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Abstract 

Rice is a strategic food crop whose productivity is often threatened by leaf diseases and pests. This study 

aims to develop an Enhanced U-Net CNN model for multi-class segmentation and classification of rice 

leaf conditions from field images to support early detection and plant health management. The 

methodology includes direct field image acquisition of rice leaves, preprocessing for image quality 

enhancement, expert data labeling, segmentation using a U-Net architecture, and classification using CNN. 

The dataset was divided into training and testing data with balanced distribution across four classes: 

Healthy, BrownSpot, Hispa, and LeafBlast. Evaluation results show that the model can identify rice leaf 

conditions with high accuracy, although signs of overfitting were observed from the performance gap 

between training and validation data. The implementation of this model is expected to accelerate automatic 

disease detection in the field, reduce reliance on manual inspection, and support precision agriculture. This 

study achieved a testing accuracy of 76.36% with a macro-average F1-score of 0.34. While the results 

indicate limitations in generalization, the proposed Enhanced U-Net CNN demonstrates the feasibility of 

combining segmentation and classification in field conditions. This research contributes to agricultural 

informatics by supporting scalable deployment in precision agriculture systems, reducing reliance on 

manual inspection, and providing a foundation for further optimization studies. 
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1. INTRODUCTION 

Rice is a staple food crop for most of the world’s population, particularly in Asia. The success of 

rice production significantly impacts food security, economic stability, and community welfare. 

However, rice productivity is often threatened by various factors, including leaf diseases and pest 

attacks. Leaf diseases such as blast, bacterial leaf blight, and brown spot are among the primary causes 

of yield losses in many rice-producing countries[1], [2]. Early and accurate detection and classification 

of rice leaf conditions are crucial to prevent further losses, as timely and precise interventions can 

minimize the impact of disease attacks on yields[3], [4], [5]. 

Over recent decades, advancements in artificial intelligence, particularly in deep learning, have 

provided new solutions for automated plant health monitoring. Convolutional Neural Networks (CNNs) 

have been widely used and proven effective in recognizing visual patterns and performing accurate 

image classification[6]. CNNs enable automatic analysis of rice leaf images without requiring advanced 
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manual expertise, thereby accelerating disease identification and reducing reliance on expert visual 

inspection[7], [8], [9]. Their ability to process high-resolution image data makes CNNs an ideal choice 

for precision agriculture applications, especially in rice plant health management[10], [11], [12]. 

Traditional methods for detecting rice leaf diseases still rely on direct visual observation, which 

is subjective, time-consuming, and not always accurate especially under varying field conditions such 

as lighting and background[13], [14]. Moreover, most previous studies have focused on binary 

classification or a limited set of diseases, making them less capable of addressing the diverse range of 

rice leaf conditions encountered in real fields. In practice, rice leaves may exhibit a variety of health 

levels, from healthy to mildly or severely infected by different diseases and pests[15], [16], [17]. 

Several studies have proposed CNN-based approaches to overcome these limitations. Kumar et 

al. (2024) developed a CNN model trained on rice leaf images from various regions in India, successfully 

classifying diseases such as blast, brown spot, and bacterial leaf blight with high accuracy [18]. 

Khoiruddin et al. (2022) emphasized the benefits of CNNs for farmers in automating rice leaf disease 

detection, enabling faster intervention. Kulkarni and Shastri (2024) highlighted the importance of model 

adaptability to variations in lighting and background in field images [19], while Anggraini (2024) 

demonstrated a cloud-based CNN implementation through Amazon Web Services for real-time disease 

detection [20]. 

Recent research has also focused on more advanced CNN architectures. Dutta et al. (2024) 

compared various CNN architectures and found that selecting the right architecture significantly impacts 

classification accuracy[21]. Chaudhari and Karunakaran (2024) integrated the Remora optimization 

algorithm to enhance CNN performance[22], while Wang et al. (2022) employed multi-scale feature 

fusion to maximize feature extraction[23]. Poorni et al. (2022) used transfer learning to achieve accuracy 

above 94%, showing that combining such techniques can accelerate training and improve model 

performance[24]. 

One common challenge is training data imbalance, which can reduce a model’s ability to 

recognize minority classes. Hairani and Widiyaningtyas (2024) addressed this with data augmentation, 

consistent with Hasan et al. (2023), who noted that dataset quality is critical to CNN training 

effectiveness[25], [26]. Accuracy improvements can also be achieved through lightweight CNN models, 

as demonstrated by Bijoy et al. (2024), who reached 99.81% accuracy with lower computational loads, 

enabling deployment on resource-constrained devices[25], [27], [28]. 

U-Net, a CNN variant, has shown excellent capabilities in image segmentation tasks. Originally 

developed for medical image segmentation, U-Net’s encoder–decoder architecture with skip 

connections enables it to capture global context while retaining high spatial detail. Modifications such 

as Attention U-Net (Oktay et al., 2018) and Residual U-Net (Sarıtürk & Şeker, 2022) have improved 

segmentation performance across domains, including satellite imagery and optical shape reconstruction. 

Given these strengths, U-Net has great potential for precise segmentation of rice leaves before 

classifying their health conditions[29], [30]. 

From this literature review, a research gap is evident: although CNN and U-Net have been widely 

used for plant disease detection and classification, studies combining multi-class U-Net–based 

segmentation with direct in-field classification of rice leaf conditions remain limited. Most studies still 

focus on whole-image classification without precise segmentation or only classify two to three disease 

categories. In the field, however, rice leaf conditions can reflect multiple health levels and types of 

damage requiring different management strategies. 

Therefore, this study aims to develop an Enhanced U-Net CNN model for multi-class 

segmentation and classification of rice leaf conditions directly from field images. This approach is 

expected to accurately and efficiently distinguish rice leaves ranging from healthy to various degrees of 

disease and pest damage. The novelty lies in integrating precise U-Net–based segmentation with multi-
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class classification in a single end-to-end framework optimized for varying field image conditions. 

Therefore, the objective of this research is to develop an Enhanced U-Net CNN that integrates 

segmentation and classification of rice leaf diseases (Healthy, BrownSpot, Hispa, and LeafBlast) 

directly from field images, optimized for real agricultural environments. 

2. METHOD 

The research workflow began with problem formulation and setting research objectives, focusing 

on identifying the main issues and establishing clear goals as the foundation for the study. This stage 

was crucial to ensure that each subsequent step aligned with the intended research focus. 

 

 
Figure 1. Research Workflow 

2.1.  Problem Formulation and Research Objectives 

 This study began by identifying the main problems faced by farmers, particularly members of the 

Sri Jaya Tani Farmers’ Association (Gapoktan) in Indramayu Regency. One of the challenges 

encountered was the difficulty in accurately determining the rice leaf disease condition of rice plants 

based on leaf conditions. Therefore, the primary objective of this research was to develop a system based 

on digital image processing and machine learning to automatically and accurately classify rice rice leaf 

disease conditions. 

2.2.  Visual Data Collection 

This stage involved capturing rice plant images directly from farmland owned by Sri Jaya Tani 

Gapoktan farmers in Indramayu. High-resolution cameras were used to capture significant visual details. 

Field condition variations were carefully considered, including differences in lighting intensity, camera 

angles, shooting distances, and rice growth stages, to obtain a representative dataset that reflects actual 

conditions in the field. 
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2.3.  Image Pre-processing 

The collected images varied in quality due to environmental and technical factors. Therefore, a 

series of pre-processing steps was performed, including pixel value normalization, contrast adjustment, 

noise reduction, and conversion of image formats to a uniform type. These steps aimed to enhance image 

quality and prepare the data for optimal segmentation and classification. 

2.4.  Data Labeling 

Labeling was carried out with the involvement of experts from the Agriculture Office, specifically 

agricultural extension officers, to ensure data validity. Each rice leaf image was classified based on its 

condition—either healthy or showing disease symptoms—and its rice leaf disease condition. This 

labeling process was critical in the context of supervised learning, as machine learning models require 

labeled data to learn relevant visual patterns. 

2.5. Image Segmentation 

 Image segmentation was performed to isolate the leaf regions from irrelevant backgrounds using 

U-Net. The segmentation masks emphasized important leaf features, which were then used as the basis 

for classification. In this research, a U-Net architecture was applied, which is widely recognized for its 

excellence in image segmentation tasks due to its ability to preserve spatial details via skip connections. 

This process highlights essential features in the images, which are then used as the basis for maturity-

level classification. 

2.6. CNN Model Development and Training 

The segmented images were used as input for training a Convolutional Neural Network (CNN) 

classification model. The segmentation masks produced by U-Net were applied to extract leaf regions, 

and these segmented leaf regions were subsequently used as inputs to the CNN classifier. This ensured 

that the CNN focused only on disease-relevant leaf areas instead of background noise.The CNN was 

trained to recognize visual patterns indicating rice rice leaf disease conditions. The training process 

involved adjusting network weights through optimization algorithms, applying suitable non-linear 

activation functions, and implementing overfitting prevention strategies such as data augmentation and 

dropout. The CNN architecture was designed to efficiently capture spatial and contextual features from 

the images. 

2.7.  Model Evaluation and Analysis 

 The final stage involved evaluating the model’s performance using standard metrics, including 

Accuracy, Precision, Recall, F1-score, and Confusion Matrix. In addition, Intersection over Union (IoU) 

and Dice coefficient were calculated to assess segmentation quality. Evaluation was performed using 

test data separated from the training data to measure the model’s ability to generalize to new data. The 

evaluation results were used to analyze the model’s strengths and weaknesses in accurately and 

consistently classifying rice rice leaf disease conditions. 

3. RESULT 

3.1. Data 

The rice leaf image dataset was classified into two main groups: the training set and the testing 

set. This division aimed to separate the model learning process from the evaluation process, ensuring an 

accurate measurement of the model’s generalization ability to previously unseen data. Each dataset 
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group consisted of four categories based on rice leaf conditions: Healthy, BrownSpot, Hispa, and 

LeafBlast. 

The training set comprised a total of 444 images distributed across the four classes: 106 

BrownSpot images, 111 Healthy images, 108 Hispa images, and 119 LeafBlast images. This relatively 

balanced distribution among classes was intended to avoid class imbalance, which could significantly 

affect the performance of the CNN-based classification model during training. 

The testing set contained a total of 231 images, with nearly equal numbers in each class: Healthy (57 

images), LeafBlast (60 images), BrownSpot (57 images), and Hispa (57 images). This equal distribution 

ensured that the evaluation process was fair and proportional, allowing metrics such as accuracy, 

precision, and recall to reliably reflect the model’s performance. 

Maintaining balanced data distribution in both the training and testing stages, the model was 

expected to learn optimal feature representations and produce accurate classifications of rice leaf 

conditions. This strategy was a critical component of the experimental design for building an automated 

rice disease detection and maturity classification system based on digital images. 

 

    
Figure 2.  Rice leaves 

 

3.2.  Pre-processing 

 The main objective of pre-processing was to ensure that the data used were of high quality, well-

structured, and consistent in format, thereby facilitating pattern recognition and improving prediction 

accuracy. In this study, pre-processing focused on preparing rice leaf images to meet the requirements 

of the CNN architecture. 

The process began with dataset retrieval, where rice leaf images were organized into structured 

directories for the training and testing sets, each grouped by class. Noise reduction was applied using 

the Median Blur technique to remove visual disturbances without eliminating important edge features. 

The cleaned images were then resized uniformly to 128×128 pixels to match the CNN input 

requirements. 

The processed images were stored in separate folders train_clean for training and test_clean for 

testing while maintaining the original class structure. As a verification step, a visual comparison was 

performed between the original images and the pre-processed images for five samples from each class 

to ensure quality consistency. 

 

    
 

Figure 3. After pre-processing 
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3.3. Data Splitting 

The distribution of rice leaf images across the four classes in both the training and testing datasets, 

along with their proportional percentages, was as follows: 

1) Hispa  : 165 total images – 108 for training (65.45%) and 57 for testing (34.55%). 

2) BrownSpot : 166 total images – 106 for training (63.86%) and 60 for testing (36.14%). 

3) Healthy : 168 total images – 111 for training (66.07%) and 57 for testing (33.93%). 

4) LeafBlast : 176 total images – 119 for training (67.61%) and 57 for testing (32.39%). 

The relatively balanced distribution among classes demonstrated that data labeling and splitting 

were carried out systematically to avoid class imbalance, which could introduce bias into the machine 

learning model. The allocation of training data percentages ranging from 63% to 68% across all classes 

indicated a consistent and proportional data partitioning strategy. 

3.4. CNN Model Development with U-Net 

The architecture consisted of two primary components: a downsampling path (encoder) and an 

upsampling path (decoder), connected via skip connections to preserve critical spatial information from 

the earlier layers. 

 

 
Figure 4. Model Development with U-Net 

 

The encoder extracted features from the input images (128×128×3) through convolutional and 

max-pooling operations. Each encoder block contained two convolutional layers followed by max 

pooling, progressively increasing the number of filters from 32 to 256 to capture increasingly complex 

features. 
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The bottleneck section contained two convolutional layers operating on 16×16 spatial dimensions 

with 512 filters, representing the abstracted features of the input. The decoder reconstructed the spatial 

dimensions using upsampling, concatenation of encoder features, and convolutional layers. The skip 

connections allowed the retention of high-resolution spatial information, enhancing segmentation and 

classification accuracy. 

 

 
Figure 5. Accuracy and Loss 

 

 
Figure 6. Accuracy Training 

 

Training performance graphs showed accuracy and loss trends over 50 epochs. 

1) Accuracy : Training accuracy increased steadily, but validation accuracy fluctuated significantly, 

suggesting overfitting due to limited dataset size and high variability in field images. Validation 

loss remained inconsistent, confirming the lack of generalization. This behavior indicates that the 

model captured noise and background patterns rather than disease-related features, which reduced 

performance on unseen data 

2) Loss : Training loss decreased gradually, whereas validation loss remained inconsistent, further 

indicating that the model struggled to generalize to unseen data. 

3.5. Testing Results 

The model achieved 76.36% testing accuracy with a loss value of 1.3713, which is below state-

of-the-art benchmarks (>90%) reported in recent literature. The confusion matrix (Figure 7) shows that 

Healthy leaves had the highest correct predictions (46), while Hispa had the lowest (6 correct). 

BrownSpot was often misclassified as Healthy, and LeafBlast was frequently misclassified as either 

BrownSpot or Healthy. This misclassification pattern highlights the visual similarity among diseases, 
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which challenged the CNN in distinguishing fine-grained features, while the relatively high loss value 

suggests substantial prediction errors, potentially due to underfitting. 

 

 
Figure 7. confusion matrix 

 

The confusion matrix revealed that: 

1) Healthy had the highest number of correct predictions (46) 

2) Hispa had the lowest (6 correct) 

3) BrownSpot was often misclassified as Healthy, and LeafBlast was frequently misclassified as either 

BrownSpot or Healthy. 

 

 
Figure 8. Classification Report 

 

The classification report indicated: 

1) BrownSpot: Precision = 0.62, Recall = 0.86 

2) Healthy: Precision = 0.46, Recall = 0.81 

3) Hispa: Precision = 0.33, Recall = 0.18 

4) LeafBlast: Precision = 0.41, Recall = 0.38 

Macro and weighted averages for precision, recall, and F1-score were in the range of 0.34–0.36, 

confirming the model’s low generalization ability. Notably, the Hispa class achieved the lowest recall 

(0.18), showing that the model failed to detect this disease reliably. This indicates that dataset imbalance 

and inter-class similarities remain significant challenges for classification accuracy. 

In addition to classification metrics, segmentation performance was evaluated using Intersection 

over Union (IoU) and Dice coefficient. The average IoU across the four classes was 0.58, while the Dice 

coefficient averaged 0.61, indicating moderate segmentation quality. These values suggest that while U-

Net successfully isolated leaf regions, further optimization is required to achieve precise boundaries in 

complex field images. 
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Figure 9. Model’s prediction results 

 

The figure displays the classification model’s prediction results for rice leaf images across four 

analyzed classes: BrownSpot, Healthy, Hispa, and LeafBlast, comparing predicted labels (Predicted/P) 

with actual labels (True/T). Green-colored predicted labels indicate correct classifications, while red 

indicates misclassifications. Visually, most images have red predicted labels, meaning the model made 

errors on the majority of the displayed test data. 

These misclassifications emphasize the need for advanced techniques such as attention 

mechanisms, transfer learning, or data augmentation to help the model focus on subtle disease patterns. 

Without these improvements, the model is prone to confusing diseases with overlapping visual 

symptoms, particularly under field conditions with variable lighting and angles. 

Compared to Dutta et al. (2024) who achieved above 90% accuracy using MobileNet-V2, our 

model’s 76% accuracy highlights the challenges of field-level data with high variability. Similarly, 

Anggraini (2024) demonstrated real-time CNN deployment via AWS, whereas our approach integrates 

segmentation and classification into one framework, offering a more comprehensive pipeline though 

with lower accuracy 

This research contributes to computer science and informatics by providing an end-to-end deep 

learning workflow tailored to noisy, real-world agricultural datasets. Unlike controlled lab datasets, our 

approach directly addresses the complexity of field imagery, which is rarely explored in current 

literature. 

The framework could potentially be deployed on mobile devices or cloud platforms, enabling 

farmers to capture field images and receive automatic diagnoses in real time, thereby supporting scalable 

precision agriculture 

4. CONCLUSION 

This study successfully developed an enhanced u-net cnn model for multi-class segmentation and 

classification of rice leaf conditions directly from field images. The results demonstrate that integrating 

precise u-net–based segmentation with cnn-based classification achieved 76.36% accuracy, which 

indicates moderate performance below state-of-the-art benchmarks but demonstrates the feasibility of 

integrating U-Net segmentation with CNN classification for field-based rice disease detection. 

Evaluation using accuracy, precision, recall, and f1-score metrics showed competitive performance, 

although indications of overfitting suggest the need for further optimization in future research. 
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The findings have practical implications for improving early detection of rice leaf diseases in the 

field, enabling farmers to make timely and informed pest and disease management decisions. The 

primary contribution of this research lies in combining segmentation and classification processes into a 

single end-to-end framework optimized for the varying conditions of field imagery. 

The primary contribution lies in combining segmentation and classification into a unified deep 

learning pipeline, advancing agricultural informatics by handling real-world image variability. Future 

work should focus on attention mechanisms, transfer learning, and larger augmented datasets to improve 

model generalization. Additionally, lightweight CNN variants should be explored for deployment on 

mobile devices to ensure scalability in field applications. 
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