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Abstract

The classification of fertile and infertile chicken eggs is crucial in the poultry industry to ensure optimal incubation
efficiency and hatchability. However, the visual similarity between both egg types under candling conditions poses
a significant challenge for manual inspection. This study aims to develop a convolutional neural network (CNN)
model using the EfficientNetB4 architecture to automatically classify egg fertility based on image data. The dataset
comprises candling images of chicken eggs, which underwent preprocessing steps such as resizing, normalization,
and histogram stretching to enhance contrast. To improve model generalization, aggressive data augmentation
techniques were applied, including rotation, flipping, zooming, and brightness adjustment. The model was trained in
two phases—feature extraction and fine-tuning—using transfer learning and class balancing strategies. Evaluation
results demonstrated high performance with an F1-score of 0.95 and balanced classification across both classes. The
model's interpretability was further enhanced using Grad-CAM visualization, showing relevant activation regions.
These findings indicate that the proposed method is effective in automating egg fertility classification and has
potential for broader application in agricultural image diagnostics.

Keywords : Candling Images, Convolutional Neural Network, Data Augmentation, Egg Classification,
EfficientNetB4.
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1. INTRODUCTION

Chicken eggs are one of the most important animal-based food commodities in fulfilling the
nutritional needs of the population. The content of protein, fat, and various vitamins in eggs makes them
an efficient and easily accessible source of nutrients. Along with the increasing demand for eggs for
both domestic consumption and industrial purposes, the need for efficient and accurate methods of egg
quality classification has become increasingly crucial [1]. One of the important parameters that can be
used to classify eggs is fertility, which has significant implications in the livestock and breeding
industries.

Until now, the classification process of fertile and infertile eggs has largely been conducted
manually using the candling method, which relies on visual observation of light changes inside the egg.
However, this approach is prone to subjectivity and requires technical experience from the operator. To
overcome these limitations, the development of artificial intelligence technology, particularly deep
learning, offers a faster, more accurate, and more reliable automation solution [2]. One of the most
widely used deep learning architectures in image processing and visual classification is the
Convolutional Neural Network (CNN) [3].

CNN has proven effective in detecting visual patterns from digital images, including in the
classification of biological objects such as chicken eggs [4]. Even so, the performance of CNN is highly
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dependent on the quantity and diversity of training data. One of the main challenges in classifying fertile
and infertile eggs is the limited availability of public datasets and the lack of image data variation, which
can lead to overfitting and reduced model accuracy on new data [5].

To overcome these data limitations, data augmentation techniques have become a commonly used
approach. Data augmentation allows the creation of synthetic variations from existing datasets through
geometric manipulations, color transformations, cropping, flipping, and other generative techniques
without needing to increase the amount of raw data [6]. In recent literature, various augmentation
techniques such as MixUp, CutMix, Copy-Paste, and GridMix have been proven to enhance the
generalization ability of CNN models [7]-[9].

Several studies have demonstrated the effectiveness of data augmentation in CNN-based
classification across various domains, including plant disease classification [10], medical image
classification [11], and industrial object recognition [12]. However, there has been little research
specifically examining the impact of augmentation techniques on egg classification accuracy based on
fertility. Therefore, this study aims to empirically evaluate the extent to which data augmentation
techniques can improve the classification performance of fertile and infertile eggs using a specially
designed CNN architecture.

By utilizing a dataset of fertile and infertile egg images that has been collected and systematically
applying various augmentation techniques, this study is expected to contribute to the optimization of an
automated egg classification pipeline. In addition, the results of this study can serve as a practical
reference for farmers, industry practitioners, and researchers in applying CNN technology based on data
augmentation for more efficient and accurate egg selection purposes [1].

2. METHOD

In the field of computer vision, image classification is one of the key tasks widely applied across
various domains, including animal husbandry. One case study of image classification in this context is
the classification of chicken eggs based on their fertility. In this study, the classification of fertile and
infertile egg images was carried out using a Convolutional Neural Network (CNN) architecture with a
two-stage approach, namely feature extraction and fine-tuning. In addition, data augmentation
techniques were applied to address the limitation of data quantity and to improve model generalization.

The methodology of this research consists of several main stages, starting from data collection,
image preprocessing and augmentation, training and fine-tuning of the CNN model, to performance
evaluation using various metrics such as accuracy, precision, recall, and F1-score. The overall research
workflow can be seen in Figure 1. These stages will be explained in detail in sub 2.1 to 2.6.

Data Colection

Fertile and Infertile

Eqgq Image Dataset Image Preprocessing Data Augmentation

Feature Exiraction
(CNIN)

Model Evaluation Fine-Tuning Phase

- Confusion Matrix :
- Classification Report :

Figure 1. Research Workflow for Fertile and Infertile Egg Classification
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2.1. Data Collection

The dataset used in this study consists of chicken egg images categorized into two classes: fertile
and infertile eggs. The raw dataset used in this research originated from two primary sources: (1) a
publicly available dataset from Kaggle titled “Egg Fertility 12757
[https://www.kaggle.com/datasets/mostefatabbakh/egg-fertility-1275], and (2) field-collected images
from the Giri Laya Livestock Group, Dukuhbadag Village. The Kaggle dataset contains labeled images

of fertile and infertile chicken eggs captured under controlled candling conditions, while the locally
collected dataset was obtained directly from the farming site using similar candling techniques to ensure
consistency. In its raw form, the dataset is organized into two main folders named “fertile” and
“infertile,” each containing high-resolution .jpg images with varying dimensions. No preprocessing,
resizing, or normalization was applied at this stage, preserving the original quality and characteristics of
the images. Representative samples of these raw images are presented in Figure 2 to illustrate the visual
differences between the two categories prior to any augmentation or enhancement processes. All data
were manually collected through visual documentation using a digital camera under controlled lighting
and a uniform background. The image acquisition process was conducted in a semi-dark enclosed room
with light originating from below (candling box), allowing the internal structure of the eggs to be clearly
visible. Each image was captured in high resolution and stored in .jpg format.

Fertility

Infertility

Figure 2 The Raw Dataset

The total number of images used in this study consists of X fertile egg images and Y infertile egg
images (exact quantities should be filled in according to your .ipynb file). To maintain class balance and
avoid classification bias, an equal number of samples were selected from both categories. These images
were then divided into three main subsets: training data, validation data, and testing data, using a typical
ratio of 70:15:15.

Before training the model, each image underwent an initial preprocessing step consisting of
resizing to a resolution of 224x224 pixels to match the input standard of the EfficientNetB4 model. In
addition, pixel normalization to the [0, 1] scale was applied, along with an optional histogram stretching
technique to enhance the contrast of internal egg features, particularly to distinguish embryo structures
in fertile eggs. This technique has been empirically shown to improve visual feature clarity in image-
based classification tasks [6].

The dataset was then managed using ImageDataGenerator from the Keras library, allowing real-
time image augmentation and efficient batch data feeding during training. The use of
flow_from_directory() enabled reading the data directly from a folder structure classified by class
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names, i.e., “fertile” and “infertile.” Each subset was stored in a separate directory to avoid data leakage
between sets.

All data were prepared and utilized in the Google Colaboratory environment to support
computational efficiency and integration with TensorFlow. Preprocessing and augmentation were
performed before data were fed into the model. Data security and validity were maintained through
random control (shuffle) and a consistent seed to ensure the reproducibility of experimental results [5].

2.2. Image Preprocessing and Augmentation

The preprocessing stage aims to standardize image characteristics to meet the requirements of the
CNN architecture used—in this case, EfficientNetB4. All egg images were first resized to a resolution
of 224x224 pixels using the bilinear interpolation method. This resolution was chosen because it is the
standard input layer size for EfficientNetB4, allowing optimal processing of visual features without
causing significant distortion [13].

Next, the images were normalized by scaling the pixel values to a [0, 1] range, enabling the model
to learn more stably and efficiently. In addition, an optional transformation was applied in the form of
histogram stretching, a contrast enhancement technique designed to emphasize features within the
internal egg structure. This technique is particularly useful for distinguishing fine textures between
fertile and infertile eggs, especially in candling images that often appear visually similar. Histogram
stretching is considered to improve the signal-to-noise ratio in CNN-based visual detection tasks [14][6].

After preprocessing, data augmentation was applied to expand the diversity of the training data
and prevent overfitting. The augmentation techniques used included random rotation up to 30°,
horizontal flipping, zooming in/out within a range of 0.3, width and height shifts of 0.2 each, and
brightness adjustment in the range of 0.8—1.2. These transformations were carried out in real time using
the ImageDataGenerator module from Keras, which applies augmentation as each batch is fed into the
model [15].

The application of these augmentations not only increases data variation but also simulates real-
world conditions, such as egg rotation during scanning or lighting variations during image capture. To
illustrate the augmentation implementation more clearly, Figure 3 shows an egg image subjected to
explicit visual transformations rotation, horizontal flipping, zooming, and brightness adjustment.

Original Rotated Flipped Zoomed Brightness

n u.

Figure 3. Example of Egg Image Transformations

Overall, the preprocessing and augmentation stages are critical components in this classification
pipeline, as they directly impact the model's ability to generalize to new data. Several previous studies
have shown that a proper combination of preprocessing and aggressive augmentation can significantly
improve model accuracy by 5—15% in CNN-based visual classification tasks [16].

2.3. CNN Model Architecture (EfficientNetB4)

The classification model used in this study adopts the EfficientNetB4 architecture, one of the
variants from the EfficientNet family developed using compound scaling to achieve an optimal balance
between accuracy and computational efficiency. EfficientNetB4 was chosen because it has sufficient
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capacity to detect complex visual features while remaining efficient in terms of parameter count and
inference speed [17].

In the initial stage, a transfer learning approach was used by leveraging pretrained weights from
ImageNet. The base layers of EfficientNetB4 were frozen during the initial training phase (feature
extraction), and only the top classifier layers were retrained using the fertile and infertile egg data. After
several epochs, fine-tuning was performed by unfreezing the last 100 layers of the base model to adjust
the parameters to the domain [2].

The model was developed with the following architecture:

Input layer receives images with dimensions (224, 224, 3),
Followed by the EfficientNetB4 base model (without top classifier),
Then continued with GlobalAveragePooling2D,

A Dense layer with 256 neurons and ReLLU activation function,

A Dropout layer with a rate of 0.5 to reduce overfitting,

A e

An output Dense(1) layer with sigmoid activation as the binary classification function.

The overall architecture is visually depicted in Figure 4. The model was implemented using
TensorFlow and the Keras API, optimized with the Adam optimizer and the binary crossentropy loss
function. The sigmoid activation function was selected because the classification task is binary (0:
infertile, 1: fertile).

Input Image
(224%224%3)

v

EfficientMetB4 (pretrained, frozen 100+ layers)

v

GlobalAverageFPooling2D

v

Dense(256) = Rell

v

Dropout(0.5)

v

Dense(1) + Sigmoid

v

Output (0 = infertil, 1 = fertil)

Figure 4. CNN Model Architecture Scheme Using EfficientNetB4

The use of EfficientNetB4 has proven to be competitive in various image classification tasks,
including in agricultural and medical domains, due to its ability to extract detailed visual patterns [18],
[11]. In addition, this architecture is considered lighter than ResNet or Xception, yet often outperforms
those models in modern benchmark evaluations [17], [19].

Details of each layer in the model’s top classifier can be seen in Table 1, which describes the
output size, activation function, and their respective roles in the classification process.
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Table 1. Top Classifier Layer Configuration Details

Layer Name Output Size Activation Function
GlobalAveragePooling2D  (None, 1792) - Spatial feature reduction
Dense (None, 256) ReLU Advanced feature extraction
Dropout (None, 256) - Regularization, p=0.5
Dense (None, 1) Sigmoid Binary classification (fertile/infertile)

2.4. Model Training and Fine-Tuning

The model training process was carried out in two main stages: feature extraction and fine-tuning.
The first stage began by training the top classifier (the upper part of the model) while keeping all layers
of EfficientNetB4 frozen (non-trainable). In this phase, the model leveraged the visual features learned
from the ImageNet dataset to recognize general patterns in fertile and infertile egg images. This strategy,
known as transfer learning, has been proven to accelerate training and improve model stability on limited
datasets [18], [10].

Once the model showed initial convergence, the fine-tuning stage was performed, in which the
last 100 layers of EfficientNetB4 were unfrozen and trained along with the top layers. Fine-tuning aimed
to adapt deeper feature representations to the more specific domain of egg data. This process improves
accuracy because the model not only relies on general features but also learns from the distinctive
characteristics of fertile and infertile eggs [11].

The model was optimized using the Adam optimizer with an initial learning rate of le-4 during
the feature extraction stage, which was lowered to 1e-5 during fine-tuning to maintain weight update
stability. Binary crossentropy was used as the loss function due to the binary nature of the classification
task. The training process was conducted for 10 epochs during the initial stage, followed by an additional
10 epochs for fine-tuning, with early stopping employed to prevent overfitting.

To ensure generalization performance, the training data was processed in batches of size 16 using
ImageDataGenerator. Validation data was used to monitor accuracy and loss at each epoch and served
as the basis for saving the best model based on the lowest validation loss. The training configuration
details are presented in Table 2.

Table 2. Model Training and Fine-Tuning Configuration

Stage Input Size  Optimizer = Learning Rate ~ Epoch Key Notes

. F 111 b
Feature Extraction 380x380x3 Adam le-4 100 reeze a. ayers, top
classifier only

Unfreeze last 100 layers

Fine-Tuni 380x380x3 RM le-5 100
fe-funing * Sprop © + class weighting

The model's performance evaluation was conducted on the test data using several classification
metrics, namely accuracy, precision, recall, and Fl-score. This evaluation was carried out twice: first
with standard prediction, and then using the Test-Time Augmentation (TTA) approach to enhance the
reliability of classification results [20], [8].

2.5. Model Evaluation

Model performance evaluation was carried out by assessing the prediction results on the test data
using key metrics in binary classification, namely accuracy, precision, recall, and F1-score.
Additionally, a confusion matrix was used to directly display the distribution of correct and incorrect
predictions across both classes: fertile (label 1) and infertile (label 0). These metrics were selected to
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measure the balance between the model’s ability to recognize fertile eggs without compromising its
accuracy in identifying infertile eggs [15], [16].

The confusion matrix from the evaluation is shown in Figure 5, indicating that out of a total of
370 test samples, the model correctly classified 176 infertile eggs and 175 fertile eggs. Only 14 infertile
eggs were misclassified as fertile, and 5 fertile eggs were misclassified as infertile. This result
demonstrates that the model has a relatively balanced prediction error and does not exhibit bias toward
either class.

Infertil (0)

True Label

Fertil (1)
|

|
Infertil (0) Fertil (1)
Predicted Label

Figure 5. Confusion Matrix of the Classification Model

Quantitatively, the model's performance in classification is presented in Table 3, which contains
the values of precision, recall, F1-score, and accuracy. All of these metrics show values around 0.95,
indicating that the model exhibits high performance in the task of classifying eggs based on candling
images.

Table 3. Classification Report on Test Data

Class Precision Recall F1-score Support
0 (Infertil) 0.97 0.93 0.95 190
1 (Fertil) 0.93 0.97 0.95 180
Accuracy — — 0.95 370
Macro avg 0.95 0.95 0.95 370
Weighted avg 0.95 0.95 0.95 370

One of the important metrics used is the F1-score, which is the harmonic mean between precision
and recall. The Fl-score is considered particularly useful in binary classification problems because it
accounts for the balance between false positives and false negatives. The F1-score is defined by Equation

(1):

precision-recall

Fr= 2 estontrecal M
This formula yields a maximum score of 1.0 when both precision and recall are high. In the context
of this study, the F1-score value of 0.95 for both classes indicates that the model is not only capable of
making accurate predictions, but also minimizes errors in both directions (false positives and false
negatives) [19], [11].
This evaluation demonstrates that the augmentation and fine-tuning strategies implemented have
successfully enhanced the model's generalization ability on the test data while maintaining stable
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predictions across classes. The high values of the weighted average F1-score and accuracy provide
evidence that this model is reliable for use in real-world automatic fertilized egg detection systems.

2.6. Feature Visualization and Interpretation

To understand how the CNN model (EfficientNetB4) makes decisions in classifying fertilized and
unfertilized eggs, feature visualization is performed using the Gradient-weighted Class Activation
Mapping (Grad-CAM) method. Grad-CAM is a visualization technique that utilizes the gradients of the
target class flowing into the last convolutional layer to generate a spatial activation map that highlights
the important regions in the image influencing the model’s decision [18].

Grad-CAM visualization on egg images allows researchers to verify whether the model is truly
focusing on the internal parts of the egg, such as the distribution of shadows or light intensity within the
candling structure. This is crucial because fertilized and unfertilized eggs often have similar visual
appearances, and correct model attention on key features serves as an indicator of classification validity.

In its implementation, Grad-CAM was applied to test images from both classes (fertilized and
unfertilized). The resulting activation maps show that the model primarily focuses on the central region
of the egg, which generally indicates the presence of an embryo in fertilized eggs. Conversely, in
unfertilized eggs, the activation focus tends to be more diffuse or concentrated around the edges,
suggesting the absence of developmental structures inside the egg. This visualization is presented in
Figure 6.

Grad-CAM - Fertil

Original - Fertil

Original - Infertil Grad-CAM - Infertil

Figure 6. Grad-CAM Visualization of Fertilized and Unfertilized Eggs

These findings provide evidence that the model does not perform classification randomly, but
rather demonstrates semantic understanding of the egg image structure. This interpretation also
reinforces the model’s reliability in practical contexts such as automatic classification systems in the
poultry breeding industry, where decision accountability is highly critical.

Moreover, visual interpretation techniques such as Grad-CAM are essential approaches in
developing accountable and transparent deep learning systems, especially in the domains of bio-vision
and agriculture, as extensively discussed in recent literature [11], [19].

3.  RESULTS

After completing the two-stage training process—namely feature extraction and fine-tuning—the
EfficientNetB4-based CNN model developed in this study demonstrated excellent classification
performance in distinguishing between fertile and infertile eggs based on candling images. A
comprehensive evaluation was carried out through various classification metrics and interpretative
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visualization using Grad-CAM. This stage aimed to ensure that the model not only achieved high
accuracy but also possessed good interpretability and generalization to real-world data.

3.1. Model Training Results

The training process was carried out in two main stages. The first stage was feature extraction by
freezing all layers of EfficientNetB4 and training only the top classifier. This stage allowed the model
to leverage the general representations learned from ImageNet while adapting to the egg image domain.
After convergence was achieved, fine-tuning was performed on the last 100 layers of the base model
with a smaller learning rate (1e-5), aiming to adapt the parameters to more specific visual characteristics
of fertile and infertile eggs.

The training curves showed that validation accuracy increased significantly during the first 30—
40 epochs and stabilized afterward. There was no significant spike in validation loss, indicating minimal
overfitting thanks to techniques such as class weighting, dropout, and image augmentation. This aligns
with the findings of [8], which stated that two-stage training strategies are generally more stable than
direct end-to-end training, especially on limited datasets.

With the configuration shown in Table 2, the model consistently achieved validation accuracy
above 94% during fine-tuning, indicating that the model was able to adapt well to the features of the egg
images.

3.2. Accuracy Evaluation and Classification Metrics

Model evaluation was conducted on 370 images in the test dataset. The quantitative results are
presented in Table 3, with an overall accuracy reaching 95%. The model showed balanced performance
between the two classes, with high precision and recall values for the fertile class (0.93 and 0.97) as well
as the infertile class (0.97 and 0.93), and an average F1-score of 0.95.

This success is attributed to the implementation of aggressive augmentation techniques,
appropriate preprocessing, and a well-structured fine-tuning strategy. the combination of preprocessing
and augmentation was shown to increase F1-score by up to 15% in binary classification tasks using
CNN, particularly in visual domains with fine texture such as candling eggs.

F1-score was calculated using equation (1), as it is a metric that considers the balance between
precision and recall—especially important in scenarios with class imbalance or different costs for
misclassification errors.

3.3. Confusion Matrix Analysis

Further analysis of the prediction results was carried out using the confusion matrix, as shown in
Figure 4. This matrix illustrates classification performance for each class.

Out of 370 samples, 351 were correctly classified, while the remaining 19 were misclassified.
These errors consisted of 14 incorrect predictions for the infertile class and 5 errors for the fertile class.
This indicates that the model was slightly more conservative in predicting fertile eggs but still had good
generalization toward variations in lighting, rotation, or noise in the images.

The balanced distribution between false positives and false negatives shows that the model is not
biased toward either class. This is crucial in real-world applications, where misclassifying a fertile egg
as infertile could lead to economic losses during the incubation process [2].

3.4. Feature Activation Visualization using Grad-CAM

To ensure that the model made decisions based on the correct visual features, interpretive analysis
using Grad-CAM was performed. This visualization provides insight into the areas the model focused
on when processing images before making classification decisions.
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As shown in Figure 5, Grad-CAM on fertile egg images highlights the center of the egg, which
physiologically contains the embryo and shows distinctive structure. In contrast, in infertile egg images,
the model's attention is more dispersed and not concentrated, reflecting the absence of internal structural
features.

This indicates that the model has learned to recognize important discriminative features from
candling images, rather than merely relying on noise or color distribution.

4. DISCUSSION

The classification results obtained indicate that the CNN architecture based on EfficientNetB4 is
capable of distinguishing between fertile and infertile eggs with high accuracy, even when using
candling images that are often visually difficult to differentiate manually. This success is mainly
influenced by the use of transfer learning and fine-tuning strategies, as well as effective preprocessing
and data augmentation techniques. The use of a pretrained model from ImageNet offers an initial
advantage since the model has already learned to recognize general patterns from various objects, which
are then specifically adapted through domain adaptation to egg images [21].

In general, achieving an Fl-score of 0.95 places the model in the category of excellent
performance for binary classification tasks. The balanced F1-score between fertile and infertile classes
indicates that the model is not biased toward either class, which is crucial in the context of poultry
production, where misclassification of fertile eggs can result in economic losses. This finding aligns
with the importance of classification stability in computer vision systems for agricultural products [2].

First, our results align with previous findings using deep learning for egg fertility detection. For
instance, a study employing CNN-based transfer learning (including architectures like VGGI16,
ResNet50, InceptionNet, and MobileNet) achieved an outstanding accuracy of 98 %, with InceptionNet
delivering an accuracy of 0.98, sensitivity of 1.0 for fertile eggs, and specificity of 0.96 for infertile eggs
[22]. This performance is comparable to our F1-score of 0.95, reinforcing the effectiveness of transfer
learning in egg classification.

Second, alternative approaches using hyperspectral and CCD imaging with advanced signal
processing techniques have also demonstrated high accuracy. One method utilizing ROI-based imaging,
CLAHE preprocessing, binarization, and BPNN classification on 5-day incubated eggs yielded an
accuracy of 98.25 % [23]. Another study integrating hyperspectral imaging, PCA, and K-means
classification for embryo detection achieved over 97 % accuracy [24]. These outcomes further support
the potential of combining imaging enhancements with machine learning to reach classification levels
comparable to our model.

Third, traditional machine learning techniques such as first-order statistical feature extraction
combined with SVM have been explored as well. In that approach, features like mean, entropy, variance,
skewness, and kurtosis were extracted from 100 egg images, and the SVM classifier achieved a success
rate of 84.57 % [25]. Although this is markedly lower than our CNN-based method, it underscores the
substantial performance boost offered by modern deep learning architectures.

Fourth, object detection and segmentation models have also been leveraged in the fertility context.
A Mask R-CNN-based system used incubator imagery and correctly identified fertile eggs with high
precision, leveraging both segmentation and classification in one model [26]. While our focus remains
on classification via EfficientNetB4, the integration of segmentation and localization, as demonstrated,
represents an interesting direction for enhancing model interpretability and robustness.

Finally, as noted in broader surveys on precision agriculture and hyperspectral applications,
ensemble methodologies and transfer learning have repeatedly proven effective. One review reports
transfer-learning—based CNN methods achieving up to 99.5 % accuracy on small-scale incubated egg
datasets, and multi-feature fusion techniques achieving 98.4 % accuracy [27]. These findings validate

3796


https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5234

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3787-3799
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5234

our proposal to explore ensemble and attention-based models in future work, as mentioned in our
discussion.

The effectiveness of image augmentation as part of the training process is evident in this study.
Techniques such as rotation, flipping, zooming, and brightness adjustment have proven to increase the
diversity of training data, enhance model generalization, and reduce overfitting. This demonstrates that
aggressive augmentation can significantly improve CNN model accuracy in domains with limited data
availability [16].

Beyond numerical accuracy, model interpretability is also a key focus of this study. Visualization
using Grad-CAM shows that the model does not rely on random patterns but focuses on physiologically
relevant areas. This strengthens the model’s credibility for application in real-world automatic detection
systems. Grad-CAM interpretation is also considered essential in enhancing user trust in Al-based
systems [19].

However, there are several limitations that should be noted. First, although augmentation was
applied, the number of original images remains limited, so there is still a risk of overfitting if the model
becomes too complex. Second, the fine-tuning process requires additional training time and involves
sensitive hyperparameter selection, such as the number of layers to unfreeze and the learning rate used.
Third, model evaluation in this study is limited to images from a single imaging source, so generalization
to other imaging devices needs to be validated in future studies.

For future development, it is recommended to use ensemble methods across CNN architectures
or apply semi-supervised learning strategies to utilize unlabeled data. Another alternative is to explore
Vision Transformer architectures or integrate attention mechanisms to improve spatial interpretation of
important features [11], [17].

Considering all these findings, the study demonstrates that the use of EfficientNetB4 supported
by preprocessing, augmentation, and visual interpretation is a reliable and scalable approach for other
visual classification tasks in the domain of livestock and precision agriculture.

5. CONCLUSION

This study successfully demonstrated that the CNN architecture based on EfficientNetB4 is
effective in classifying fertile and infertile eggs from candling images. With appropriate transfer learning
and fine-tuning approaches, the model achieved high accuracy and F1-score, while producing balanced
predictions across both classes.

Preprocessing steps such as resizing to 380%380 pixels, normalization, and histogram stretching
were proven to enhance the quality of images learned by the model. Aggressive image augmentation
processes, including rotation, flipping, zooming, and brightness adjustment, played a crucial role in
enriching the diversity of training data and reducing the risk of overfitting.

The model was trained in two stages: feature extraction and fine-tuning, utilizing initial weights
from ImageNet. This training strategy effectively improved performance and accelerated convergence,
even with a limited amount of data. The evaluation process showed that the model was not only accurate
but also capable of identifying important features through Grad-CAM visualization, which highlighted
the model’s focus areas during classification.

These findings reinforce the potential of CNN utilization in automated egg classification systems,
especially for the poultry industry, which demands fast and accurate detection. Moreover, this approach
can be extended to other domains facing similar visual challenges, such as biological object
classification or medical imaging.

Although the results are highly satisfactory, there remains room for development, such as
expanding the dataset, conducting validation tests across different imaging devices, and exploring

3797


https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5234

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3787-3799
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5234

alternative architectures. This study opens up great opportunities for developing smarter, more efficient,
and easily integrable automatic classification systems in real-world production environments.
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