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Abstract 

The classification of fertile and infertile chicken eggs is crucial in the poultry industry to ensure optimal incubation 

efficiency and hatchability. However, the visual similarity between both egg types under candling conditions poses 

a significant challenge for manual inspection. This study aims to develop a convolutional neural network (CNN) 

model using the EfficientNetB4 architecture to automatically classify egg fertility based on image data. The dataset 

comprises candling images of chicken eggs, which underwent preprocessing steps such as resizing, normalization, 

and histogram stretching to enhance contrast. To improve model generalization, aggressive data augmentation 

techniques were applied, including rotation, flipping, zooming, and brightness adjustment. The model was trained in 

two phases—feature extraction and fine-tuning—using transfer learning and class balancing strategies. Evaluation 

results demonstrated high performance with an F1-score of 0.95 and balanced classification across both classes. The 

model's interpretability was further enhanced using Grad-CAM visualization, showing relevant activation regions. 

These findings indicate that the proposed method is effective in automating egg fertility classification and has 

potential for broader application in agricultural image diagnostics. 

Keywords : Candling Images, Convolutional Neural Network, Data Augmentation, Egg Classification, 

EfficientNetB4. 
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1. INTRODUCTION 

Chicken eggs are one of the most important animal-based food commodities in fulfilling the 

nutritional needs of the population. The content of protein, fat, and various vitamins in eggs makes them 

an efficient and easily accessible source of nutrients. Along with the increasing demand for eggs for 

both domestic consumption and industrial purposes, the need for efficient and accurate methods of egg 

quality classification has become increasingly crucial [1]. One of the important parameters that can be 

used to classify eggs is fertility, which has significant implications in the livestock and breeding 

industries. 

Until now, the classification process of fertile and infertile eggs has largely been conducted 

manually using the candling method, which relies on visual observation of light changes inside the egg. 

However, this approach is prone to subjectivity and requires technical experience from the operator. To 

overcome these limitations, the development of artificial intelligence technology, particularly deep 

learning, offers a faster, more accurate, and more reliable automation solution [2]. One of the most 

widely used deep learning architectures in image processing and visual classification is the 

Convolutional Neural Network (CNN) [3]. 

CNN has proven effective in detecting visual patterns from digital images, including in the 

classification of biological objects such as chicken eggs [4]. Even so, the performance of CNN is highly 
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dependent on the quantity and diversity of training data. One of the main challenges in classifying fertile 

and infertile eggs is the limited availability of public datasets and the lack of image data variation, which 

can lead to overfitting and reduced model accuracy on new data [5]. 

To overcome these data limitations, data augmentation techniques have become a commonly used 

approach. Data augmentation allows the creation of synthetic variations from existing datasets through 

geometric manipulations, color transformations, cropping, flipping, and other generative techniques 

without needing to increase the amount of raw data [6]. In recent literature, various augmentation 

techniques such as MixUp, CutMix, Copy-Paste, and GridMix have been proven to enhance the 

generalization ability of CNN models [7]–[9]. 

Several studies have demonstrated the effectiveness of data augmentation in CNN-based 

classification across various domains, including plant disease classification [10], medical image 

classification [11], and industrial object recognition [12]. However, there has been little research 

specifically examining the impact of augmentation techniques on egg classification accuracy based on 

fertility. Therefore, this study aims to empirically evaluate the extent to which data augmentation 

techniques can improve the classification performance of fertile and infertile eggs using a specially 

designed CNN architecture. 

By utilizing a dataset of fertile and infertile egg images that has been collected and systematically 

applying various augmentation techniques, this study is expected to contribute to the optimization of an 

automated egg classification pipeline. In addition, the results of this study can serve as a practical 

reference for farmers, industry practitioners, and researchers in applying CNN technology based on data 

augmentation for more efficient and accurate egg selection purposes [1]. 

2. METHOD 

In the field of computer vision, image classification is one of the key tasks widely applied across 

various domains, including animal husbandry. One case study of image classification in this context is 

the classification of chicken eggs based on their fertility. In this study, the classification of fertile and 

infertile egg images was carried out using a Convolutional Neural Network (CNN) architecture with a 

two-stage approach, namely feature extraction and fine-tuning. In addition, data augmentation 

techniques were applied to address the limitation of data quantity and to improve model generalization. 

The methodology of this research consists of several main stages, starting from data collection, 

image preprocessing and augmentation, training and fine-tuning of the CNN model, to performance 

evaluation using various metrics such as accuracy, precision, recall, and F1-score. The overall research 

workflow can be seen in Figure 1. These stages will be explained in detail in sub 2.1 to 2.6. 

 

 
Figure 1. Research Workflow for Fertile and Infertile Egg Classification 
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2.1. Data Collection 

The dataset used in this study consists of chicken egg images categorized into two classes: fertile 

and infertile eggs. The raw dataset used in this research originated from two primary sources: (1) a 

publicly available dataset from Kaggle titled “Egg Fertility 1275” 

[https://www.kaggle.com/datasets/mostefatabbakh/egg-fertility-1275], and (2) field-collected images 

from the Giri Laya Livestock Group, Dukuhbadag Village. The Kaggle dataset contains labeled images 

of fertile and infertile chicken eggs captured under controlled candling conditions, while the locally 

collected dataset was obtained directly from the farming site using similar candling techniques to ensure 

consistency. In its raw form, the dataset is organized into two main folders named “fertile” and 

“infertile,” each containing high-resolution .jpg images with varying dimensions. No preprocessing, 

resizing, or normalization was applied at this stage, preserving the original quality and characteristics of 

the images. Representative samples of these raw images are presented in Figure 2 to illustrate the visual 

differences between the two categories prior to any augmentation or enhancement processes. All data 

were manually collected through visual documentation using a digital camera under controlled lighting 

and a uniform background. The image acquisition process was conducted in a semi-dark enclosed room 

with light originating from below (candling box), allowing the internal structure of the eggs to be clearly 

visible. Each image was captured in high resolution and stored in .jpg format. 

 

 
Figure 2 The Raw Dataset 

 

The total number of images used in this study consists of X fertile egg images and Y infertile egg 

images (exact quantities should be filled in according to your .ipynb file). To maintain class balance and 

avoid classification bias, an equal number of samples were selected from both categories. These images 

were then divided into three main subsets: training data, validation data, and testing data, using a typical 

ratio of 70:15:15. 

Before training the model, each image underwent an initial preprocessing step consisting of 

resizing to a resolution of 224×224 pixels to match the input standard of the EfficientNetB4 model. In 

addition, pixel normalization to the [0, 1] scale was applied, along with an optional histogram stretching 

technique to enhance the contrast of internal egg features, particularly to distinguish embryo structures 

in fertile eggs. This technique has been empirically shown to improve visual feature clarity in image-

based classification tasks  [6]. 

The dataset was then managed using ImageDataGenerator from the Keras library, allowing real-

time image augmentation and efficient batch data feeding during training. The use of 

flow_from_directory() enabled reading the data directly from a folder structure classified by class 
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names, i.e., “fertile” and “infertile.” Each subset was stored in a separate directory to avoid data leakage 

between sets. 

All data were prepared and utilized in the Google Colaboratory environment to support 

computational efficiency and integration with TensorFlow. Preprocessing and augmentation were 

performed before data were fed into the model. Data security and validity were maintained through 

random control (shuffle) and a consistent seed to ensure the reproducibility of experimental results [5]. 

2.2. Image Preprocessing and Augmentation 

The preprocessing stage aims to standardize image characteristics to meet the requirements of the 

CNN architecture used—in this case, EfficientNetB4. All egg images were first resized to a resolution 

of 224×224 pixels using the bilinear interpolation method. This resolution was chosen because it is the 

standard input layer size for EfficientNetB4, allowing optimal processing of visual features without 

causing significant distortion [13]. 

Next, the images were normalized by scaling the pixel values to a [0, 1] range, enabling the model 

to learn more stably and efficiently. In addition, an optional transformation was applied in the form of 

histogram stretching, a contrast enhancement technique designed to emphasize features within the 

internal egg structure. This technique is particularly useful for distinguishing fine textures between 

fertile and infertile eggs, especially in candling images that often appear visually similar. Histogram 

stretching is considered to improve the signal-to-noise ratio in CNN-based visual detection tasks [14][6]. 

After preprocessing, data augmentation was applied to expand the diversity of the training data 

and prevent overfitting. The augmentation techniques used included random rotation up to 30°, 

horizontal flipping, zooming in/out within a range of 0.3, width and height shifts of 0.2 each, and 

brightness adjustment in the range of 0.8–1.2. These transformations were carried out in real time using 

the ImageDataGenerator module from Keras, which applies augmentation as each batch is fed into the 

model [15]. 

The application of these augmentations not only increases data variation but also simulates real-

world conditions, such as egg rotation during scanning or lighting variations during image capture. To 

illustrate the augmentation implementation more clearly, Figure 3 shows an egg image subjected to 

explicit visual transformations rotation, horizontal flipping, zooming, and brightness adjustment. 

 

 
Figure 3. Example of Egg Image Transformations 

 

Overall, the preprocessing and augmentation stages are critical components in this classification 

pipeline, as they directly impact the model's ability to generalize to new data. Several previous studies 

have shown that a proper combination of preprocessing and aggressive augmentation can significantly 

improve model accuracy by 5–15% in CNN-based visual classification tasks [16]. 

2.3. CNN Model Architecture (EfficientNetB4) 

The classification model used in this study adopts the EfficientNetB4 architecture, one of the 

variants from the EfficientNet family developed using compound scaling to achieve an optimal balance 

between accuracy and computational efficiency. EfficientNetB4 was chosen because it has sufficient 
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capacity to detect complex visual features while remaining efficient in terms of parameter count and 

inference speed [17]. 

In the initial stage, a transfer learning approach was used by leveraging pretrained weights from 

ImageNet. The base layers of EfficientNetB4 were frozen during the initial training phase (feature 

extraction), and only the top classifier layers were retrained using the fertile and infertile egg data. After 

several epochs, fine-tuning was performed by unfreezing the last 100 layers of the base model to adjust 

the parameters to the domain  [2]. 

The model was developed with the following architecture: 

1. Input layer receives images with dimensions (224, 224, 3), 

2. Followed by the EfficientNetB4 base model (without top classifier), 

3. Then continued with GlobalAveragePooling2D, 

4. A Dense layer with 256 neurons and ReLU activation function, 

5. A Dropout layer with a rate of 0.5 to reduce overfitting, 

6. An output Dense(1) layer with sigmoid activation as the binary classification function. 

The overall architecture is visually depicted in Figure 4. The model was implemented using 

TensorFlow and the Keras API, optimized with the Adam optimizer and the binary_crossentropy loss 

function. The sigmoid activation function was selected because the classification task is binary (0: 

infertile, 1: fertile). 

 
Figure 4. CNN Model Architecture Scheme Using EfficientNetB4 

 

The use of EfficientNetB4 has proven to be competitive in various image classification tasks, 

including in agricultural and medical domains, due to its ability to extract detailed visual patterns [18], 

[11]. In addition, this architecture is considered lighter than ResNet or Xception, yet often outperforms 

those models in modern benchmark evaluations [17], [19]. 

Details of each layer in the model’s top classifier can be seen in Table 1, which describes the 

output size, activation function, and their respective roles in the classification process. 
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Table 1. Top Classifier Layer Configuration Details 

Layer Name Output Size Activation Function 

GlobalAveragePooling2D (None, 1792) - Spatial feature reduction 

Dense (None, 256) ReLU Advanced feature extraction 

Dropout (None, 256) - Regularization, p=0.5 

Dense (None, 1) Sigmoid Binary classification (fertile/infertile) 

2.4. Model Training and Fine-Tuning 

The model training process was carried out in two main stages: feature extraction and fine-tuning. 

The first stage began by training the top classifier (the upper part of the model) while keeping all layers 

of EfficientNetB4 frozen (non-trainable). In this phase, the model leveraged the visual features learned 

from the ImageNet dataset to recognize general patterns in fertile and infertile egg images. This strategy, 

known as transfer learning, has been proven to accelerate training and improve model stability on limited 

datasets [18], [10]. 

Once the model showed initial convergence, the fine-tuning stage was performed, in which the 

last 100 layers of EfficientNetB4 were unfrozen and trained along with the top layers. Fine-tuning aimed 

to adapt deeper feature representations to the more specific domain of egg data. This process improves 

accuracy because the model not only relies on general features but also learns from the distinctive 

characteristics of fertile and infertile eggs [11]. 

The model was optimized using the Adam optimizer with an initial learning rate of 1e-4 during 

the feature extraction stage, which was lowered to 1e-5 during fine-tuning to maintain weight update 

stability. Binary crossentropy was used as the loss function due to the binary nature of the classification 

task. The training process was conducted for 10 epochs during the initial stage, followed by an additional 

10 epochs for fine-tuning, with early stopping employed to prevent overfitting. 

To ensure generalization performance, the training data was processed in batches of size 16 using 

ImageDataGenerator. Validation data was used to monitor accuracy and loss at each epoch and served 

as the basis for saving the best model based on the lowest validation loss. The training configuration 

details are presented in Table 2. 

 

Table 2. Model Training and Fine-Tuning Configuration 

Stage Input Size Optimizer Learning Rate Epoch Key Notes 

Feature Extraction 380×380×3 Adam 1e-4 100 
Freeze all layers, top 

classifier only 

Fine-Tuning 380×380×3 RMSprop 1e-5 100 
Unfreeze last 100 layers 

+ class weighting 

 

The model's performance evaluation was conducted on the test data using several classification 

metrics, namely accuracy, precision, recall, and F1-score. This evaluation was carried out twice: first 

with standard prediction, and then using the Test-Time Augmentation (TTA) approach to enhance the 

reliability of classification results [20], [8]. 

2.5. Model Evaluation 

Model performance evaluation was carried out by assessing the prediction results on the test data 

using key metrics in binary classification, namely accuracy, precision, recall, and F1-score. 

Additionally, a confusion matrix was used to directly display the distribution of correct and incorrect 

predictions across both classes: fertile (label 1) and infertile (label 0). These metrics were selected to 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5234


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 5, October 2025, Page. 3787-3799 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5234 

 

 

3793 

measure the balance between the model’s ability to recognize fertile eggs without compromising its 

accuracy in identifying infertile eggs [15], [16]. 

The confusion matrix from the evaluation is shown in Figure 5, indicating that out of a total of 

370 test samples, the model correctly classified 176 infertile eggs and 175 fertile eggs. Only 14 infertile 

eggs were misclassified as fertile, and 5 fertile eggs were misclassified as infertile. This result 

demonstrates that the model has a relatively balanced prediction error and does not exhibit bias toward 

either class. 

 

 
Figure 5. Confusion Matrix of the Classification Model 

 

Quantitatively, the model's performance in classification is presented in Table 3, which contains 

the values of precision, recall, F1-score, and accuracy. All of these metrics show values around 0.95, 

indicating that the model exhibits high performance in the task of classifying eggs based on candling 

images. 

 

Table 3. Classification Report on Test Data 

Class Precision Recall F1-score Support 

0 (Infertil) 0.97 0.93 0.95 190 

1 (Fertil) 0.93 0.97 0.95 180 

Accuracy — — 0.95 370 

Macro avg 0.95 0.95 0.95 370 

Weighted avg 0.95 0.95 0.95 370 

 

One of the important metrics used is the F1-score, which is the harmonic mean between precision 

and recall. The F1-score is considered particularly useful in binary classification problems because it 

accounts for the balance between false positives and false negatives. The F1-score is defined by Equation 

(1): 

𝐹1 = 2 ⋅
precision⋅recall

precision+recall
   (1) 

This formula yields a maximum score of 1.0 when both precision and recall are high. In the context 

of this study, the F1-score value of 0.95 for both classes indicates that the model is not only capable of 

making accurate predictions, but also minimizes errors in both directions (false positives and false 

negatives) [19], [11]. 

This evaluation demonstrates that the augmentation and fine-tuning strategies implemented have 

successfully enhanced the model's generalization ability on the test data while maintaining stable 
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predictions across classes. The high values of the weighted average F1-score and accuracy provide 

evidence that this model is reliable for use in real-world automatic fertilized egg detection systems. 

2.6. Feature Visualization and Interpretation 

To understand how the CNN model (EfficientNetB4) makes decisions in classifying fertilized and 

unfertilized eggs, feature visualization is performed using the Gradient-weighted Class Activation 

Mapping (Grad-CAM) method. Grad-CAM is a visualization technique that utilizes the gradients of the 

target class flowing into the last convolutional layer to generate a spatial activation map that highlights 

the important regions in the image influencing the model’s decision [18]. 

Grad-CAM visualization on egg images allows researchers to verify whether the model is truly 

focusing on the internal parts of the egg, such as the distribution of shadows or light intensity within the 

candling structure. This is crucial because fertilized and unfertilized eggs often have similar visual 

appearances, and correct model attention on key features serves as an indicator of classification validity. 

In its implementation, Grad-CAM was applied to test images from both classes (fertilized and 

unfertilized). The resulting activation maps show that the model primarily focuses on the central region 

of the egg, which generally indicates the presence of an embryo in fertilized eggs. Conversely, in 

unfertilized eggs, the activation focus tends to be more diffuse or concentrated around the edges, 

suggesting the absence of developmental structures inside the egg. This visualization is presented in 

Figure 6. 

 

 
Figure 6. Grad-CAM Visualization of Fertilized and Unfertilized Eggs 

 

These findings provide evidence that the model does not perform classification randomly, but 

rather demonstrates semantic understanding of the egg image structure. This interpretation also 

reinforces the model’s reliability in practical contexts such as automatic classification systems in the 

poultry breeding industry, where decision accountability is highly critical. 

Moreover, visual interpretation techniques such as Grad-CAM are essential approaches in 

developing accountable and transparent deep learning systems, especially in the domains of bio-vision 

and agriculture, as extensively discussed in recent literature [11], [19]. 

3. RESULTS 

After completing the two-stage training process—namely feature extraction and fine-tuning—the 

EfficientNetB4-based CNN model developed in this study demonstrated excellent classification 

performance in distinguishing between fertile and infertile eggs based on candling images. A 

comprehensive evaluation was carried out through various classification metrics and interpretative 
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visualization using Grad-CAM. This stage aimed to ensure that the model not only achieved high 

accuracy but also possessed good interpretability and generalization to real-world data. 

3.1. Model Training Results 

The training process was carried out in two main stages. The first stage was feature extraction by 

freezing all layers of EfficientNetB4 and training only the top classifier. This stage allowed the model 

to leverage the general representations learned from ImageNet while adapting to the egg image domain. 

After convergence was achieved, fine-tuning was performed on the last 100 layers of the base model 

with a smaller learning rate (1e-5), aiming to adapt the parameters to more specific visual characteristics 

of fertile and infertile eggs. 

The training curves showed that validation accuracy increased significantly during the first 30–

40 epochs and stabilized afterward. There was no significant spike in validation loss, indicating minimal 

overfitting thanks to techniques such as class weighting, dropout, and image augmentation. This aligns 

with the findings of [8], which stated that two-stage training strategies are generally more stable than 

direct end-to-end training, especially on limited datasets. 

With the configuration shown in Table 2, the model consistently achieved validation accuracy 

above 94% during fine-tuning, indicating that the model was able to adapt well to the features of the egg 

images. 

3.2. Accuracy Evaluation and Classification Metrics 

Model evaluation was conducted on 370 images in the test dataset. The quantitative results are 

presented in Table 3, with an overall accuracy reaching 95%. The model showed balanced performance 

between the two classes, with high precision and recall values for the fertile class (0.93 and 0.97) as well 

as the infertile class (0.97 and 0.93), and an average F1-score of 0.95. 

This success is attributed to the implementation of aggressive augmentation techniques, 

appropriate preprocessing, and a well-structured fine-tuning strategy. the combination of preprocessing 

and augmentation was shown to increase F1-score by up to 15% in binary classification tasks using 

CNN, particularly in visual domains with fine texture such as candling eggs. 

F1-score was calculated using equation (1), as it is a metric that considers the balance between 

precision and recall—especially important in scenarios with class imbalance or different costs for 

misclassification errors. 

3.3. Confusion Matrix Analysis 

Further analysis of the prediction results was carried out using the confusion matrix, as shown in 

Figure 4. This matrix illustrates classification performance for each class. 

Out of 370 samples, 351 were correctly classified, while the remaining 19 were misclassified. 

These errors consisted of 14 incorrect predictions for the infertile class and 5 errors for the fertile class. 

This indicates that the model was slightly more conservative in predicting fertile eggs but still had good 

generalization toward variations in lighting, rotation, or noise in the images. 

The balanced distribution between false positives and false negatives shows that the model is not 

biased toward either class. This is crucial in real-world applications, where misclassifying a fertile egg 

as infertile could lead to economic losses during the incubation process [2]. 

3.4. Feature Activation Visualization using Grad-CAM 

To ensure that the model made decisions based on the correct visual features, interpretive analysis 

using Grad-CAM was performed. This visualization provides insight into the areas the model focused 

on when processing images before making classification decisions. 
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As shown in Figure 5, Grad-CAM on fertile egg images highlights the center of the egg, which 

physiologically contains the embryo and shows distinctive structure. In contrast, in infertile egg images, 

the model's attention is more dispersed and not concentrated, reflecting the absence of internal structural 

features. 

This indicates that the model has learned to recognize important discriminative features from 

candling images, rather than merely relying on noise or color distribution. 

4. DISCUSSION 

The classification results obtained indicate that the CNN architecture based on EfficientNetB4 is 

capable of distinguishing between fertile and infertile eggs with high accuracy, even when using 

candling images that are often visually difficult to differentiate manually. This success is mainly 

influenced by the use of transfer learning and fine-tuning strategies, as well as effective preprocessing 

and data augmentation techniques. The use of a pretrained model from ImageNet offers an initial 

advantage since the model has already learned to recognize general patterns from various objects, which 

are then specifically adapted through domain adaptation to egg images [21]. 

In general, achieving an F1-score of 0.95 places the model in the category of excellent 

performance for binary classification tasks. The balanced F1-score between fertile and infertile classes 

indicates that the model is not biased toward either class, which is crucial in the context of poultry 

production, where misclassification of fertile eggs can result in economic losses. This finding aligns 

with the importance of classification stability in computer vision systems for agricultural products [2]. 

First, our results align with previous findings using deep learning for egg fertility detection. For 

instance, a study employing CNN-based transfer learning (including architectures like VGG16, 

ResNet50, InceptionNet, and MobileNet) achieved an outstanding accuracy of 98 %, with InceptionNet 

delivering an accuracy of 0.98, sensitivity of 1.0 for fertile eggs, and specificity of 0.96 for infertile eggs 

[22]. This performance is comparable to our F1-score of 0.95, reinforcing the effectiveness of transfer 

learning in egg classification. 

Second, alternative approaches using hyperspectral and CCD imaging with advanced signal 

processing techniques have also demonstrated high accuracy. One method utilizing ROI-based imaging, 

CLAHE preprocessing, binarization, and BPNN classification on 5-day incubated eggs yielded an 

accuracy of 98.25 % [23]. Another study integrating hyperspectral imaging, PCA, and K-means 

classification for embryo detection achieved over 97 % accuracy  [24]. These outcomes further support 

the potential of combining imaging enhancements with machine learning to reach classification levels 

comparable to our model. 

Third, traditional machine learning techniques such as first-order statistical feature extraction 

combined with SVM have been explored as well. In that approach, features like mean, entropy, variance, 

skewness, and kurtosis were extracted from 100 egg images, and the SVM classifier achieved a success 

rate of 84.57 % [25]. Although this is markedly lower than our CNN-based method, it underscores the 

substantial performance boost offered by modern deep learning architectures. 

Fourth, object detection and segmentation models have also been leveraged in the fertility context. 

A Mask R-CNN–based system used incubator imagery and correctly identified fertile eggs with high 

precision, leveraging both segmentation and classification in one model [26]. While our focus remains 

on classification via EfficientNetB4, the integration of segmentation and localization, as demonstrated, 

represents an interesting direction for enhancing model interpretability and robustness. 

Finally, as noted in broader surveys on precision agriculture and hyperspectral applications, 

ensemble methodologies and transfer learning have repeatedly proven effective. One review reports 

transfer-learning–based CNN methods achieving up to 99.5 % accuracy on small-scale incubated egg 

datasets, and multi-feature fusion techniques achieving 98.4 % accuracy [27]. These findings validate 
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our proposal to explore ensemble and attention-based models in future work, as mentioned in our 

discussion. 

The effectiveness of image augmentation as part of the training process is evident in this study. 

Techniques such as rotation, flipping, zooming, and brightness adjustment have proven to increase the 

diversity of training data, enhance model generalization, and reduce overfitting. This demonstrates that 

aggressive augmentation can significantly improve CNN model accuracy in domains with limited data 

availability [16]. 

Beyond numerical accuracy, model interpretability is also a key focus of this study. Visualization 

using Grad-CAM shows that the model does not rely on random patterns but focuses on physiologically 

relevant areas. This strengthens the model’s credibility for application in real-world automatic detection 

systems. Grad-CAM interpretation is also considered essential in enhancing user trust in AI-based 

systems [19]. 

However, there are several limitations that should be noted. First, although augmentation was 

applied, the number of original images remains limited, so there is still a risk of overfitting if the model 

becomes too complex. Second, the fine-tuning process requires additional training time and involves 

sensitive hyperparameter selection, such as the number of layers to unfreeze and the learning rate used. 

Third, model evaluation in this study is limited to images from a single imaging source, so generalization 

to other imaging devices needs to be validated in future studies. 

For future development, it is recommended to use ensemble methods across CNN architectures 

or apply semi-supervised learning strategies to utilize unlabeled data. Another alternative is to explore 

Vision Transformer architectures or integrate attention mechanisms to improve spatial interpretation of 

important features [11], [17]. 

Considering all these findings, the study demonstrates that the use of EfficientNetB4 supported 

by preprocessing, augmentation, and visual interpretation is a reliable and scalable approach for other 

visual classification tasks in the domain of livestock and precision agriculture. 

5. CONCLUSION 

This study successfully demonstrated that the CNN architecture based on EfficientNetB4 is 

effective in classifying fertile and infertile eggs from candling images. With appropriate transfer learning 

and fine-tuning approaches, the model achieved high accuracy and F1-score, while producing balanced 

predictions across both classes. 

Preprocessing steps such as resizing to 380×380 pixels, normalization, and histogram stretching 

were proven to enhance the quality of images learned by the model. Aggressive image augmentation 

processes, including rotation, flipping, zooming, and brightness adjustment, played a crucial role in 

enriching the diversity of training data and reducing the risk of overfitting. 

The model was trained in two stages: feature extraction and fine-tuning, utilizing initial weights 

from ImageNet. This training strategy effectively improved performance and accelerated convergence, 

even with a limited amount of data. The evaluation process showed that the model was not only accurate 

but also capable of identifying important features through Grad-CAM visualization, which highlighted 

the model’s focus areas during classification. 

These findings reinforce the potential of CNN utilization in automated egg classification systems, 

especially for the poultry industry, which demands fast and accurate detection. Moreover, this approach 

can be extended to other domains facing similar visual challenges, such as biological object 

classification or medical imaging. 

Although the results are highly satisfactory, there remains room for development, such as 

expanding the dataset, conducting validation tests across different imaging devices, and exploring 
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alternative architectures. This study opens up great opportunities for developing smarter, more efficient, 

and easily integrable automatic classification systems in real-world production environments. 
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