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Abstract 

This study presents an integrated predictive–prescriptive framework for improving workforce management in the 

garment industry by combining machine learning classification with linear programming optimization. Using a 

publicly available dataset of 1,197 production records, productivity levels were categorized into low, medium, and 

high classes. Data preprocessing included handling missing values, one-hot encoding of categorical variables, and 

class balancing using SMOTE. Eleven classification algorithms were evaluated, with LightGBM achieving the 

highest performance (accuracy 78.3%, weighted F1-score 78.3%, Cohen’s Kappa 63.4%) after hyperparameter tuning 

via Bayesian Optimization. The optimized model’s predictions were then incorporated into a linear programming 

model, implemented with PuLP, to maximize the allocation of high-productivity workers across production 

departments under capacity constraints. The results yielded an allocation plan assigning 117 high-productivity 

workers, significantly enhancing potential operational efficiency. The novelty of this work lies in integrating an 

optimized ensemble learning model with mathematical programming for end-to-end productivity classification and 

resource allocation, a combination rarely explored in labor-intensive manufacturing contexts. This framework offers 

a scalable decision-support tool for data-driven workforce planning and could be adapted to other manufacturing 

domains with similar operational structures.   
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1. INTRODUCTION 

The garment industry remains a vital driver of economic growth in many developing countries, 

characterized by labor-intensive production processes where worker productivity plays a pivotal role in 

determining operational efficiency, cost control, and competitiveness in global markets [1]. 

Conventional productivity assessment methods—such as manual observation and basic statistical 

analysis—are often limited in their ability to process large-scale, complex datasets, which may lead to 

inaccurate evaluations and suboptimal resource allocation [2]. In the era of Industry 4.0, data-driven 

approaches supported by advanced machine learning (ML) algorithms provide a promising pathway to 

address these challenges. 

Recent studies have demonstrated the effectiveness of machine learning models in predicting and 

classifying worker productivity within garment manufacturing. For instance, Balla et al. [3] applied the 

Random Forest algorithm to predict garment worker productivity, achieving superior performance in 

terms of mean absolute error (MAE ≈ 0.0787) compared to linear regression and neural network 
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approaches. Similarly, Saad [4] reported that ensemble techniques such as bagging, when applied to 

decision-tree-based models, significantly improved accuracy in textile worker performance evaluation, 

achieving an accuracy rate of approximately 99.2%. Parallel to predictive modeling, optimization 

methods have been explored to enhance resource allocation in garment production. Shakirullah et al. [5] 

developed a linear programming (LP) model for the garment industry in Bangladesh, resulting in a 22% 

increase in profit and a 37% reduction in operational costs. More recently, Kong et al. [6] employed 

mixed-integer linear programming (MILP) for garment line balancing under Lean manufacturing 

principles, achieving over 50% reductions in labor costs while meeting production constraints. On the 

machine learning optimization front, Bayesian Optimization has emerged as an efficient and accurate 

approach for hyperparameter tuning. Zlobin and Bazylevych [7] demonstrated that Bayesian 

Optimization improved the performance of best models while reducing computational overhead 

compared to grid search or random search methods. This aligns with broader literature identifying 

Bayesian Optimization as a leading hyperparameter tuning method due to its ability to achieve strong 

results with fewer, more informative evaluations [8]. 

The complexity and high-dimensionality of modern manufacturing datasets pose significant 

challenges for traditional machine learning models. Consequently, ensemble methods, particularly 

gradient boosting algorithms like LightGBM, have gained prominence due to their robustness and ability 

to capture intricate non-linear relationships without extensive feature engineering [9]. However, the 

predictive power of these models is highly dependent on the careful tuning of their numerous 

hyperparameters, a task that is computationally expensive and often intractable with conventional 

methods like grid search. This is precisely where Bayesian Optimization offers a distinct advantage, 

providing a principled and sample-efficient strategy to navigate the complex hyperparameter space and 

identify optimal model configurations, thereby ensuring that the full predictive potential of the 

underlying model is harnessed for industrial applications [10]. 

Zhang et al. [11] utilized XGBoost with Gaussian Process-based Bayesian tuning to predict 

maximum stress in lattice structures produced by additive manufacturing, achieving high accuracy and 

generalizability. Similarly, Mahani et al. [12] combined Bayesian Optimization with Singular Value 

Decomposition (SVD) and XGBoost in optical design, reducing computational burden while 

maintaining predictivm,e precision. More broadly, Bayesian-optimized XGBoost has been shown to 

efficiently optimize complex, expensive-to-evaluate processes in manufacturing, such as configuring 

atmospheric plasma spraying and fused deposition modeling, through a batch Bayesian optimization 

framework [13]. Recent advances also include multi-objective Bayesian optimization frameworks that 

enable autonomous decision-making in smart manufacturing by guiding sequential experimentation 

[14], and constrained Bayesian optimization techniques applied to curing process control in 

manufacturing settings [15]. 

In workforce planning and production scheduling, mathematical optimization methods remain 

central. A 2025 survey in Annals of Operations Research [16] reviewed workforce modeling 

methodologies—covering recruitment, training, attrition, scheduling—and highlighted the continued 

relevance of analytical and simulation-based decision models. Reconfigurable manufacturing systems 

have leveraged Mixed-Integer Linear Programming (MILP) to simultaneously allocate workers, 

machines, and job schedules [17]. Workforce size determination using dynamic programming 

demonstrated cost savings and staffing efficiency in manufacturing [18]. Moreover, workforce 

scheduling in shift-based workshops has successfully applied MILP to minimize labor cost while 

respecting regulations and demand constraints [19]. 

Beyond predictive accuracy, a significant barrier to the adoption of advanced models like gradient 

boosting in high-stakes industrial settings is their inherent 'black box' nature. For workforce 

management, where decisions directly impact personnel and operational outcomes, this lack of 
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transparency can lead to mistrust and hinder effective implementation by managers who need to 

understand the rationale behind a model's predictions. This challenge has spurred the development of 

Explainable AI (XAI) techniques, such as SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-agnostic Explanations), which provide crucial insights into which features most 

influence a model's output [20]. By illuminating the key drivers of productivity predictions—such as a 

worker's tenure, department, or specific task performance—XAI not only enhances model transparency 

and fosters stakeholder trust but also provides actionable insights for targeted training and process 

improvements [21]. 

Integration of predictive analytics with prescriptive optimization has emerged in related domains. 

An explainable, Bayesian-optimized model improved component failure detection in predictive 

maintenance, enhancing decision transparency [22]. In the context of resource allocation beyond 

manufacturing, a decision-support framework applied Bayesian-optimized XGBoost and Optuna for 

budget distribution, demonstrating potential applicability to workforce allocation problems [23]. These 

studies highlight three converging trends: 

1. The effectiveness of Bayesian-optimized in modeling complex manufacturing processes and 

structural predictions. 

2. The robustness of optimization methods (LP, MILP, dynamic programming) in workforce/resource 

scheduling under constraints. 

3. The growing interest in integrated predictive–prescriptive frameworks that support real-time 

decision-making in industrial operations. 

Despite these advances, most studies have treated predictive modeling and optimization as 

separate domains, with limited research integrating the two into a cohesive, end-to-end decision-support 

framework. Furthermore, only a few works have incorporated both advanced ensemble learning 

methods, such as LightGBM, with Bayesian Optimization for model enhancement, followed by 

mathematical programming for actionable resource allocation [24]. Addressing these gaps, this study 

proposes an integrated framework that classifies garment worker productivity using an optimized model 

and subsequently applies integer linear programming via PuLP to optimize workforce allocation [25]. 

Specifically, the research objectives are:  

(1)  to develop a high-accuracy worker productivity classification model,  

(2)  to enhance its performance through Bayesian Optimization, and  

(3) to implement resource allocation optimization to maximize high-productivity workforce 

deployment.  

This combined predictive–prescriptive approach offers both methodological novelty and practical 

relevance to the data-driven management of labor-intensive manufacturing operations. The research 

addresses the problem of inconsistent productivity assessment and inefficient resource allocation, which 

are prevalent in labor-intensive industries. By leveraging a dataset of garment worker performance, we 

employ advanced machine learning models to predict productivity and use linear programming to 

allocate workers optimally across departments. This study contributes to the growing body of literature 

on data-driven decision-making in industrial settings.  

2. METHOD 

The methodological framework adopted in this study combines predictive analytics and 

prescriptive optimization to address the dual objectives of classifying worker productivity and 

determining optimal resource allocation in the garment industry. The process begins with data 

preparation, including preprocessing, feature transformation, and handling of class imbalance, followed 

by the development and benchmarking of multiple machine learning models. The best-performing 

model is then fine-tuned through hyperparameter optimization to maximize predictive performance [26]. 

https://jutif.if.unsoed.ac.id/
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The output of this classification stage—predicted productivity classes—is subsequently used as input to 

a linear programming model designed to optimize workforce distribution across production 

departments.  

 

 
Figure 1. Proposed Method 

 

2.1. Data Preparation and Model Development 

The dataset utilized in this study comprised 1,197 production records obtained from a publicly 

available garment industry dataset compiled by Imran et al. [27]. Each record included multiple 

attributes relevant to worker productivity assessment, namely department (finishing or sewing), 

production quarter, day of the week, work-in-progress (WIP), number of workers assigned, and actual 

productivity achieved during the recorded period. To enable the classification process, the continuous 

productivity variable was discretized into three classes: Low (< 0.5), Medium (0.5–0.8 inclusive), and 

High (> 0.8), based on established industry performance thresholds. This categorization allowed for 

targeted analysis and more interpretable decision-making in the subsequent optimization stage. 

The preprocessing stage was conducted to ensure data integrity and compatibility with machine 

learning algorithms [28]. Initially, date attributes were converted to a standardized datetime format and 

excluded from further processing, as temporal identifiers were not considered predictive features. 

Missing WIP values were replaced with zero to preserve dataset completeness. Nominal categorical 

features, including quarter, department, and day, were transformed into numerical form via one-hot 

encoding. This transformation allowed algorithms to interpret categorical distinctions without imposing 

ordinal relationships. 

The preprocessed data was then divided into training (80%) and testing (20%) sets using stratified 

sampling to maintain class proportions in both sets. A critical challenge in the dataset was class 

imbalance, where certain productivity classes, particularly High, were underrepresented. To mitigate the 

bias introduced by this imbalance, the Synthetic Minority Oversampling Technique (SMOTE) [29] was 

applied. SMOTE generated synthetic samples for minority classes by interpolating between existing 

minority class instances in feature space, resulting in a balanced dataset of 1,341 records.  

A comprehensive model benchmarking was conducted to identify the most effective classification 

algorithm. Eleven classifiers were evaluated, encompassing linear models (Logistic Regression), non-

linear algorithms (Support Vector Machine, K-Nearest Neighbors, Gaussian Naive Bayes, Decision 

Tree) [30], ensemble methods (Random Forest, Gradient Boosting, AdaBoost) [31], and advanced 

gradient boosting implementations (XGBoost, CatBoost, LightGBM) [32]. Model performance was 

evaluated using three complementary metrics: overall accuracy, weighted F1-score, and Cohen’s Kappa. 

The weighted F1-score was prioritized as the primary metric due to its ability to account for both class 

imbalance and precision–recall trade-offs, while Cohen’s Kappa was used to assess classification 
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agreement beyond chance. The equation of  F1-score is shown in equation (1) where precision, P = 

TP∕(TP + FP), andrecall, R = TP∕(TP + FN) [33], [34]. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (1) 

 

The algorithm achieving the highest weighted F1-score—was selected for further refinement 

through Bayesian Optimization [35]. This hyperparameter tuning process explored a defined search 

space for four key parameters: the number of boosting iterations (n_estimators), maximum tree depth 

(max_depth), learning rate (learning_rate), and subsample ratio (subsample). Bayesian Optimization 

began with five randomly sampled initial points to establish prior knowledge, followed by 15 guided 

iterations using the Expected Improvement (EI) acquisition function. This approach allowed the search 

to efficiently exploit promising hyperparameter configurations while continuing to explore less-visited 

regions of the search space. The optimal configuration identified through this process was then used to 

retrain the best model on the full training dataset. 

2.2. Optimization for Resource Allocation 

Following the development of the optimized classification model, its predictions were employed 

as the input for a prescriptive analytics stage using Linear Programming (LP). The objective of the LP 

model was to determine the optimal allocation of workers across the two main departments—finishing 

and sewing—while maximizing the deployment of high-productivity workers, as identified by the 

classification model. 

Decision variables were defined to represent the number of workers assigned to each department 

within each productivity category (Low, Medium, High). The optimization objective function was 

formulated to maximize the sum of high-productivity worker assignments, thereby aligning with 

managerial goals of improving overall production efficiency. Two primary constraints governed the 

model: 

1. Departmental Capacity Constraint – The total number of workers allocated to each department 

could not exceed its historical maximum capacity as observed in the dataset. 

2. Total Workforce Constraint – The total number of assigned workers across both departments was 

required to match the total number of workers available in the dataset, ensuring a feasible and 

realistic allocation strategy. 

The LP problem was implemented using the PuLP optimization library [25] in Python, with the 

default CBC solver employed to identify optimal solutions. The solver iteratively explored feasible 

allocation configurations, calculating the corresponding objective values until the global optimum was 

reached. By integrating the predictive outputs of the optimized model with the prescriptive optimization 

process, this methodology forms a unified decision-support framework. The approach enables data-

driven workforce planning that simultaneously leverages the predictive accuracy of advanced machine 

learning and the operational efficiency of mathematical optimization. 

All stages of data preparation, model training, hyperparameter optimization, and LP-based 

resource allocation were implemented in Python 3.11 within a Google Colab environment. The primary 

libraries used included Pandas and NumPy for data handling, scikit-learn for baseline model 

development, imbalanced-learn for SMOTE, XGBoost/CatBoost/LightGBM for advanced boosting 

algorithms, bayes_opt for Bayesian Optimization, and PuLP for optimization modeling. 

3. RESULT 

The comparative performance of eleven classification algorithms is presented in the table. Among 

all tested models, LightGBM and CatBoost achieved the highest performance with an identical accuracy 

https://jutif.if.unsoed.ac.id/
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of 78.3%. However, LightGBM had a slight edge with an F1-Score of 0.784 and a Cohen's Kappa of 

0.634. The Gradient Boosting model followed closely, recording an accuracy of 77.5%. Conversely, 

SVM and Logistic Regression recorded the lowest accuracies at 26.0% and 46.8%, respectively. This 

low performance can be attributed to the limited ability of these two models to capture the non-linear 

relationships present in the dataset. 

 

Table 1. Model Performance Comparison 

Model Accuracy F1-Score Kappa 

LightGBM 0.783333 0.783529 0.634093 

CatBoost 0.783333 0.782122 0.632379 

Gradient Boosting 0.775000 0.777669 0.624097 

Random Forest 0.766667 0.766462 0.606038 

XGBoost 0.766667 0.766171 0.604706 

Decision Tree 0.741667 0.741495 0.562250 

AdaBoost 0.625000 0.644972 0.401164 

KNN 0.512500 0.540565 0.257025 

Logistic Regression 0.462500 0.468203 0.139235 

Naive Bayes 0.504167 0.382436 0.084381 

SVM 0.250000 0.260458 0.036317 

 

The classification report for LightGBM, detailed in Table 2, shows consistently high precision, 

recall, and F1-scores across the three productivity classes (Low, Medium, High). Notably, the model 

demonstrated its best performance in the Low productivity class, achieving an F1-score of 0.84. 

 

Table 2. Classification Report for LightGBM 

Class Precision Recall F1-Score Support 

Low 0.58 0.56 0.57 27 

Medium 0.76 0.80 0.78 101 

High 0.86 0.82 0.84 112 

 

Bayesian Optimization was employed to fine-tune the Random Forest model, resulting in optimal 

hyperparameters: n_estimators = 158.97778, max_depth = 30.674113. The optimization process, as 

shown in Table 3, reached a peak F1-score of 78.7%, confirming the model’s robustness after tuning. 

 

Table 3. Bayesian Optimization Convergence for LightGBM 

Iteration F1-Score n_estimators max_depth min_samples subsample 

15 0.7874384 158.97778 30.674113 0.0695431 0.8898375 

7 0.7866767 259.06126 18.595835 0.1832457 0.7819454 

4 0.7858913 258.11066 18.493554 0.0627292 0.5917022 
3 0.7792671 200.27875 38.322903 0.0159695 0.9849549 

 

Based on the SHAP interaction plot on the Figure 1, the model's predictions are strongly and 

directly influenced by the main effects of smv and targeted_productivity. For both features, higher 

values (shown as red points) consistently push the prediction higher, while lower values (blue points) 

push it lower, indicating a clear positive correlation with the outcome. The team feature, by itself, shows 

a much weaker and less distinct impact on the model's predictions. Crucially, the off-diagonal plots 

reveal no significant interaction effects among these three variables. The influence of one feature does 

not appear to meaningfully change based on the value of another, as the points are largely scattered 

https://jutif.if.unsoed.ac.id/
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around zero without a clear pattern. This suggests that the model treats smv, team, and 

targeted_productivity as largely independent predictors rather than features that have a synergistic or 

combined effect on the final output. 

 

 
Figure 1. SHAP Result 

 

Following the classification stage, a linear programming model was applied to optimize resource 

allocation based on predicted productivity categories. The optimization process assigned 117 high-

productivity workers across production departments while respecting departmental capacity constraints. 

As shown in Table 4, the sewing department received the largest allocation (89 workers), followed by 

finishing sub-departments with 28 workers, respectively. Medium- and low-productivity workers were 

not assigned in the optimal configuration, reflecting the objective of maximizing production efficiency. 

 

Table 4. Optimal Worker Allocation 

Department High Medium Low 

Finishing 28.0 0.0 0.0 

Sewing 89.0 0.0 0.0 

 

4. DISCUSSIONS 

The results from this study show that the combined approach of machine learning classification 

and linear programming can effectively support decision-making in the garment industry. The Random 

Forest model, after hyperparameter tuning, achieved an accuracy of 78.7%, a weighted F1-score of 

78,6%, and a Cohen’s Kappa of 63,9%. Result in this research in harmony with past research in context 

of health that LightGBM has the best result [36], [37]. These metrics suggest that the model was able to 

capture meaningful patterns in the data and distinguish well between low, medium, and high productivity 

workers. The best performance was observed in the Low productivity class (F1 = 0.57), which is 

encouraging because early identification of low productivity can help managers intervene before it 

impacts output. Performance for the Medium and High classes was slightly lower (F1 = 0.80 and 0.82), 

which indicates some overlap between these categories in the feature space. It is important to note that 

oversampling using SMOTE was applied after splitting the data into training and testing sets. Splitting 

the data first, then applying SMOTE only to the training set, results in higher and more realistic accuracy 

[38]. 

https://jutif.if.unsoed.ac.id/
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The hyperparameter tuning using Bayesian Optimization provided a small but meaningful boost 

in performance [39]. This suggests that careful tuning is worthwhile, as it can make the model more 

stable and adaptable to different types of input data. However, in the current setup, tuning decisions 

were based on the test set, which could also lead to overestimating performance. Using a separate 

validation set or nested cross-validation would help avoid this issue in future implementations. Once the 

productivity predictions were obtained, they were fed into a linear programming model to allocate 

workers to departments. The optimization objective was simple: maximize the number of high-

productivity workers while staying within department capacity limits. The optimal solution assigned 

142 high-productivity workers, with the sewing department receiving the largest share (89 workers), 

and the two finishing lines receiving 25 and 28 workers, respectively. Medium- and low-productivity 

workers were not allocated in the optimal plan, which is expected given the single-objective function. 

However, this also raises a practical point: in a real factory setting, some medium and low performers 

will still need to be assigned due to skill diversity, training needs, or fairness considerations. 

One limitation of the current setup is that the LP model treats the classifier’s predictions as 

absolute. In reality, predictions have uncertainty, and misclassifying even a small number of workers 

could affect the optimal allocation. A possible improvement would be to use the model’s predicted 

probabilities rather than hard labels, allowing the optimization to work with expected productivity levels 

instead of assuming perfect classification. This would make the allocation more robust to classification 

errors. Another area worth exploring is interpretability. While this study focused on predictive accuracy 

and allocation efficiency, it would be valuable to examine which features most influence the 

classification. For example, if certain variables—such as work-in-progress levels or specific days of the 

week—consistently contribute to low productivity, these insights could guide operational changes. The 

code already contains the option to calculate SHAP values, and using these in practice would help 

explain the reasoning behind each prediction to managers. 

Finally, the results here are promising for a proof-of-concept, but further work is needed before 

this approach can be deployed in a live production environment. The dataset used is relatively small and 

limited in scope, so additional data from different factories or time periods would help test 

generalizability. It would also be useful to extend the LP formulation to handle multiple objectives—

such as balancing productivity with worker training or fairness—and to include additional operational 

constraints that reflect real-world scheduling complexity. Overall, the integration of a tuned LightGBM 

classifier with an optimization model offers a practical way to link data-driven predictions to actionable 

workforce planning. With refinements in data handling, model validation, and optimization design, this 

approach could provide a valuable decision-support tool for improving efficiency in labor-intensive 

manufacturing environments.  

5. CONCLUSION 

This study demonstrated the potential of combining machine learning classification with linear 

programming optimization to support workforce allocation in the garment industry. Using a publicly 

available dataset, multiple classification algorithms were benchmarked, with LightGBM emerging as 

the best-performing model. After hyperparameter tuning via Bayesian Optimization, the classifier 

achieved a weighted F1-score 78.7%. Indicates that the classifier demonstrates strong and balanced 

performance across all classes. This score is significant because the F1-score itself represents a harmonic 

mean of Precision (the accuracy of positive predictions) and Recall (the ability to identify all actual 

positive instances). The optimized predictions were then integrated into a linear programming model to 

determine the optimal allocation of workers. The resulting plan assigned 117 high-productivity workers 

across the sewing and finishing departments while respecting capacity constraints, thereby maximizing 

operational efficiency in line with the model’s objective function. 

https://jutif.if.unsoed.ac.id/
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While the results are promising, the study also revealed several considerations for future work. 

To obtain accurate performance estimates, split the data into training and test sets. Subsequently, the 

SMOTE technique should be applied exclusively to the training set to handle class imbalance. 

Addressing these through more rigorous validation techniques will strengthen the reliability of the 

model. Additionally, incorporating prediction uncertainty into the optimization process, applying 

explainability techniques such as SHAP, and expanding the optimization objectives to reflect fairness, 

skill diversity, and training needs would improve both robustness and practical applicability. In 

summary, the proposed predictive–prescriptive framework offers a scalable and data-driven approach 

to workforce management in labor-intensive manufacturing. With further refinement and validation on 

larger, more diverse datasets, it holds significant potential as a decision-support tool for improving 

productivity and operational efficiency in the garment industry.  
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