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Abstract

Dynamic and irregular daily weather changes present major challenges in understanding seasonal patterns. Data
uncertainty, outliers, and inter-season variability further complicate weather analysis using conventional methods.
To address this issue, this study integrates Density-Based Spatial Clustering of Application with Noise (DBSCAN)
and Gaussian Mixture Model (GMM) to analyze daily weather patterns in Makassar City. A total of 2,192 daily
records from 2019 to 2024, including rainfall, specific humidity, atmospheric pressure, and wind speed, were
examined. DBSCAN detected one dominant cluster (2019 data) and 173 outliers. The main cluster was further
partitioned by GMM into three sub-clusters representing the wet (511 records, 13.39 mm rainfall), dry (633 records,
0.15 mm), and transition (875 records, 2.53 mm) seasons. GMM identified 1,764 fixed clusters and 255 ambiguous
data points, with a log-likelihood of 5091.22 and the highest Silhouette Score of 0.188. Comparative evaluation
demonstrated that the hybrid DBSCAN-GMM achieved superior performance (Silhouette Score = 0.1434) compared
to DBSCAN or GMM individually. The novelty of this research lies in applying the DBSCAN-GMM integration,
which is rarely used in tropical weather analysis, to capture seasonal structure and anomalies adaptively. This study
contributes methodologically to clustering-based weather modeling and practically supports applications such as
agricultural planning, disaster mitigation, and adaptive climate strategies in tropical regions.
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1. INTRODUCTION

Weather is the state of the atmosphere in a certain period whose nature continues to change over
time. Weather is one of the important factors that affect the implementation of various activities, and
has an impact on various other aspects of life [1][2]. Weather observations are generally made in a short
period of time because the weather often changes unexpectedly. In addition, humans have limitations in
covering large areas of observation [3]. Indonesia, as a tropical country, has highly variable rainfall.
There are two types of climate patterns, namely 342 patterns included in the seasonal zone (ZOM) and
65 other patterns included in the non-seasonal zone (Non ZOM) [4].

In 2023, rainfall in Makassar City decreased from 310.16 mm in 2022 to 259.02 mm in 2023 [5].
Some factors that affect the weather include wind speed, wind direction, temperature, air humidity, and
rainfall [6]. The diversity of rainfall is influenced by topographical, orographical, and geographical
factors, which cause uneven distribution of rainfall between one region and another [7].

Weather forecasting has been done for a long time, usually only based on observations of event
patterns, but such forecasting has proven to be unreliable [8][9]. Weather forecasting is the process of
predicting the status of the atmosphere for a particular region or area of location by utilizing the latest
technology [6][10]. The accuracy in predicting rainfall will affect many sectors such as marine,
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agriculture, transportation, disaster management and others, so a method is needed in predicting rainfall,
one of which is the DBSCAN algorithm and Gaussian Mixture Models (GMM). The DBSCAN and
Gaussian Mixture Models (GMM) methods are used simultaneously to analyze daily weather patterns
through clustering and data distribution modeling approaches [8][11].

Previous studies have explored the application of machine learning and deep learning in weather
forecasting. Convolutional Autoencoders combined with k-means or Sinkhorn-Knopp variants have
been shown to extract more representative weather features before clustering [12]. Ensemble learning
methods like Random Forest, SVM, and XGBoost have been shown to enhance short-term forecasting
acacuracy by minimizing errors in comparison to single models [13]. On the other hand, deep neural
networks outperform conventional regression methods, although they still face challenges such as
overfitting and the requirement for large datasets [14]. Furthermore, a systematic review of 500
publications highlighted the dominance of popular algorithms such as ANN, DL, RF, XGBoost, SVM,
k-means, and PCA, while also emphasizing the research opportunity to develop more efficient and
accurate methods for clustering daily weather distribution data [15].

Other studies have compared classical algorithms for weather forecasting, such as Decision Tree,
k-NN, and Logistic Regression, which demonstrated relatively high accuracy but remained prone to
overfitting due to limited testing sites [16]. The integration of the GEM physics-based model with Al-
based GraphCast through spectral nudging improved forecast accuracy by up to 10% and enhanced
tropical cyclone prediction, underscoring the importance of hybrid approaches [17]. Additionally, some
studies explored the use of observations from Connected Vehicles as an alternative data source,
demonstrating the potential of non-traditional data to enrich weather analysis [18]. Lastly, the EBWF
ensemble model, which combines RF, GDBT, Naive Bayes, and k-NN, achieved 94.9% accuracy,
95.7% precision, and 94.9% recall in fast processing for big weather data [19].

Beyond meteorology, several studies have employed Gaussian Mixture Models (GMM). One
study, for example, introduced a combination of autoencoder, one-class SVM, and GMM for network
intrusion detection based on normal data. The results showed that integrating GMM with representation
learning techniques can improve anomaly detection with high accuracy, highlighting the potential of
GMM to capture complex data distributions even beyond weather-related contexts [20]. Another study
applied GMM in astrophysics to describe galaxy property distributions as a function of halo mass and
redshift. Although outside the weather domain, the research demonstrated GMM’s strength in modeling
multidimensional data distributions [21]. Similarly, LSTM Autoencoder combined with GMM has been
proposed for anomaly detection in autonomous vehicle trajectories. The approach could be adapted for
daily weather data, which often exhibit time-series characteristics with seasonal variability and outliers
[22]. Moreover, GMM has been used for analyzing the evaluation of concrete damage based on acoustic
emission signals, showing its ability to classify experimental data in stages. Such applications suggest
that GMM could differentiate varying daily weather conditions, such as transitions between extreme and
normal states [23].

In addition, some studies have examined DBSCAN, such as the integration of RANSAC and
DBSCAN for point cloud segmentation from laser scanning. DBSCAN proved effective in filtering
outliers and clustering internal elements automatically, indicating its potential for handling unstructured
weather data with uneven distributions [24]. Another study proposed STRP-DBSCAN, a parallel variant
with random spatio-temporal partitioning and automatic parameter tuning. The results demonstrated
improved clustering accuracy and time efficiency, which are crucial for large-scale and dynamic daily
weather data analysis [25]. Furthermore, a comparative study of DBSCAN with other clustering
algorithms for college admission data revealed that DBSCAN only formed a single cluster. Highlighting
its limitations in datasets with low density. This is an important consideration for its application to
weather data, where distributions may vary significantly [26].
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Various studies have applied clustering approaches such as DBSCAN and Gaussian Mixture
Models (GMM) to analyze complex datasets. However, these studies generally applied each method
separately, which limits their ability to fully address the diversity and irregularity of dynamic weather
data. DBSCAN is effective in detecting outliers and forming density-based clusters, while GMM
provides flexibility in modeling probabilistic distributions. Yet, the integration of DBSCAN and GMM
for daily weather pattern analysis in tropical cities has not been adequately explored, this research
addresses that gap by proposing a hybrid DBSCAN-GMM approach to better capture seasonal variations
and anomalies in weather data.

The objective of this study is to cluster daily weather patterns in Makassar City and to model
rainfall distribution using DBSCAN to detect clusters and outliers, while GMM is employed for deeper
probabilistic modeling of the main cluster. By applying this hybrid method, the study aims to produce a
clustering analysis that can reveal seasonal patterns occurring in Makassar over the past six years and
demonstrate the advantages of combining density-based and probabilistic approaches.

2. METHOD

In this research, a method with a series of sequential processes is used, including the stages of
data collection, data normalization, DBSCAN, Gaussian Mixture Model (GMM), Visualization, and
finally Analysis and Evaluation. These stages can be seen in Figure 1.
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Figure 1. Research Stages

2.1. Data Collection

At this stage, the data used for clustering is obtained from NASA POWER on the website
https://power.larc.nasa.gov/data-access-viewer/ with a total of 2,192 data from 2019-2024 which
provides structured information related to daily weather data in Makassar. The data collected includes
information on rainfall (mm), specific humidity (g/kg), atmospheric pressure (kPa), and wind speed
(m/s). Data samples can be seen in Table 1.

Table 1. Data Sample

Year Day Rainfall Specific Humidity Atmospheric Pressure Wind Speed
(mm) (g/kg) (kPa) (m/s)
2019 1 9.1 18.88 99.89 3.21
2019 2 17.63 19.17 99.9 3.7
2019 4 7.17 18.87 100.07 2.99
2019 5 5.04 18.61 100.07 1.55
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2.2. Data Normalization

At this stage, the data used is first normalized using the MinMaxScaler function which converts
each value in the feature into a range between 0 and 1 [27]. This normalization is done because of the
difference in units and value ranges between features. The equation used in the MinMaxScaler function
is equation 1 [28]:

x—-min (x) ( 1 )

X
scaller = max (x) — min (x)

With this method, all features have a balanced contribution in the clustering process, without the
dominance of features with a larger value scale. The results of normalization using MinMaxScaller can
be seen in Table 2.

Table 2. Normalization Results

Rainfall Specific Humidity Atmospheric )

(mm) (wke) Pressure (kPa) Wind Speed (m/s) Date
0.03885 0.70439 0.60439 0.49094 2019-01-01
0.07527 0.74300 0.61538 0.58953 2019-01-02
0.03437 0.73901 0.73626 0.56539 2019-01-03
0.03061 0.70306 0.80219 0.4466 2019-01-04
0.03676 0.77496 0.48351 0.40643 2024-12-31

2.3. Density-Based Spatial Clustering of Applications with Outliers (DBSCAN)

After the data is normalized, the initial clustering process is performed using the DBSCAN
(Density-Based Spatial Clustering of Applications with Outliers) algorithm. In this study, the eps
parameter value of 0.08 and min_samples of 6 were selected based on visual experiments using the k-
distance graph. The eps value of 0.08 corresponds to the optimal neighborhood radius for separating
dense regions from sparse ones. Meanwhile, min_samples = 6 was chosen by considering the data
dimensionality (four main features: rainfall, humidity, pressure, and wind speed), following the common
guideline that min_sample = 2 x dimension, while also adjusting to avoid excessive noise. DBSCAN
was applied to the normalized data using MinMaxScaler, resulting in several clusters and a number of
data classified as outliers (marked with a -1 label). The main cluster with the largest amount of data
(label 0) was selected for further analysis using the Gaussian Mixture Model (GMM) method to explore
the more complex distribution structure within it.

2.4. Gaussian Mixture Model (GMM)

After initial clustering using DBSCAN, further analysis was conducted using the Gaussian
Mixture Model (GMM) method. This approach aims to understand the internal distribution structure in
the main cluster obtained by DBSCAN. In this study, the GMM parameters used are n-components of
3, which are assumed to represent different weather distribution sub-patterns, a and random_state of
42. The choice of three components was not arbitrary, it was based on domain knowledge of Indonesia’s
climate, which is generally divided into three main seasonal conditions: rain season, dry season, and
transitional period. Thus, n-components = 3 was selected to align with these natural seasonal categories
while allowing probabilistic modeling of their internal variability. The GMM model is trained (fit) on
the selected x_cluster data. The Gaussian Mixture Model (GMM) equation used is equation 2 [29][30]:
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K
PO = ) mes Nl %) @
k=1
The log-likelihood for models such as the Gaussian Mixture Model (GMM) is calculated by
measuring how likely the model is to produce the data at hand [31]. The log-likelihood equation used is
equation 3 [32]:

n K
nLe@) = ) Y zln[mefGs 0] )
i=1 k=1

2.5. Analysis and Evaluation

The amount of data in each cluster of both DBSCAN and GMM was calculated and compared. In
addition, the average value of each weather feature is calculated for each GMM sub-cluster, so that the
main characteristics of each weather group can be interpreted. Silhouette score is also used to evaluate
the quality of separation between clusters, with values ranging between -1 and 1 [33]. The equation used
for Silhouette Score calculation is equation 4 [34][35]:

N = _b®-a®
s() = amr® @

2.6. Visualization of Results

The GMM clustering results are visualized using PCA to reduce the four weather features into
two dimensions, so that the sub-cluster distribution pattern can be seen clearly through the scatter plot.
In addition, to see the seasonal trend of each sub-cluster formed through GMM, a time-based
visualization using a line plot is performed. This visualization aims to observe changes in daily weather
patterns occurring throughout the year in each sub-cluster.

3. RESULT

At this stage, the clustering results of the four main variables namely rainfall, specific humidity,
atmospheric pressure, and wind speed are presented. In this section, the results of data clustering and
average cluster formation using the DBSCAN (Density-Based Spatial Clustering of Applications with
Outliers) algorithm are discussed, which aims to detect seasonal patterns and dominant weather groups
without determining the number of clusters from the start. The results of DBSCAN clustering can be
seen in Table 3.

Table 3. DBSCAN Clustering Results
DBSCAN Cluster Number of Data
-1 173
0 2019

In Table 3, the results of applying the DBSCAN algorithm to normalized weather data resulted in
the main cluster, cluster 0, which includes 2019 data. Based on these values, this cluster can be attributed
to weather conditions that tend to be normal or common, possibly representing a mild dry season or
stable weather in the region under study. Meanwhile, cluster -1 is noise data that was successfully
detected by the DBSCAN model. This indicates that these outliers could represent weather anomalies
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such as sudden rain, low pressure conditions, or other extreme weather events. Visualization of
DBSCAN clustering results can be seen in Figure 2.

DBSCAN Clustering Results Visualization (All Data)
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Figure 2. Visualization of DBSCAN Clustering Using Scatter Plot

Figure 2 shown the DBSCAN clustering results, where cluster 0 was identified as the dominant
cluster, while the red points represent outlier. Based on this finding, a further clustering stage was
conducted using the Gaussian Mixture Model (GMM) to identify seasonal patterns or finer sub groups
within the main cluster. In this experiment, data from Cluster 0 was re-analyzed using GMM with a
predefined number of three clusters, representing different weather characteristics, as shown in Table 4.

Table 4. Gaussian Mixture Models (GMM) Clustering Results

DBSCAN Number of  Rainfall Specific Atmospheric Wind Speed
Cluster Data (mm) Humidity (g/kg) Pressure (kPa) (m/s)
0 511 13.3906 19.0244 99.7659 2.5002
1 633 0.1524 17.2043 99.8488 2.7761
2 875 2.5384 18.6788 99.7751 2.1172

Table 4 shows that GMM Cluster 0 consists of 511 data and represents wet weather conditions.
This is indicated by the highest rainfall value of 13.3906 mm and the specific humidity which is also
high at 19.0244 g/kg. Atmospheric pressure was 99.7659 kPa and wind speed was 2.5002 m/s. These
characteristics indicate that this cluster is very likely to represent the monsoon period, where rainfall
and humidity tend to increase significantly.

GMM cluster 1 consists of 633 data and represents dry weather conditions. This is indicated by
the lowest rainfall value at 0.1524 mm and specific humidity at 17.2043 g/kg, as well as the highest
atmospheric pressure of 99.8488 kPa and wind speed of 2.7761 m/s among the other clusters. This
combination indicates that this cluster most likely represents the peak of the dry season, where air
pressure tends to be high and winds are stronger with relatively low humidity. GMM cluster 2 consists
of 875 data and reflects weather conditions that are in the transition phase between seasons, such as the
transition from the dry season to the rainy season. This can be seen from the moderate rainfall value at
2.5384 mm and a fairly high specific humidity of 18.6788 g/kg, while atmospheric pressure is at 99.7751
kPa and wind speed is 2.1172 m/s. These characteristics indicate that the weather in this cluster is not
too extreme, but has early signs of change towards the rainy season. Visualization of GMM clustering
results can be seen in Figure 3.
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Visualization of Distribution Within Cluster 0 DBSCAN with GMM (PCA)

0.8

0.6

04

0.2

PCA Komponent 2
-]

0.0

PCA Komponent 1

Figure 3. Visualization of GMM Using Scatter Plot

In Figure 3, the clusters formed can be measured by how close the data points are to their cluster
compared to other nearby clusters using Silhouette Score. The average Silhouette Score results for each
sub-cluster are presented in Table 5.

Table 5. Average Silhouette Score Results for Each Sub-Cluster
GMM Cluster Silhouette Score Log-Likelihood

0 0.046
1 0.159 5091.22
2 0.188

In Table 5, it can be seen that GMM cluster 0 has the lowest Silhouette Score value which
indicates that the data in this cluster is similar to other clusters. GMM cluster 1 also has a fairly good
separation. Meanwhile, GMM cluster 2 has the best separation quality compared to other clusters. The
quality of GMM in clustering can be measured using log-likelihood which is designed for probabilistic
models. Although the resulting Silhouette Score is low on average, it reflects the natural overlap in the
daily weather data, which is not fully separated between seasons. The GMM is able to realistically map
this transition by obtaining a log-likelihood value of 5091.22. This is quite a high value in matching the
data to a Gaussian distribution.

A comparison of model performance was conducted to test the effectiveness of each method in
classifying weather data accurately and meaningfully. The goal is to determine the extent to which the
DBSCAN, GMM, and their combination (DBSCAN + GMM) models are able to identify weather
seasonal patterns as well. By evaluating the number of clusters formed, the presence of noise and
silhouette score, the results are shown in Table 6.

Table 6. Model Performance Comparison

Number of Noise Silhouette Computation
Method .
Clusters Data score time
DBSCAN 1 173 - 0.0360s
GMM 3 - 0.0880 0.0483s
DBSCAN + GMM 3 - 0.1434 0.1032s
(Hybrid)

Based on Table 6, the single DBSCAN approach only forms one main cluster and detects 173
data as noise or outliers. Since only one cluster is formed, the Silhouette Score calculation cannot be
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done, considering that this metric requires a minimum of two clusters to measure the separation between
groups. This method also has the fastest computation time of 0.0360 seconds. Meanwhile, the GMM
approach run independently is able to form three clusters, but does not have a mechanism to detect
outliers, so all data is considered valid and falls into one of the clusters. GMM produces a Silhouette
Score value of 0.0880 with a computation time of 0.0483 seconds. The best results were obtained from
the combined DBSCAN + GMM approach, where DBSCAN was used to identify and filter outliers
first, then GMM was applied to the main cluster to form three sub-clusters. This approach resulted in
the highest Silhouette Score value of 0.1434 and computation time of 0.1032 seconds, indicating that
the integration of the two methods was able to improve the clustering quality despite requiring higher
processing time. The difference in computation time across methods is influenced by algorithmic
complexity: DBSCAN performs local density calculations once, leading to faster execution, while
GMM requires iterative Expectation—Maximization steps that increase processing time. The hybrid
DBSCAN-GMM approach combines both procedures, thereby introducing additional overhead but
producing higher clustering quality.

The relationship between GMM clustering results and seasonality is proven based on the number
of days of each calendar season. The heatmap results show that GMM Cluster 0 dominates the Rainy
Season with 246 days, GMM Cluster 1 dominates the Dry Season with 408 days, and GMM Cluster 2
appears most in the Transition Season with 445 days. This pattern is in line with the characteristics of
each cluster, where Cluster 0 has an average rainfall of 13.39 mm, Cluster 1 a low rainfall of 0.15 mm,
and Cluster 2 of 2.53 mm, reflecting rainy, dry, and transitional conditions. Heatmap visualization can
be seen in Figure 4.

Heatmap of Seasonal Distribution Based on GMM Clusters

Dry season

- 200

Calendar Seasons
Rainy season

- 150

- 100

Transition Season

-50

0 1 2
Weather Conditions (Cluster GMM)

Figure 4. GMM Visualization Using Heatmap

Figure 4 illustrates the Gaussian Mixture Model (GMM) not only divides the data into several
sub-clusters, but also provides probabilistic information on each data point, namely how likely a data
point belongs to each cluster component formed. Through a probabilistic approach, GMM calculates the
probability that an observation comes from each sub-cluster such as rain, dry, transition. This probability
value is utilized to detect data that has a high probability of belonging to a cluster other than the cluster
in which the data is classified.

In this study, the probability threshold for each season is determined based on the probability
distribution of each cluster. Each season (Rain, Dry, or Transition) has a minimum and maximum
probability range. The probability threshold is calculated as the average value between the minimum
and maximum probabilities for each cluster. In other words, data that has a probability higher than this
threshold is considered as data that definitely belongs to that cluster, which is called a fixed cluster.
Conversely, data with a probability lower than the threshold is considered ambiguous to the cluster,
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referred to as anomalous, as it has the potential to belong to other clusters. The threshold determination
for each cluster is shown in Table 7.

Table 7. Determination of Threshold for Each Cluster
Season  Min Probability Max Probability Threshold

Rain 0.4925 1.0000 0.7462
Dry 0.4621 1.0000 0.7311
Transition 0.4468 1.0000 0.7234

In Table 7 the Rainy season has a threshold of 0.7462, indicating that data with a probability lower
than this value is considered to not match the expected rainfall pattern. Likewise, the Dry and
Transitional seasons have thresholds of 0.7311 and 0.7234 respectively, indicating the threshold
probability for detecting anomalies within each season. This threshold value is used to distinguish data
that definitely belongs to the season's cluster (Fixed Cluster) and data that is considered ambiguous or
anomalous. Fixed cluster and ambiguous cluster can be seen in Table 8.

Table 8. Fixed vs Anomalous Data Per Season
Season  Fixed cluster Ambiguous Cluster Total

Rain 458 53 511
Dry 556 77 633
Transition 750 125 875

Based on Table 8, Rainy season has 458 data in Fixed Cluster and 53 data in Ambiguous Cluster
out of 511 total data. The dry season has 556 data in fixed cluster and 77 data in ambiguous cluster out
of 633 total data. Finally, the Transition season has 750 data in fixed clusters and 125 data in ambiguous
clusters out of a total of 875 data. Visualization of the distribution of normal and anomalous data for
each season can be seen in Figure 5.

Combined Visualization of Anomalies from Three Seasons (PCA)
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Figure 5. Seasonal Weather Distribution Map: Normal and Anomaly

In Figure 5, the status of anomalous data (ambiguous cluster) is marked with a cross symbol,
while normal data (fixed cluster) is marked with a round symbol. Each color represents a different
season. Blue for rainy season, green for dry season, and purple for transition season. Points that are
distributed far from the center of the cluster usually represent anomalies, indicating weather conditions
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that do not conform to typical seasonal patterns. This representation makes it clear how to visually
recognize anomalies from the distribution of data in the reduced feature space.

The cluster distribution generated by the model provides an overview of seasonal patterns that
can be seen from the distribution of data generated by the four variables used. Each variable has a
characteristic seasonal pattern that provides information about the range of seasonal dominance in each
month which can be seen in Figure 6.

GMM Sub-Cluster Distribution (Seasonal) per Month
130 Seascn

2

1

Jan Feb Mar Apr Mei Jun ot Agu

Month

Figure 6. Visualization of Weather Pattern Seasonal Time

okt Hov Des.

Figure 6 illustrates that each variable displays characteristics in each year and illustrates the
dominance pattern in a particular month. The visualization in Figure 6 shows that the sub-clusters
formed have different dominance tendencies throughout the year. The Rain sub-cluster appears most in
January (102 days) and February (72 days), and again increases in November (55 days) and December
(72 days), which shows the peak pattern of the rainy season in the tropics. Meanwhile, the Dry sub-
cluster began to dominate from May (61 days), with a peak in August (130 days), before declining in
October (76 days). The Transition sub-cluster dominates in transitional months such as March (104
days), April (97 days), and May (94 days), and increases again at the end of the year in November (83
days) and December (80 days).

Visualization of Daily Weather Patterns Based on GMM Results (In Cluster 0 DBSCAN)

Seasonal Patterns: rainfall per Sub-Cluster GMM Seasonal Patterns: specific humidity per Sub-Cluster GMM

rinfall

2019 2020 2021 2022 2023 2024 2025 2019 2020 2021 2022

year year
Seasonal Patterns: atmospheric pressure per Sub-Cluster GMM Seasonal Patterns: wind velocity per Sub-Cluster GMM
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Figure 7. Visualization of Seasonal Pattern for Each Variable

Based on the visualization in Figure 7, the seasonal weather pattern that occurs in Makassar for
the last 6 years shows that the rainy season occurs in the range of December to March. Conversely, very
low rainfall in the range of June to September indicates the dry season. There are two transitional season
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patterns, namely the transition to Drought occurs in April to May and the transition to Rain occurs in
October to November. The conclusion of the seasonal timing of weather patterns is presented in Table
9.

Table 9. Conclusion of Seasonal Timing of Weather Patterns

Time Dominant Cluster Season Character
Dec- Feb GMM 0 Rainy Season
Apr-May GMM 2 Transition to Dry Season
Jun-Sep GMM 1 Dry Season
Oct-Nov GMM 2 Transition to Rain

Based on Table 9, the seasonal division is quite clear, depicting four distinct time periods grouped
into three main clusters that characterize the seasonal pattern. The results prove that the annual seasonal
pattern at the Makassar location can be well recognized using the DBSCAN-GMM combination.

4. DISCUSSION

The results of this study confirm that the hybrid DBSCAN-GMM approach is effective for
analyzing daily weather patterns in Makassar, especially in distinguishing rainy, dry, and transitional
seasons while detecting anomalous events. Compared to previous studies that applied machine learning
and deep learning for weather forecasting, the hybrid clustering approach demonstrates a different
strength. While deep learning models such as Convolutional Autoencoders or ensemble methods like
Random Forest, SVM, and XGBoost often achieve high short-term prediction accuracy, they require
large datasets and face challenges such as overfitting and low interpretability. In contrast, the DBSCAN—
GMM hybrid offers a more computationally efficient and interpretable method, which is important for
tropical regions with limited data resources.

Classical algorithms such as Decision Tree, k-NN, and Logistic Regression were previously
reported to deliver good accuracy but remained vulnerable to overfitting due to limited testing sites. The
hybrid method used in this study addresses this limitation by not relying on supervised learning or site-
specific calibration, but instead by adaptively clustering daily weather data. Furthermore, while physics-
based hybrid models such as GEM combined with Al-based approaches showed improved forecasting,
they mainly focus on predictive accuracy, whereas the DBSCAN-GMM hybrid provides added value
by explicitly identifying anomalies that represent extreme events in the tropical climate. This ability to
capture both seasonal structures and anomalies highlights the novelty of the proposed framework within
computer science-based weather analysis.

The findings are also consistent with regional meteorological observations in Indonesia and
Southeast Asia, where rainfall patterns follow strong seasonal variability with transitional periods that
are critical for agricultural and disaster management planning. The hybrid clustering successfully
highlighted December—February as the rainy season, June—September as the dry season, and April-May
and October—November as transitional months, which aligns with regional climatology reports.
Importantly, about 13% of the data was identified as anomalous, representing unusual rainfall or
atmospheric pressure shifts that conventional methods may overlook. This strengthens the relevance of
the hybrid approach for tropical meteorology, where irregularities often carry significant societal
impacts.

From a practical perspective, the results can directly support decision-making systems in
agriculture, disaster mitigation, and early warning applications. Identifying transition periods is valuable
for crop scheduling, while anomaly detection provides actionable insights for anticipating floods or
droughts. For informatics and computer science, this research demonstrates how clustering and
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probabilistic modeling can be combined to enhance the interpretability of climate data, bridging
methodological advances with domain-specific applications.

Nevertheless, limitations exist. The dataset is restricted to one city over a six-year period, which
constrains the generalizability of the findings to broader regions. In addition, the relatively low
Silhouette Score indicates natural overlap in tropical weather patterns, suggesting that hybrid clustering
alone cannot fully separate seasonal boundaries. Future studies should consider extending this
framework to multi-city or multi-regional datasets, incorporating temporal dynamics, and exploring
integration with deep learning models to improve predictive capabilities.

Overall, this study contributes a methodological advancement by integrating DBSCAN and GMM
for clustering tropical weather data. The approach not only validates seasonal structures against regional
meteorological patterns but also enhances anomaly detection, offering practical and scientific value for
both computer science and climate-related applications in tropical regions.

5. CONCLUSION

The application of Gaussian Mixture Model (GMM) in the analysis of daily weather patterns in
Makassar proved to be effective in identifying complex weather distributions through a probabilistic
approach. The hybrid method (DBSCAN + GMM) provides the best performance compared to when
used separately. This hybrid approach produces the highest Silhouette Score value of 0.1434. DBSCAN
works to filter out outliers and form one main cluster while GMM divides the main cluster into three
sub-clusters representing rainy, dry and transition seasons, and classifies the data into fixed cluster
(87%) and ambiguous cluster (13%) categories. This ambiguous data reflects the presence of weather
anomalies, such as sudden rains or unusual pressure changes, that do not fully fit the general seasonal
pattern. The GMM's ability to reveal and map these anomalies makes it a powerful tool to support early
warning systems and adaptive planning for extreme weather conditions. Practically, the findings can
support stakeholders such as BMKG and local governments in developing adaptive strategies for
agriculture, disaster mitigation, and early warning systems. Nevertheless, this study is limited to a
single-city dataset (Makassar) covering six years, which may restrict generalizability to broader regions.
future research should extend the approach by incorporating multi-city datasets, integrating with deep
learning models, and testing long-term climate projections to enhance the robustness of weather pattern
clustering.
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