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Abstract 

This study crafts a machine learning framework that systematically integrates multi-hazard disaster risk assessments 

into automated property valuation for the Jakarta Metropolitan Area. The framework addresses 25–30% MAPE 

typically observed in disaster-prone regions, providing more reliable valuation results. We made 114 prediction 

features from 42 input variables by using 14,284 property data from Indonesian markets, physical risk data from the 

Think Hazard platform, and socio-economic data from Central Bureau of Statistics. Elastic Net model performed 

superior compared to other models which had R² = 0.7922 and a MAPE of 28.27%. We found that some disaster 

risks had unexpected beneficial effects on property prices. We expected that risks related to the earth (+40.5%) and 

water (+19.2%) would have positive effects, while risks related to the weather (-66.9%) would have negative effects. 

These conflicting results suggest that in complex urban markets, the quality of infrastructure, location premiums, and 

differences in risk perception may outweigh simple risk penalties. The idea gives realistic ideas for property valuation 

that takes risks into account, but it also points out big problems with how the market judges how likely a disaster is 

to happen. 
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1. INTRODUCTION 
Urban growth in many parts of the world is increasingly taking place in areas that are highly 

exposed to natural hazards [1]. For cities that face recurrent floods, earthquakes, and extreme weather, 

understanding how disaster risks shape property values has become more than a technical exercise 

because It is central to planning for resilience and investment security. The Automated Valuation 

Models (AVMs) have changed how properties are valued in relatively stable markets, by providing fast 

and scalable assessments [2], [3]. Yet, when applied to hazard-prone environments, these models often 

struggle. The Error rates that remain within 5–15% in stable common markets can rise to 25–30% in 

disaster-prone regions, reflecting a fundamental gap in how risks are captured in valuation processes 

[4], [5], [6]. 

Indonesia, and some in the Jakarta Metropolitan Area, describes this problem vividly. Located on 

the Pacific Ring of Fire, the country is highly exposed to earthquakes, volcanic activity, and tsunamis  

[7], [8], [9], [10], while its capital contends with chronic flooding, severe land subsidence exceeding 10 

cm per year in some districts, and intensifying climate extremes [11], [12], [13], [14]. The Cimandiri 

and Baribis’s fault systems have reshaped building codes [10], [15], while annual monsoon floods 

disrupt daily life and economic activity [13], [16], [17]. With more than 30 million residents, Greater 

Jakarta is a megacity where geological threats, water-related hazards, and rapid urbanization converge 

as well as it makes property valuation both urgent and unusually complex [18], [19], [20]. 

https://jutif.if.unsoed.ac.id/
http://creativecommons.org/licenses/by/4.0/


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 5, October 2025, Page. 3136-3152 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5236 

 

 

3137 

At the same time, advances in artificial intelligence (AI) and machine learning (ML) are opening 

new opportunities for property valuation under such conditions [5], [21]. Some research has indicated 

that machine learning (ML) can outperform conventional regression by identifying nonlinear 

relationships and spatial heterogeneity [3], [22], [23]. Gao et al. (2022) illustrated the benefits of 

ensemble models in Sydney’s real estate market [24], whereas Deng and Zhang (2025) enhanced 

accuracy in Hong Kong through explainable AI [25]. Mathotaarachchi et al. (2024) better predictive 

models for housing data with a lot of different factors [23]. On the disaster side, Yousefi et al. (2020) 

successfully utilized machine learning for multi-hazard mapping in mountainous areas [26], while 

Linardos et al. (2022) emphasized the role of machine learning in disaster management through the 

3137odelling of intricate risk interactions [27]. Tools such as RiskScape (Paulik et al., 2023) [28] and 

studies of compound risks reinforce this trend [29], [30]. Other works in urban economics and valuation  

similarly stress the promise of data-driven modelling [31], [32], [33]. Yet despite these advances, most 

approaches treat hazards in isolation or apply simplified categories, falling short of integrating multi-

hazard frameworks directly into property valuation models [34], [35]. 

Jakarta provides a compelling case to push this boundary. Property markets here reflect not only 

hazard exposure but also location premiums, infrastructure quality, and long-standing socio-economic 

dynamics [20], [36]. In practice, some hazard-prone areas retain high prices because they offer central 

locations, strong infrastructure, or regulatory safeguards such as stricter building codes [37], [38]. Prior 

research has even found that disasters can coincide with property premiums, for example in waterfront 

districts or elevated terrain with attractive amenities [31], [39]. These paradoxes suggest that risk is 

rarely perceived as a single penalty. Instead, it interacts with desirability in ways that conventional 

AVMs are ill-equipped to capture [40]. 

This study responds to that challenge by developing a machine learning framework that 

systematically integrates multi-hazard risk assessments into automated property valuation for Jakarta. 

Drawing on 14,284 cleaned property listings, socio-economic indicators, and hazard data from the Think 

Hazard platform, we transform 42 raw variables into 114 predictive features. This study evaluate with 

some models including regularized regressions and a new Adaptive Lasso with Risk Prioritization 

(ALRP) to test how incorporating risk-aware features affects valuation accuracy. Beyond achieving 

lower error rates, the framework sheds light on how disaster risks intersect with urban property 

dynamics. It also contributes methodologically and empirically by embedding risk hierarchies into ML 

optimization as well as showing how markets in a disaster-prone megacity like Jakarta absorb and 

reinterpret risk. The findings are intended to support more resilient property valuation practices, better-

informed investment strategies, and policies that align urban growth with disaster preparedness. 

2. METHOD 

At a conceptual level, the framework brings together three main inputs (property market data, 

socio-economic indicators, and hazard assessments) into a single process. The data are cleaned, 

standardized, and transformed through preprocessing and risk quantification, then expanded with feature 

engineering to capture both market dynamics and disaster risks. These predictors are analyzed using 

several machine learning models, including the proposed Adaptive Lasso with Risk Prioritization, and 

the results are evaluated with standard metrics and cross-validation. Figure 1 illustrates the flow of this 

study.  

2.1. Data Sources 

Our methodological approach utilized three data sources, each providing critical dimensions to 

our examination of Jakarta Metropolitan Area’s property market. We got 19,300 home listings from 

Indonesia’s top real estate websites in October 2024. These listings included detailed information about 

https://jutif.if.unsoed.ac.id/
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the properties’ physical features (land area, building size, room configurations), asking prices, and, 

location. We got municipality-level metrics from Badan Pusat Statistik Indonesia (BPS) that include 

population density, household income distributions and amenities.  

For our research goals, it was most important that we used standardized disaster risk assessments 

from the Think Hazard platform. This platform looks at eleven different types of hazards, including 

geophysical threats (earthquakes, tsunamis, volcanic eruptions), hydrometeorological risks (riverine 

flooding, coastal inundation, drought), and geomorphological hazards (landslides). This combination of 

property market data, socio-economic data, and physical risk generated a unique dataset that shows how 

risk and property values affect each other. 

 

 
Figure 1. Flowchart of research process 

 

 

2.2. Preprocessing Data 

Our initial dataset consisted of 19,300 houses. We conducted cleansing and preprocessed data by 

removing duplicates, missing values and conduct business judgment to identify unrealistic area-to-price 

ratios. We used interquartile range methods to removing outlier data and the final data set used for 

analysis to 14,284 properties. 

2.3. Risk Quantification and Categorization Framework 

Transforming categorical risk assessments from the Think Hazard platform into quantitative 

features suitable for machine learning required developing a systematic framework that preserved 

meaningful risk distinctions while enabling mathematical optimization [24], [28]. The categorical-to-

numerical transformation is defined in Eq. (1), which maps categorical hazard assessments into 

numerical scores.  

𝑅𝑖𝑗  =  𝑀(𝐶𝑖𝑗)  (1) 

https://jutif.if.unsoed.ac.id/
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Where 𝑅𝑖𝑗 represents the numerical risk score for hazard type 𝑖 at location 𝑗, 𝑀 serves to quantify 

the risk (1: 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤;  2: 𝐿𝑜𝑤;  3: 𝑀𝑒𝑑𝑖𝑢𝑚;  4: 𝐻𝑖𝑔ℎ;  5: 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ) and 𝐶𝑖𝑗 represents the categorical 

assessment. As shown in Eqs. (2) and (3), the weighted composite scores incorporate evidence-based 

weights to reflect the relative contribution of each hazard category. 

Rcategoryk
  =  (

1

|Gk|
) ∑ Riji∈Gk

     (2) 

Rtotal =
∑ 𝛾𝑘

4
𝑘=1  ×𝑅𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑘

∑ 𝛾𝑘
4
𝑘=1

    (3) 

Where 𝐺𝑘 represents feature group 𝑘 (𝑤𝑎𝑡𝑒𝑟, 𝑒𝑎𝑟𝑡ℎ, 𝑐𝑙𝑖𝑚𝑎𝑡𝑒, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟), 𝛾𝑘 represents 

evidence-based weights (0.35, 0.30, 0.25, 0.10 respectively), and 𝑅𝑡𝑜𝑡𝑎𝑙 is the composite disaster risk 

score [27]. 

Beyond simple numerical mapping, we developed a hierarchical risk categorization system that 

groups individual hazards into broader categories based on their physical characteristics, temporal 

patterns, and typical impact mechanisms [19], [26]. Eqs. (4)–(6) describe the calculation of risk diversity 

and concentration measures, allowing us to capture the uneven distribution of hazards [41]. 

Riskdiversity  = √
1

𝐾
∑ (𝑅𝑘 − 𝑅̅)2𝐾

𝑘=1      (4) 

Riskconcentration  = max(Rk) − min(𝑅𝑘)     (5) 

Riskexposure_max  = max(R1, 𝑅2, … , 𝑅𝑘)     (6) 

Where 𝐾 is the number of risk categories, 𝑅𝑘 is the risk score for category 𝑘, and 𝑅̅ is the mean 

risk score across categories [28]. 

Figure 2 shows the physical risk feature engineering that transforms categorical assessments into 

predictors. 

 

 
Figure 2. Physical Risk Feature Engineering Framework 

https://jutif.if.unsoed.ac.id/
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The physical risk quantification framework uses weightings that reflect the relative frequency and 

severity of different hazard types in Indonesia. Based on historical data from the National Disaster 

Management Agency (BNPB), we assign weights to water-related disaster risks of 35%, earth-related 

risks of 30%, climate-related risks of 25%, and weather-related risks of 10% [13], [42]. 

2.4. Feature Engineering Pipeline 

The feature engineering process transformed 42 raw variables into 114 sophisticated predictors 

through systematic algorithms designed to capture non-linear relationships, spatial patterns, risk 

interactions, and economic dynamics that might influence property values. Figure 3 presents the 

complete feature engineering architecture that creates multiple layers of predictive features. 

 

 
Figure 3. Complete Feature Engineering Pipeline Architecture 

 

Eqs. (7)–(10) illustrate property feature transformations designed to capture efficiency and 

utilization patterns commonly considered by valuers [3], [31]. 

𝐿𝑎𝑛𝑑 − 𝑡𝑜 − 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 =
𝐴𝑟𝑒𝑎 𝑙𝑎𝑛𝑑

𝐴𝑟𝑒𝑎 𝑏𝑢𝑖𝑙𝑑
      (7) 

𝑃𝑟𝑖𝑐𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑙𝑎𝑛𝑑 =
𝑃𝑟𝑖𝑐𝑒

𝐴𝑟𝑒𝑎 𝑙𝑎𝑛𝑑
     (8) 

𝑃𝑟𝑖𝑐𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 =
𝑃𝑟𝑖𝑐𝑒

𝐴𝑟𝑒𝑎 𝑏𝑢𝑖𝑙𝑑
      (9) 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝐴𝑟𝑒𝑎 𝑏𝑢𝑖𝑙𝑑

𝑏𝑒𝑑𝑠 × 𝐵𝑎𝑡ℎ𝑠 × 50
      (10) 

https://jutif.if.unsoed.ac.id/
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Spatial accessibility features required developing robust distance calculation algorithms. 

Distances to major centers are computed using the haversine formula (Eqs. (11)–(13)), which calculates 

great-circle distances [22], [32].  

𝑎 = sin2 (
∆φ

2
) + cos(φ1) × cos(𝜑2) × sin2(

∆λ

2
)    (11) 

𝑐 = 2 × atan 2(√𝑎, √1 − 𝑎)      (12) 

𝑑 = 𝑅 × 𝑐 .   (13) 

Where 𝜑 represents latitude, 𝜆 represents longitude, R = 6,371 km (Earth's radius), and 𝑑 is the 

distance in kilometres [43]. Physical risk interaction features capture compound disaster effects through 

interactions are modeled in Eqs. (14)–(17), capturing potential amplification effects between hazards 

[30], [44]. 

𝑅𝑖𝑠𝑘𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑓𝑙𝑜𝑜𝑑 𝑠𝑒𝑖𝑠𝑚𝑖𝑐 = 𝑅𝑤𝑎𝑡𝑒𝑟  × 𝑅𝑒𝑎𝑟𝑡ℎ     (14) 

𝑅𝑖𝑠𝑘𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑤𝑎𝑡𝑒𝑟
2  × 𝑅𝑤𝑎𝑡𝑒𝑟     (15) 

𝑅𝑖𝑠𝑘𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 𝜎(𝑅𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠)     (16) 

𝑅𝑖𝑠𝑘𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥(𝑅𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠) − min(𝑅𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠)   (17) 

 

2.5. Adaptive Lasso with Risk Prioritization (ALRP) Algorithm 

The Adaptive Lasso with Risk Prioritization (ALRP) algorithm represents a novel contribution 

designed specifically to address the challenge of incorporating domain expertise about disaster risk 

hierarchies into machine learning optimization processes [27], [45]. The ALRP algorithm modifies the 

traditional adaptive lasso optimization, as formalized in Eqs. (18)–(20) [46]. 

Min
𝛽1𝛽2

𝐿(𝛽1, 𝛽2) = ||𝑦 − 𝑋𝛽1 − 𝑅𝛽2||
2

2
+ 𝜆1 ∑ 𝜓𝑖 ∣ 𝛽1𝑖 ∣ +𝜆2∑𝑗𝜔𝑗 ∣ 𝛽2𝑗 ∣𝑖    (18) 

Where 𝑋 represents standard features, 𝑅 represents risk features, 𝜓ᵢ and 𝜔ⱼ are adaptive weights, 

and 𝜆₁, 𝜆₂ are regularization parameters [47]. 

 

𝜓ᵢ =
1

|𝛽̂
𝑖
(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

|+𝜀
 ,     (19) 

for standard features 

𝜔ⱼ =
γj

|𝛽̂𝑗
(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

|+𝜀
 , (20) 

for risk features, where 𝛾  represents evidence-based risk priority weights and 𝜀 =  10⁻⁸ prevents 

numerical instability. Algorithm 1 on Figure 4 presents the complete ALRP implementation that 

systematically incorporates risk knowledge into feature selection [28]. 

https://jutif.if.unsoed.ac.id/
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Input: Feature matrix X ∈ ℝⁿˣᵖ, target vector y ∈ ℝⁿ, risk categories C, evidence 

weights γ 

Output: Trained model with adaptive coefficients β* 

 

Phase 1: Initial Weight Computation 

    β⁽⁰⁾ ← Ridge(X, y, α_ridge=0.01) 

    w⁽⁰⁾ ← 1/(|β⁽⁰⁾| + ε) where ε = 10⁻⁸ 

Phase 2: Risk-Aware Weight Adjustment 

    for each feature group g_i ∈ C do 

        if g_i contains disaster risk features then 

            w⁽¹⁾[g_i] ← w⁽⁰⁾[g_i] × (1/γ_i) 

        else 

            w⁽¹⁾[g_i] ← w⁽⁰⁾[g_i] × 1.3 

        end if 

    end for 

Phase 3: Weighted Feature Transformation 

    X_weighted ← X ⊘ w⁽¹⁾ᵀ 

Phase 4: Adaptive Lasso Optimization 

    β* ← argmin_β ||y - X_weighted β||²₂ + λ||β||₁ 

 

Figure 4. Algorithm Adaptive Lasso with Risk Prioritization (ALRP) 

 

 

The ALRP algorithm made by using ridge regression to get reliable baseline estimates of the 

coefficients. Then, it systematically changes the adaptive weights for physical risk-related variables. 

The last step in the optimization process solves the weighted lasso issue utilizing coordinate descent 

method that work well with the high-dimensional feature space and the penalty structure for the given 

domain [33], [45]. 

2.6. Comprehensive Model Evaluation and Validation Framework  

Our evaluation approach employed rigorous statistical protocols with mathematical precision in 

performance measurement [25]. Performance was measured using standard regression metrics (Eqs. 

(20)–(25)), including RMSE, MAE, MAPE, and cross-validation stability.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1     (20) 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

    (21) 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1     (22) 

MAPE =
100

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖

𝑛
𝑖=1 |     (23) 

where n is the number of observations, 𝑦ᵢ are actual values, ŷᵢ are predicted values, and ȳ is the mean of 

actual values.Cross-validation stability is then devided as 

𝐶𝑉𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜎(𝑅𝑀𝑆𝐸𝑓𝑜𝑙𝑑𝑠)

𝜇(𝑅𝑀𝑆𝐸𝑓𝑜𝑙𝑑𝑠)
    (24) 

where σ represents standard deviation and μ represents mean across k-fold cross-validation results [40]. 

https://jutif.if.unsoed.ac.id/
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𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 = log (𝑝𝑟𝑖𝑐𝑒 + 1)     (25) 

The  logarithmic transformation in Eq. (25) reduces skewness from 1.61 to 0.06, ensuring optimal 

performance for linear regression-based approaches while maintaining economic interpretability 

through exponential back-transformation [36]. The evaluation framework compared five different 

modeling methods which are linear regression as the baseline, ridge regression to look at the benefits of 

L2 regularization, standard lasso regression to look at L1 regularization and feature selection, Elastic 

Net to combine both types of regularization, and our new ALRP algorithm to include domain-specific 

risk prioritization. We used grid search to optimize the hyperparameters of each model over a wide range 

of values, and we did this in parallel to make sure the computations were as fast as possible [23], [48]. 

3. RESULT 

3.1. Dataset Characteristics and Market Context 

The final dataset of 14,284 properties provides comprehensive representation of the Jakarta 

metropolitan area property market, spanning 13 major municipalities from the urban core of central 

Jakarta to rapidly developing suburban areas. Table 1 presents the detailed geographic distribution and 

key property characteristics that establish the foundation for our analytical framework. 

 

Table 1. Dataset Geographic Distribution and Key Statistics 

Geographic Area Properties Percentage 
Avg Price  

(100M IDR) 
Price Range 

Kota Tangerang Selatan 2,168 15.2% 25.0 3.0-120.0 

Kota Bekasi 1,982 13.9% 15.2 3.2-82.0 

Kabupaten Bogor 1,472 10.3% 17.8   3.0-105.0 

Jakarta Barat 1,446 10.1% 32.9 6.5-120.0 

Kota Depok 1,444 10.1% 14.7 3.5-77.4 

Kabupaten Tangerang 1,219 8.5% 28.1 3.0-120.0 

Jakarta Timur 1,145 8.0% 25.9 3.0-100.0 

Jakarta Utara 1,024 7.2% 45.8 7.5-120.0 

Jakarta Selatan 814 5.7% 44.3 6.0-123.0 

Jakarta Pusat 761 5.3% 45.7 3.5-120.0 

Kota Bogor 335 2.3% 17.8 3.2-120.0 

Kabupaten Bekasi 251 1.8% 10.6 3.0-74.9 

Kota Tangerang 223 1.6% 22.0 3.8-70.0 

 

The property prices followed the right-skewed pattern, with a median price of 20 billion. The 

prices rose from 500 million to over 200 billion Indonesian Rupiah. A logarithmic transformation was 

necessary conducted  for statistical modelling as it diminished skewness from 1.61 to 0.06, optimizing 

the method for subsequent analysis [49]. 

The numbers showed that urban markets are normal, with buildings that are about 147.8 square 

meters and land that is about 131.5 square meters. There are either three bedrooms (43.5%) or four 

bedrooms (25.8%) in most units. This means that families in Indonesia want homes with more bedrooms. 

The highest five areas made up 59.6% of the total, and Jakarta's administrative areas made up 37.3%. 

This shows that the market was clearly split up based on where the properties were. Prices also varied a 

lot that shows Jakarta Utara is the most expensive area which cost 431% more than Kabupaten Bekasi 

as the least expensive area.  
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3.2. Comprehensive Model Performance Analysis and Comparison 

The machine learning evaluation revealed remarkably consistent performance across different 

algorithmic approaches, suggesting that feature engineering quality may be more critical than specific 

algorithm choice for this application. Table 2 shows performance comparison of all models.  

Using the best hyperparameters (α=0.0001, l1_ratio=0.1), the ElasticNet model had the best 

overall performance, with an RMSE of 0.3235, an R-squared of 0.7922, and a MAPE of 28.27%. This 

performance is a big step up from the 30–35% MAPE that automated valuation systems usually get in 

areas that are prone to disasters. However, it is not as good as the sub-10% error rates that can be found 

in more stable property markets [3], [5]. 

 

Table 2. Model Performance Comparison 

Model 
Test 

RMSE 

Test 

R² 

Test 

MAE 

Test 

MAPE 

(%) 

Active 

Features 

CV 

Stability 

(±) 

Generalization 

Linear 0.3238 0.7918 0.2514 28.28 43 0.0045 
Excellent  

(-0.0028) 

Ridge 0.3238 0.7918 0.2514 28.28 42 0.0045 
Excellent  

(-0.0028) 

Lasso 0.3237 0.7920 0.2513 28.25 31 0.0045 
Excellent  

(-0.0033) 

ElasticNet 0.3235 0.7922 0.2514 28.27 38 0.0045 
Excellent  

(-0.0032) 

ALRP 0.3250 0.7902 0.2520 28.35 22 0.0046 
Excellent  

(-0.0029) 

 

The ALRP result revealed an RMSE of 0.3250 and an R-squared of 0.7902, and it only used 22 

variables instead of the full set of active features. This is 99.75% of what ElasticNet can do with 42% 

less features. By cutting less on characteristics, the model is easier to understand and runs faster, all 

while keeping the accuracy of the predictions practically the same [45], [50]. Statistical significance 

testing demonstrated that ElasticNet significantly outperformed both lasso and ALRP (p < 0.05), while 

exhibiting comparable performance to ridge and linear regression approaches. The cross-validation 

stability analysis showed that all models were very consistent, with standard deviations of cross-

validation RMSE staying below 0.005 for all methods. Table 2 shows how stable this is by showing 

confidence intervals that show strong generalization abilities that are necessary for practical use. 

3.3. Feature Importance Hierarchy and Risk-Value Relationships  

The comprehensive feature importance analysis revealed clear hierarchies through mathematical 

coefficient interpretation. For the Elastic Net model, feature importance is measured by the absolute 

magnitude of standardized coefficients:  

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑗 = |𝛽̂𝑗| × 𝜎(𝑋𝑗)    (26) 

where 𝛽𝑗 is the coefficient for feature 𝑗 and 𝜎(𝑋𝑗) is the standard deviation of feature 𝑗. We use  

𝑡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝛽̂𝑗

𝑆𝐸(𝛽𝑗)
     (27) 

𝑝𝑣𝑎𝑙𝑢𝑒 = 2 × 𝑃(𝑇𝑛−𝑝−1 > |𝑡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐|     (28) 
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where 𝑆𝐸(𝛽𝑗) is the standard error of coefficient 𝑗, and 𝑇𝑛−𝑝−1 follows a t-distribution with 𝑛 − 𝑝 − 1 

degrees of freedom. Table 3 presents the top disaster risk features and their quantified impacts on 

property values. 

Weather-related risk was the most important factor in all models. The coefficients were from -

1.5551 in ridge regression to -1.1065 in ElasticNet. This means that homes in area where terrible weather 

is likely to get lost around 66–90% of their value all the time. This result is in line with what we expected 

based on theory, which confirms our method and makes the positive correlations for other types of risk 

even more important and confusing [31]. 

Economic factors had a big effect on property values, with purchasing power indicators showing 

coefficients of about +0.54 and affordability ratios of about +0.51 across different models. Spatial 

accessibility features consistently ranked among the foremost predictors, with distances to Jakarta's 

central business district, PIK commercial area, Kelapa Gading employment center, and Pondok Indah 

residential district exhibiting significant negative coefficients, signifying that increased distances from 

these economic hubs diminish property values [20], [51]. 

 

Table 3. Disaster Risk Feature Importance and Impact Quantification 

Risk Feature 
ElasticNet 

Coefficient 

Price 

Impact (%) 
Interpretation 

Statistical 

Significance 

weather_related_risk -1.1065 -66.9% 
Expected negative 

impact 
p < 0.001*** 

risk_concentration_std -0.3638 -30.5% 
Concentration 

penalty 
p < 0.001*** 

earth_related_risk +0.3404 +40.5% Unexpected positive p < 0.001*** 

risk_concentration -0.3379 -28.7% 
Concentration 

penalty 
p < 0.001*** 

water_related_risk +0.1752 +19.2% Unexpected positive p < 0.001*** 

total_disaster_risk +0.1365 +14.6% 
Overall risk 

composite 
p < 0.001*** 

 

3.4. The Risk-Value Relationship Paradox  

The most significant and unexpected finding from our analysis concerns the complex 

relationships between different types of disaster risk and property values, relationships that 

fundamentally challenge conventional economic assumptions about risk pricing in real estate markets. 

The price impact calculations follow the mathematical relationship:  

𝑃𝑟𝑖𝑐𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 (%) = (𝑒(𝛽̂×𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒) − 1) × 100   (29) 

where 𝛽 represents the model coefficient and 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 is the standardized risk measure. Finally, the 

scenario for price is computed as 

𝑃𝑟𝑖𝑐𝑒𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = exp (𝛽̂0 + ∑ 𝛽̂𝑖𝑋𝑖 + ∑ 𝛽̂𝑗𝑅𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜,𝑗 𝑗𝑖     (30) 

where 𝛽₀ is the intercept, 𝑋ᵢ are control features, and 𝑅𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜,𝑗  represents risk features adjusted for 

specific scenarios.  

3.4.1 Individual Risk Type Paradox Analysis  

Weather-related risks had the expected strong negative effect on property values (-66.9% price 

impact), but both earth-related and water-related risks had surprising positive effects that need to be 

carefully thought about and looked into further. Earth-related risks, which include earthquakes, 
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tsunamis, volcanic activity, and landslides, had a positive coefficient of +0.3404. This means that 

properties in areas with higher earth-related risk scores actually sell for about 40.5% more [37]. 

Water-related risks, such as flooding in rivers, cities, and along the coast, showed similar 

unexpected positive correlations with coefficients around +0.1752. This means that prices in areas with 

a higher risk of flooding were about 19.2% higher. This positive correlation needs to be read very 

carefully because Jakarta has well-known flooding problems that affect hundreds of thousands of people 

every year [12]. 

Risk concentration measures yielded more intuitive outcomes, with both risk concentration 

standard deviation (-0.3638 coefficient) and overall risk concentration (-0.3379 coefficient) indicating 

significant negative effects on property values. These results reveal that markets justly penalize 

properties subjected to concentrated or significantly variable risk profiles, whereas the positive 

correlations for particular risk types may signify alternative factors that correlate with both risk exposure 

and property desirability [35]. 

3.4.2 Composite Risk Scenario Analysis  

Despite the counterintuitive individual risk type relationships, the composite risk scenario 

analysis produces expected market behavior. Table 4 demonstrates how total disaster risk exposure 

affects property pricing in a logical pattern, where higher composite risk levels result in systematically 

lower property values. 

 

Table 4. Risk Scenarios Analysis 

Risk Scenario 
Total  

Risk Score 

Predicted 

Price  

(100M IDR) 

Price 

Change 

Change 

(%) 

Low Risk 1.8-2.0 26.8 +2.6 +10.7% 

Current Average 2.2 24.2 0.0 0.0% 

High Risk 2.4-2.6 21.8 -2.4 -9.7% 

Extreme Risk 2.8-3.0 19.7 -4.5 -18.5% 

 

The risk scenario simulation shows that prices go up systematically, with low-risk properties 

getting a 10.7% premium over the baseline and high-risk properties getting an 18.5% discount. This 

26.1% total price variation across risk scenarios confirms that Jakarta's property market reacts logically 

to overall disaster risk exposure, even though individual risk components may show contradictory 

relationships.  The apparent contradiction between the effects of individual risk types and the effects of 

composite scenarios suggests that markets may be responding to complex bundled factors rather than 

individual hazard types. When risks related to the earth or water are linked to better infrastructure, a 

central location, or other desirable traits, they may point to premium properties, even though they are 

real hazards. When several risk factors come together to make truly dangerous exposure profiles, though, 

markets react by lowering prices, as shown in the scenario analysis [3]. 

3.5. Geographic Patterns and Market Segmentation Analysis 

The geographic analysis revealed complex spatial patterns that help explain some of the 

counterintuitive risk-value relationships observed in our statistical models. Table 5 presents the detailed 

city-level analysis that illustrates the geographic risk-price paradox across the Jakarta metropolitan area. 

Jakarta Barat was a very interesting case study because it had both high risk scores (1.758) and 

high average prices (32.9 hundred million IDR). This suggests that the benefits of being in the middle 

of a city may outweigh the costs of being in a disaster-prone area in some situations. This pattern is very 

different from what we see in suburban areas like Kabupaten Bekasi, which had similar risk scores 
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(1.742) but much lower average prices (10.6 hundred million IDR). The price difference between these 

areas suggest that how accessible to the quality of the infrastructure, job opportunities, and urban 

amenities may have a big effect on the link between disaster risk and property values [37]. 

Even though there was a higher risk of loss, the prices in Central Jakarta (Jakarta Pusat, Jakarta 

Selatan, Jakarta Barat, and Jakarta Utara) stayed high whereas the prices in the peripheral areas were 

lower, even in places with moderate risk levels. This pattern suggests that disaster risk is just one of 

many factors that affect property prices. In desirable areas, location premiums may cancel out risk 

discounts. 

 

Table 5. Geographic Risk-Price Analysis 

City 
Risk 

Score 

Average 

Price 

(100M IDR) 

Properties Risk-price Pattern 

Jakarta Barat 1.758 32.9 1,446 High risk, Premium price 

Kabupaten Bekasi 1.742 10.6 251 High risk, Low price 

Kabupaten Tangerang 1.431 28.1 1,219 Medium risk, Premium price 

Kota Tangerang 1.413 22.0 223 Medium risk, Average price 

Kota Tangerang 

Selatan 
1.413 25.0 2,168 

Medium risk, Above average 

price 

Jakarta Utara 1.408 45.8 1,024 Medium risk, Highest price 

Jakarta Pusat 1.330 45.7 761 Medium risk, Premium price 

Jakarta Timur 1.307 25.9 1,145 Medium risk, Average price 

Kota Bekasi 1.260 15.2 1,982 
Low risk, Below average 

price 

Jakarta Selatan 1.250 44.4 814 Low risk, Premium price 

Kota Depok 1.250 14.7 1,444 
Low risk, Below average 

price 

Kota Bogor 1.222 17.8 335 
Low risk, Below average 

price 

Kabupaten Bogor 0.771 17.8 1,472 
Very low risk, Below 

average price 

 

3.6. Risk Distribution Analysis and Cross-Validation Robustness 

The risk distribution analysis across different quintiles revealed important patterns in how various 

hazard types affect property pricing decisions. Table 6 shows the price distribution by risk level that 

describes non-linear relationships challenging simple risk-penalty assumptions.  

 

Table 6. Price Distribution Analysis by Risk Quintile 

Risk Level 
Mean Price 

(100M IDR) 
Median Price Count 

Premium/Discount  

vs Medium 

Very Low 20.4 14.4 4,575 30.2% Discount 

Low 33.8 28.5 1,906 +15.4% Premium 

Medium 29.3 23.0 2,496 0.0% Baseline 

High 27.8 23.8 3,837 -5.0% Discount 

Very High 25.1 20.0 1,470 -14.2% Discount 

 

The risk quintile analysis showed that there are non-linear relationships that go against the usual 

ideas about how to price risk. Low-risk areas had price premiums of +15.4%, while very-high-risk areas 

had discounts of -14.2%. This suggests that there are threshold effects in market risk pricing that need 

more advanced modeling techniques than just simple linear risk-price relationships. Notably, areas with 
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very low risk had big discounts (−30.2%), which may be because they are far from economic centers or 

have other location problems [52]. 

The validation framework checks the strength of our results by running a number of statistical 

tests that seek for indicators of overfitting or methodological artifacts. The cross-validation stability, 

indicated by a coefficient of variation below 1.5% for all models, suggests that our results are likely 

relevant to new property data within the same market setting. Residual examination of the best-

performing ElasticNet model showed good statistical properties, such as an almost normal distribution 

and no clear trends that would suggest systematic bias across different price ranges [45]. 

4. DISCUSSIONS 

4.1. Performance Assessment and Methodological Contributions 

The model of machine learning framework achieved a 28.27% MAPE, which is a small but 

significant improvement over the 30–35% error rates that automated valuation systems usually report in 

areas that are prone to disasters while it is not as big of an improvement as some people claim machine 

learning applications can make [5], [6]. The fact that all models had RMSE values that were within 

0.0015 of each other shows that data quality and feature engineering may be more important than which 

algorithm is used for property valuation applications [50]. 

The fact that all of the models had standard deviations below 0.005 during cross-validation shows 

that they are very good at generalizing, which is necessary for use in real-world financial applications 

[53]. Our new ALRP algorithm successfully integrated domain knowledge about disaster risk 

hierarchies into the optimization process. This reduced the feature set by 42% while keeping 99.75% of 

ElasticNet's performance. This revealed it much easier to understand the model and made it more 

efficient, which is important for meeting regulatory requirements in financial applications [5]. 

4.2. The relationship of Counterintuitive Risk-Value  

The most important thing we found in our analysis is that there are surprising positive correlations 

between some disaster risks and property values. For example, risks related to the earth had a +40.5% 

price impact, and risks related to water had a +19.2% price impact. This fundamentally challenges 

traditional economic ideas about how to price risk. The anticipated negative correlation (-66.9%) 

between weather-related risks confirmed our methodological approach; however, the observed positive 

relationships necessitate a thorough investigation into the impact of disaster risk on property markets 

within intricate urban settings. 

Several complementary explanations elucidate these paradoxical relationships. The infrastructure 

investment hypothesis posits that high-risk regions may have received enhanced infrastructure 

investments that elevate property values while preserving elevated categorical risk classifications in 

global assessment frameworks. This phenomenon is distinctly illustrated in Jakarta's developmental 

history, where flood-prone riverfront areas boast superior transportation networks and well-established 

commercial districts, whereas seismically active zones benefit from more stringent building codes and 

heightened construction standards. Geographic confounding elucidates these trends, as high-risk 

waterfront properties garner premiums for picturesque views and proximity to business districts that 

surpass risk discounts, while elevated terrain adjacent to geological fault lines provides superior 

drainage and vistas alongside seismic vulnerability  [37]. 

Differences perspective of how experts and market participants seek the risk can help us 

understand these relationships even better. The classifications on the Think Hazard platform are based 

on long-term hazard exposure analysis. However, customers of property may systematically under-price 

low-frequency, high-impact events like major earthquakes that don't have recent market memory. Also, 

people in Jakarta may see flood risks as manageable rather than catastrophic because they have gotten 
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used to flooding every year. This means that the risk premiums aren't high enough to make up for the 

advantages of living in a certain area [38], [39].  

Although this study demonstrates the value of integrating multi-hazard risk into property 

valuation, there are a few boundaries of the analysis. The property data rely on listing prices rather than 

realized transactions, which may not fully reflect final market outcomes, yet they still provide a rich and 

consistent source of information across the region. Hazard data from the Think Hazard platform offer a 

standardized way to capture exposure, though they cannot always represent fine-grained local variations 

or very recent events. The results also depend on the availability and consistency of socio-economic 

indicators, which naturally vary between municipalities. The study examines a cross-sectional snapshot 

of the Jakarta metropolitan area which indicating that persistent changes in market behavior post-

disasters are not included in the current analysis. Recognizing these limitations does not diminish the 

importance of the work. Instead, it shows how future studies can use transaction-level data, higher-

resolution hazard models, and long-term designs to build on this framework. 

5. CONCLUSION 

This study demonstrates that property valuation in disaster-prone regions cannot be reduced to 

simple risk penalties. By integrating multi-hazard assessments into machine learning models, the 

framework achieved more reliable predictions and revealed that markets sometimes value risk-exposed 

areas more highly when supported by strong infrastructure, central locations, or regulatory safeguards. 

These findings suggest that disaster risk interacts with urban desirability in complex ways, offering 

insights for valuers, investors, and policymakers who must balance economic growth with resilience. 

While the work is limited by reliance on listing data and a cross-sectional design, it provides a foundation 

for future research that can incorporate richer datasets and track how markets adjust over time. 

Ultimately, the study highlights the need for valuation approaches that recognize both the realities of 

hazard exposure and the opportunities created by urban adaptation.  
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