen’s Kappa was used to assess classification
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agreement beyond chance. The equation of Fl-score is shown in equation (1) where precision, P =
TPATP + FP), andrecall, R = TPATP + FN) [33], [34].
Precision x Recall
F1—score=2xm (D)

The algorithm achieving the highest weighted F1-score—was selected for further refinement
through Bayesian Optimization [35]. This hyperparameter tuning process explored a defined search
space for four key parameters: the number of boosting iterations (n_estimators), maximum tree depth
(max_depth), learning rate (learning_rate), and subsample ratio (subsample). Bayesian Optimization
began with five randomly sampled initial points to establish prior knowledge, followed by 15 guided
iterations using the Expected Improvement (EI) acquisition function. This approach allowed the search
to efficiently exploit promising hyperparameter configurations while continuing to explore less-visited
regions of the search space. The optimal configuration identified through this process was then used to
retrain the best model on the full training dataset.

2.2. Optimization for Resource Allocation

Following the development of the optimized classification model, its predictions were employed
as the input for a prescriptive analytics stage using Linear Programming (LP). The objective of the LP
model was to determine the optimal allocation of workers across the two main departments—{finishing
and sewing—while maximizing the deployment of high-productivity workers, as identified by the
classification model.

Decision variables were defined to represent the number of workers assigned to each department
within each productivity category (Low, Medium, High). The optimization objective function was
formulated to maximize the sum of high-productivity worker assignments, thereby aligning with
managerial goals of improving overall production efficiency. Two primary constraints governed the
model:

1. Departmental Capacity Constraint — The total number of workers allocated to each department
could not exceed its historical maximum capacity as observed in the dataset.

2. Total Workforce Constraint — The total number of assigned workers across both departments was
required to match the total number of workers available in the dataset, ensuring a feasible and
realistic allocation strategy.

The LP problem was implemented using the PuLP optimization library [25] in Python, with the
default CBC solver employed to identify optimal solutions. The solver iteratively explored feasible
allocation configurations, calculating the corresponding objective values until the global optimum was
reached. By integrating the predictive outputs of the optimized model with the prescriptive optimization
process, this methodology forms a unified decision-support framework. The approach enables data-
driven workforce planning that simultaneously leverages the predictive accuracy of advanced machine
learning and the operational efficiency of mathematical optimization.

All stages of data preparation, model training, hyperparameter optimization, and LP-based
resource allocation were implemented in Python 3.11 within a Google Colab environment. The primary
libraries used included Pandas and NumPy for data handling, scikit-learn for baseline model
development, imbalanced-learn for SMOTE, XGBoost/CatBoost/LightGBM for advanced boosting
algorithms, bayes_opt for Bayesian Optimization, and PuLP for optimization modeling.

3.  RESULT

The comparative performance of eleven classification algorithms is presented in the table. Among
all tested models, LightGBM and CatBoost achieved the highest performance with an identical accuracy
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of 78.3%. However, LightGBM had a slight edge with an F1-Score of 0.784 and a Cohen's Kappa of
0.634. The Gradient Boosting model followed closely, recording an accuracy of 77.5%. Conversely,
SVM and Logistic Regression recorded the lowest accuracies at 26.0% and 46.8%, respectively. This
low performance can be attributed to the limited ability of these two models to capture the non-linear
relationships present in the dataset.

Table 1. Model Performance Comparison

Model Accuracy FI1-Score  Kappa
LightGBM 0.783333 0.783529 0.634093
CatBoost 0.783333 0.782122 0.632379

Gradient Boosting  0.775000 0.777669 0.624097
Random Forest 0.766667 0.766462 0.606038

XGBoost 0.766667 0.766171 0.604706
Decision Tree 0.741667 0.741495 0.562250
AdaBoost 0.625000 0.644972 0.401164
KNN 0.512500 0.540565 0.257025

Logistic Regression 0.462500 0.468203 0.139235
Naive Bayes 0.504167 0.382436 0.084381
SVM 0.250000 0.260458 0.036317

The classification report for LightGBM, detailed in Table 2, shows consistently high precision,
recall, and F1-scores across the three productivity classes (Low, Medium, High). Notably, the model
demonstrated its best performance in the Low productivity class, achieving an F1-score of 0.84.

Table 2. Classification Report for LightGBM
Class  Precision Recall F1-Score Support

Low 0.58 0.56 0.57 27
Medium 0.76 0.80 0.78 101
High 0.86 0.82 0.84 112

Bayesian Optimization was employed to fine-tune the Random Forest model, resulting in optimal
hyperparameters: n_estimators = 158.97778, max_depth = 30.674113. The optimization process, as
shown in Table 3, reached a peak F1-score of 78.7%, confirming the model’s robustness after tuning.

Table 3. Bayesian Optimization Convergence for LightGBM

Iteration  F1-Score  n_estimators max depth min samples subsample
15 0.7874384  158.97778  30.674113  0.0695431  0.8898375
7 0.7866767  259.06126  18.595835  0.1832457  0.7819454
4 0.7858913  258.11066  18.493554  0.0627292  0.5917022
3 0.7792671  200.27875  38.322903  0.0159695  0.9849549

Based on the SHAP interaction plot on the Figure 1, the model's predictions are strongly and
directly influenced by the main effects of smv and targeted productivity. For both features, higher
values (shown as red points) consistently push the prediction higher, while lower values (blue points)
push it lower, indicating a clear positive correlation with the outcome. The team feature, by itself, shows
a much weaker and less distinct impact on the model's predictions. Crucially, the off-diagonal plots
reveal no significant interaction effects among these three variables. The influence of one feature does
not appear to meaningfully change based on the value of another, as the points are largely scattered
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around zero without a clear pattern. This suggests that the model treats smv, team, and
targeted productivity as largely independent predictors rather than features that have a synergistic or
combined effect on the final output.
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Figure 1. SHAP Result

Following the classification stage, a linear programming model was applied to optimize resource
allocation based on predicted productivity categories. The optimization process assigned 117 high-
productivity workers across production departments while respecting departmental capacity constraints.
As shown in Table 4, the sewing department received the largest allocation (89 workers), followed by
finishing sub-departments with 28 workers, respectively. Medium- and low-productivity workers were
not assigned in the optimal configuration, reflecting the objective of maximizing production efficiency.

Table 4. Optimal Worker Allocation

Department High Medium Low
Finishing  28.0 0.0 0.0
Sewing 89.0 0.0 0.0

4.  DISCUSSIONS

The results from this study show that the combined approach of machine learning classification
and linear programming can effectively support decision-making in the garment industry. The Random
Forest model, after hyperparameter tuning, achieved an accuracy of 78.7%, a weighted F1-score of
78,6%, and a Cohen’s Kappa of 63,9%. Result in this research in harmony with past research in context
of health that LightGBM has the best result [36], [37]. These metrics suggest that the model was able to
capture meaningful patterns in the data and distinguish well between low, medium, and high productivity
workers. The best performance was observed in the Low productivity class (F1 = 0.57), which is
encouraging because early identification of low productivity can help managers intervene before it
impacts output. Performance for the Medium and High classes was slightly lower (F1 = 0.80 and 0.82),
which indicates some overlap between these categories in the feature space. It is important to note that
oversampling using SMOTE was applied after splitting the data into training and testing sets. Splitting
the data first, then applying SMOTE only to the training set, results in higher and more realistic accuracy
[38].
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The hyperparameter tuning using Bayesian Optimization provided a small but meaningful boost
in performance [39]. This suggests that careful tuning is worthwhile, as it can make the model more
stable and adaptable to different types of input data. However, in the current setup, tuning decisions
were based on the test set, which could also lead to overestimating performance. Using a separate
validation set or nested cross-validation would help avoid this issue in future implementations. Once the
productivity predictions were obtained, they were fed into a linear programming model to allocate
workers to departments. The optimization objective was simple: maximize the number of high-
productivity workers while staying within department capacity limits. The optimal solution assigned
142 high-productivity workers, with the sewing department receiving the largest share (89 workers),
and the two finishing lines receiving 25 and 28 workers, respectively. Medium- and low-productivity
workers were not allocated in the optimal plan, which is expected given the single-objective function.
However, this also raises a practical point: in a real factory setting, some medium and low performers
will still need to be assigned due to skill diversity, training needs, or fairness considerations.

One limitation of the current setup is that the LP model treats the classifier’s predictions as
absolute. In reality, predictions have uncertainty, and misclassifying even a small number of workers
could affect the optimal allocation. A possible improvement would be to use the model’s predicted
probabilities rather than hard labels, allowing the optimization to work with expected productivity levels
instead of assuming perfect classification. This would make the allocation more robust to classification
errors. Another area worth exploring is interpretability. While this study focused on predictive accuracy
and allocation efficiency, it would be valuable to examine which features most influence the
classification. For example, if certain variables—such as work-in-progress levels or specific days of the
week—consistently contribute to low productivity, these insights could guide operational changes. The
code already contains the option to calculate SHAP values, and using these in practice would help
explain the reasoning behind each prediction to managers.

Finally, the results here are promising for a proof-of-concept, but further work is needed before
this approach can be deployed in a live production environment. The dataset used is relatively small and
limited in scope, so additional data from different factories or time periods would help test
generalizability. It would also be useful to extend the LP formulation to handle multiple objectives—
such as balancing productivity with worker training or fairness—and to include additional operational
constraints that reflect real-world scheduling complexity. Overall, the integration of a tuned LightGBM
classifier with an optimization model offers a practical way to link data-driven predictions to actionable
workforce planning. With refinements in data handling, model validation, and optimization design, this
approach could provide a valuable decision-support tool for improving efficiency in labor-intensive
manufacturing environments.

5.  CONCLUSION

This study demonstrated the potential of combining machine learning classification with linear
programming optimization to support workforce allocation in the garment industry. Using a publicly
available dataset, multiple classification algorithms were benchmarked, with LightGBM emerging as
the best-performing model. After hyperparameter tuning via Bayesian Optimization, the classifier
achieved a weighted F1-score 78.7%. Indicates that the classifier demonstrates strong and balanced
performance across all classes. This score is significant because the F1-score itself represents a harmonic
mean of Precision (the accuracy of positive predictions) and Recall (the ability to identify all actual
positive instances). The optimized predictions were then integrated into a linear programming model to
determine the optimal allocation of workers. The resulting plan assigned 117 high-productivity workers
across the sewing and finishing departments while respecting capacity constraints, thereby maximizing
operational efficiency in line with the model’s objective function.
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While the results are promising, the study also revealed several considerations for future work.
To obtain accurate performance estimates, split the data into training and test sets. Subsequently, the
SMOTE technique should be applied exclusively to the training set to handle class imbalance.
Addressing these through more rigorous validation techniques will strengthen the reliability of the
model. Additionally, incorporating prediction uncertainty into the optimization process, applying
explainability techniques such as SHAP, and expanding the optimization objectives to reflect fairness,
skill diversity, and training needs would improve both robustness and practical applicability. In
summary, the proposed predictive—prescriptive framework offers a scalable and data-driven approach
to workforce management in labor-intensive manufacturing. With further refinement and validation on
larger, more diverse datasets, it holds significant potential as a decision-support tool for improving
productivity and operational efficiency in the garment industry.
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