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Abstract 

Modern virtualized networks, such as those using VXLAN (Virtual eXtensible LAN), generate heavy east–west 

traffic, which can conceal the lateral movement of attackers. Detecting such infiltration attacks is challenging due to 

overlay encapsulation (e.g., VXLAN) and flat subnet architectures create blind spots for traditional IDS.  This study 

aims to evaluate a robust methodology for addressing class imbalance in intrusion detection by integrating SHAP-

driven feature selection with SMOTE in a voting ensemble. We conducted an ablation study on the CICIDS2017 

Thursday-WorkingHours-Afternoon-Infiltration subset, which is highly imbalanced (36 infiltration flows vs. 

288,566 benign flows), varying SHAP feature sets (Top-5 vs. Top-30), classification thresholds 𝜽 ∈ (𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟕), 

and SMOTE (Synthetic Minority Over-sampling Technique) balancing. The ensemble combined XGBoost, Random 

Forest, and Logistic Regression, and was evaluated with ROC-AUC, precision, recall, and F1-score. Results indicate 

that using more SHAP-important features improves ROC-AUC and recall, while SMOTE substantially enhances 

minority-class detection. The best configuration is Top-30 SHAP features with SMOTE at 𝜽 = 𝟎. 𝟕, 

achieved ROC-AUC = 0.976 and F1-score = 0.78, whereas using fewer features or omitting SMOTE significantly 

reduced recall and F1-score. This synergy of interpretable feature selection and synthetic oversampling establishes a 

practical methodology for intrusion detection in highly imbalanced, modern virtualized environments. The novelty 

lies in demonstrating that SHAP + SMOTE integration yields both transparency and resilience, directly addressing 

encapsulation challenges in detecting stealthy lateral movement. 
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1. INTRODUCTION 

For decades, the Virtual Local Area Network (VLAN) was the standard for logical network 

segmentation [1]. However, the rise of large-scale virtualization and cloud services exposed its inherent 

limitations, most notably a scalability cap of 4,094 unique segments. To overcome these challenges, the 

industry developed Virtual Extensible LAN (VXLAN), a network virtualization technology that 

decouples the logical network (the overlay) from the physical network (the underlay) [1], [2]. While 

VXLAN enables scalable virtualization, it also introduces a security weakness: east-west traffic between 

virtual machines can be encapsulated and bypass centralized inspection, creating blind spots for 

intrusion detection. 

Once an adversary has breached the network perimeter, the real attack begins. The initial point of 

entry serves as a beachhead from which the attacker explores the internal network, expands their access, 

and moves methodically towards their true target [3]. This process is known as lateral movement. It is a 

phase characterized by stealth and the deliberate use of legitimate system tools to evade detection, which 

in turn creates a significant data science challenge. Lateral movement involves internal compromises as 

attackers move within the network [4]; tracking this requires focusing on east-west traffic rather than 

the usual client-server (north-south) flows. 
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Intrusion Detection Systems (IDS) are vital for monitoring network traffic and flagging malicious 

actions, yet traditional signature-based approaches struggle with adaptability and produce high false 

positives [5], [6]. Machine learning and ensemble methods have emerged as promising alternatives, 

capable of learning complex traffic patterns and improving generalization [7]. Recent advances show 

that hybrid IDS, combining explainable AI (e.g., SHAP for feature selection) with resampling 

techniques like SMOTE, have achieved substantial improvements in imbalanced settings such as IoT 

networks [14], [17]. These results underscore the importance of interpretable and balanced IDS models 

that can both detect rare attacks and provide transparent explanations. 

Although techniques such as micro-segmentation have been proposed, VXLAN overlays often 

still form large flat subnets where perimeter IDS sensors cannot observe internal flows. This makes the 

accurate detection of infiltration attacks, which simulate lateral movement, particularly challenging in 

modern virtualized environments.  

To address this challenge, we investigate an ensemble IDS using explainable feature selection. 

We use the Canadian Institute for Cybersecurity Intrusion Detection Systems (CIC-IDS) 2017 dataset 

[8], which provides realistic network traffic with 80 flow features covering normal behavior and 

contemporary attacks [8], [9], [10] (specifically the Thursday-Afternoon-Infiltration file) because it 

contains realistic traffic and a small number of infiltration attacks (36 malicious flows vs 288,566 

benign, highlighting class imbalance. CIC-IDS2017 is widely used in IDS research, so results generalize 

to practical scenarios.  

Our proposed classifier is a Voting ensemble of XGBoost (eXtreme Gradient Boosting), Random 

Forest, and Logistic Regression, an approach known to leverage complementary strengths of different 

models. We apply SHAP (SHapley Additive exPlanations) to rank features by importance. We then 

evaluate two selection strategies: using only the Top-5 features vs Top-30 features. Additionally, we 

test different SHAP-importance thresholds (0.3, 0.5, 0.7) to see how strict feature cuts affect 

performance. To mitigate the severe class imbalance, we also evaluate scenarios with and without 

SMOTE oversampling. We focus on key metrics (ROC-AUC, precision, recall, and especially F1-score, 

which balances the last two). Prior work stresses that in highly imbalanced IDS settings, “precision and 

recall are more essential metrics” than raw accuracy; in fact, the F1 score is often treated as the primary 

performance measure. 

Unlike prior studies that focus only on feature selection or only on resampling, we systematically 

combine both to assess their synergy in lateral-movement detection. On CICIDS2017 (infiltration), our 

best setting (Top-30 + SMOTE) voting ensemble yields high-precision, low-false-alarm alerts while 

retaining competitive recall in highly imbalanced, virtualized east–west traffic, which directly lowers 

analyst workload in real-time SOC operations while retaining actionable recall.  

The contributions of this work are threefold: (1) a systematic ablation of SHAP-driven feature 

selection in an IDS context, (2) quantification of SMOTE’s effect on detecting rare infiltration flows, 

and (3) empirical evidence that the synergy of SHAP + SMOTE significantly improves recall and F1-

score while maintaining interpretability. This positions our study at the intersection of interpretable 

machine learning and cybersecurity, addressing blind spots in modern virtualized environments.  

2. RESEARCH METHOD 

2.1. Dataset and Preprocessing 

We use the Canadian Institute for Cybersecurity (CIC) CICIDS2017 [8] dataset, focusing on 

the Thursday-WorkingHours-Afternoon-Infiltration capture. This subset is highly imbalanced, 

containing only 36 infiltration attack flows among approximately 288,566 benign flows, resulting in 

a positive-class prevalence of <0.01%. Such severe imbalance can bias classifiers toward always 

predicting the majority class [9], [10], [11]. 
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To ensure high-quality inputs, we first remove duplicate entries, missing values (NaN), and 

infinite values. We then filter only the BENIGN and Infiltration labels and encode them as binary 

targets: 

𝑦 = {
1,
0,

          
𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝐵𝐸𝑁𝐼𝐺𝑁
 

This clean dataset is stratified into 70% training and 30% testing sets to preserve the rare-class 

distribution. Feature columns are normalized using Min–Max scaling, as required for combining tree-

based and linear models in our ensemble. 

2.2. Feature Selection with SHAP (SHapley Additive exPlanations) 

CIC IDS 2017 Dataset, with its reach feature, having 80 features. To improve interpretability and 

reduce feature dimensionality, we apply SHAP (SHapley Additive exPlanations) for feature importance 

estimation. SHAP computes Shapley values for each feature, which quantify its marginal contribution 

to the model output considering all possible feature combinations. Unlike univariate ranking methods, 

SHAP inherently accounts for feature interactions, making it suitable for network traffic analysis with 

correlated statistics [11], [12], [13], [14] 

SHAP is based on Shapley values from cooperative game theory, which ensures a fair distribution 

of feature importance by considering all possible feature combinations. This provides a comprehensive 

view of feature contributions, unlike methods that may overlook interactions or dependencies between 

features SHAP provides an interpretable ranking of features by how much they contribute to model 

outputs [13]. The method offers a clear and interpretable explanation of model predictions, which is 

crucial for domains like finance and healthcare, where understanding model decisions is as important as 

accuracy [12]. As mentioned in [15], SHAP-based feature selection helps in identifying the most 

relevant features, improving model interpretability and performance. Using more features generally 

increases ROC-AUC and recall, indicating better detection capabilities 

We employ TreeSHAP (model-specific SHAP for tree ensembles) on a baseline XGBoost to 

estimate per-feature contributions and derive global importance by aggregating absolute Shapley values 

across samples. Formally, the Shapley value for feature 𝑗 is shown in equation (1): 

𝜑𝑗(𝑓, 𝑥) = ∑
|𝑆|!(|𝐹|−|𝑆|−1)

|𝐹|!
(𝑓𝑥(𝑆 ∪ {𝑗}) − 𝑓𝑥(𝑆))𝑆⊆𝐹\{𝑗}  (1) 

Where 𝐹 is full feature set and 𝑓𝑥(𝑆) is the model output using subset 𝑆. We compute the global 

ranking via GI(𝑗) = 𝔼𝑥[|𝜑𝑗(𝑓, 𝑥)|] and construct Top-5 and Top-30 subsets for ablation. These subsets 

are then used in our ablation experiments to evaluate the trade-off between model simplicity and 

detection performance. In general, using more SHAP-selected features is expected to increase recall and 

ROC-AUC, particularly for rare-class infiltration flows. 

2.3. Handling Class Imbalance with SMOTE 

To address class imbalance, we experiment with SMOTE oversampling. SMOTE has been used 

with tree-boosting models like LightGBM, XGBoost, and CatBoost, resulting in high accuracy and F1 

scores, averaging around 99%. This demonstrates the technique's effectiveness in improving the 

predictive capabilities of these models on imbalanced dataset [16]. In the context of IoT networks, 

SMOTE has been used to balance highly imbalanced datasets, resulting in improved accuracy of over 

90% with machine learning classifiers like K-Nearest Neighbors, Decision Trees, and Random Forests. 

This highlights SMOTE's role in effectively mitigating attacks, especially in attack detection in network 

domain [17]. In our study, we apply SMOTE to the training data so that the infiltration class is up 
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sampled to parity (or a high ratio) with the majority [18]. The rationale is that SMOTE can increase 

recall on the rare class, as seen in prior IDS studies in [19], [20]. 

Our dataset exhibits extreme class imbalance, with only 36 infiltration flows compared to 

approximately 288,000 benign flows. Such imbalance can bias classifiers toward predicting only the 

majority class, resulting in low recall for the rare attack class. To mitigate this issue, we employ 

the Synthetic Minority Oversampling Technique (SMOTE), which generates synthetic samples of the 

minority class by interpolating between existing instances. SMOTE has been widely used with tree-

boosting models such as LightGBM, XGBoost, and CatBoost, consistently achieving high accuracy and 

F1-scores on imbalanced datasets [22]. In IoT and network intrusion detection scenarios, SMOTE has 

been shown to improve minority-class recall and overall detection accuracy when combined with 

classifiers like K-Nearest Neighbors, Decision Trees, and Random Forests [23]. 

We apply SMOTE on the training split only with a target 1:1 minority-to-majority ratio. For each 

minority instance 𝑥, select one of its 𝑘-nearest minority neighbors 𝑥𝑁𝑁 and generate a synthetic sample 

by linear interpolation, as shown in equation (2): 

𝑥new = 𝑥 + 𝜆(𝑥𝑁𝑁 − 𝑥),            𝜆~𝑈(0,1) (2) 

This increases minority support and typically improves recall for rare “Infiltration” flows in 

imbalanced IDS settings. This approach avoids contaminating the test set and allows a clear comparison 

between with-SMOTE and without-SMOTE scenarios in our ablation study. Prior IDS research [21], 

[22], [23] suggests that this strategy can significantly increase recall on rare attack classes without 

sacrificing precision. 

2.4. Ensemble Models 

Our classifier is a VotingClassifier ensemble combining XGBoost, Random Forest, and Logistic 

Regression. Each base model is trained on the selected features subset. A VotingClassifier that integrates 

XGBoost, Random Forest, and Logistic Regression can capitalize on the strengths of each model. In 

studies, XGBoost has shown superior performance in terms of accuracy and recall, making it suitable 

for applications where identifying the minority class is critical, such as fraud detection and disease 

prediction [24], [25]. The XGBoost model optimizes the following objective/loss function [26] as follow 

in equation (3): 

𝐿(𝑓𝑘) = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑ Ω(𝑓𝑘)𝐾
𝑘=1

𝑛
𝑖=1  (3) 

Where 𝑦̂𝑖 is predicted output for sample 𝑖, 𝑙(𝑦𝑖 , 𝑦̂𝑖) is the loss function, usually logistic loss for 

classification, 𝑓𝑘 is the 𝑘 − 𝑡ℎ regression tree, 𝐾 is the total number of tress, and Ω(𝑓𝑘) is the 

regularization term that penalized the complexity of the model. The predictions for each step are updates 

as follow in equation (4): 

𝑦(𝑡)̂
𝑖 = 𝑦(𝑡−1)̂

𝑖 + 𝜂𝑓𝑡(𝑋𝑖) (4) 

where 𝜂 is learning rate, 𝑓𝑡 is the new regression tree at step 𝑡, and 𝑋𝑖 is the vector feature for 

sample 𝑖. Hence, we can write the models of XGBoost as follow in equation (5): 

𝑓𝑋𝐺𝐵(𝑋) = ∑ 𝑓𝑘(𝑋)𝐾
𝑘=1  (5) 

Random Forest can handle the complexity and imbalance [25], with a model as follow in equation 

(6): 
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𝑓𝑅𝐹(𝑋) =
1

𝐵
∑ 𝑇𝑏(𝑋)𝐵

𝑏=1  (6) 

where 𝑇𝑏(𝑋) is the prediction of the 𝑏𝑡ℎ tree, and 𝐵 is the total number of trees in the forest. On 

the other hand, Logistic Regression adds interpretability [21], [22]. For binary classification, Logistic 

Regression models the probability of the positive class as written in equation (7): 

𝑃(𝑦 = 1 | 𝑋) = 𝑓𝐿𝑅(𝑋) = 𝜎(𝐰⊤𝑋 + 𝑏) (7) 

where 𝑋 is input feature vector, 𝐰 is weight vector, 𝑏 is bias term, and 𝜎(⋅) is sigmoid function 

mapping to [0,1], also can be defined as 𝜎(𝑧) =
1

1+𝑒−𝑧.  

In our study, we use ensemble method. Ensemble methods generally achieve higher and more 

robust performance than any single model, by leveraging their complementary strengths [7]. For 

example, [7] demonstrate that combining different algorithms (trees, gradient boosting, etc.) in a voting 

ensemble “can be effective because it leverages the strengths of each model”. Likewise, some related 

work has used XGBoost and Logistic Regression together (via late fusion) for IDS, emphasizing that 

such combinations can improve both accuracy and interpretability with SHAP [23]. In our ensemble, 

we adopt soft voting, where the final prediction score is obtained by averaging the predicted probabilities 

from all base learners. The final ensemble in our study as follows in equation (8): 

𝑃(𝑦 = 1 | 𝑋) =
𝑓𝑅𝐹(𝑋)+𝑓𝑋𝐺𝐵(𝑋)+2⋅𝑓𝐿𝑅(𝑋)

4
 (8) 

Following our implementation, the ensemble combines the three base models with 

weights [1,1,2], giving higher emphasis to Logistic Regression. The predicted probability for the 

infiltration class, is then, as written in equation (9): 

𝑦̂ = {
1,
0,

          
𝑃(𝑦 = 1 | 𝑋) ≥ 𝜃

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

where 𝜃 is classification threshold. In our study, we analyze the 𝜃 ∈ {0.3, 0.5, 0.7}. 

2.5. Experiment and Evaluation Matrices 

Overall, five configurations were evaluated: (1) Baseline (all features, no SMOTE), (2) SHAP 

Top-5 (no SMOTE), (3) SHAP Top-5 + SMOTE, (4) SHAP Top-30 (no SMOTE), and (5) SHAP Top-30 

+ SMOTE. Each configuration was assessed under three classification thresholds, resulting in 15 

experimental runs for comprehensive ablation analysis. We evaluate all models on a held-out test set 

(using stratified sampling to preserve class ratio), on a 70:30 train/test split, using stratified sampling to 

preserve the extreme class imbalance (36 infiltration vs ~288k benign flows). The flow of the experiment 

can be seen in Figure 1. 

Performance is measured by ROC-AUC, precision, recall (true positive rate), and F1-score. We 

therefore report the standard definitions formula of Precision, Recall and F1, can be seen in equation 

(10), (11), (12), where 𝑇𝑃, 𝐹𝑃, 𝐹𝑁 is True Positive, False Positive and False Negative, respectively: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 
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These definitions are applied uniformly across all ablation settings and thresholds 𝜃 ∈

{0.3,0.5,0.7}. 

 

 
Figure 1. Experiment flow 

 

ROC-AUC summarizes the ability of the model to distinguish between benign and infiltration 

classes across all thresholds. Precision reflects how many predicted attacks are truly infiltration events. 

Recall indicates how many actual infiltration events are correctly detected. F1-score is the harmonic 

mean of precision and recall, which is particularly relevant for imbalanced IDS datasets where both false 

positives and false negatives are critical. F1 Score is a widely used metric in evaluating IDS 

performance, especially in imbalanced datasets. It provides a balance between precision and recall, 

making it suitable for scenarios where false negatives and false positives are critical [6], [11], [14]. 

A high F1 means the model detects most attacks (high recall) without an excessive false-positive 

rate (high precision). In fact, it is mentioned in [14] note that “in practice, the performance measure of 

interest in IDPS is the F1 score, since raw accuracy is misleading on imbalanced data”. Thus, while we 

report ROC-AUC for completeness, we pay particular attention to precision, recall, and F1.  

3. RESULT 

We performed a full factorial experiment over feature selection (Top-5 vs Top-30), SMOTE 

(yes/no), and Classification thresholds (0.3, 0.5, 0.7). In all cases the VotingClassifier used XGBoost, 
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Random Forest, and Logistic Regression with default parameters (tuned marginally via cross-

validation). Table 1 summarizes key metrics for representative settings (we omit trivial combinations 

where thresholding removes nearly all features). 

3.1. Dataset Class Distribution 

The Thursday-WorkingHours-Afternoon-Infiltration subset is extremely imbalanced, with only 

36 infiltration flows versus 288,566 benign flows. The test split (30%) contains 11 infiltration flows and 

75,826 benign flows, which we use as the basis for the confusion matrices in the Results section. This 

imbalance motivates the use of SMOTE and threshold ablation to improve minority detection.  

3.2. SHAP-Based Feature Analysis Ranking 

SHAP analysis on the baseline XGBoost model identified the most influential features for 

infiltration detection. The results of SHAP Feature Ranking shown in Figure 2: 

 

 
Figure 2. SHAP Feature Analysis Result 

 

It can be seen from the figure that the Top 5 Features are as follow: ['Bwd Packet Length Mean', 

'Fwd IAT Min', 'Packet Length Mean', 'Fwd Packet Length Mean', 'Fwd Packet Length Std']. While the 

Top-30 Features (including flow-based statistics and flag counts) show that infiltration traffic is strongly 

correlated with: Packet length statistics (mean, std, min); Forward/Backward inter-arrival times (IAT); 

Flow duration and bytes per second; TCP flags such as URG/ACK counts. This ranking supports the 

intuition that temporal patterns and packet size behavior are key indicators of stealthy lateral movement. 

3.3. Experiment Result 

We performed a full factorial experiment over feature selection (Top-5 vs Top-30), SMOTE 

(yes/no), and Classification thresholds 𝜃 ∈ (0.3, 0.5, 0.7). In all cases the VotingClassifier used 

XGBoost, Random Forest, and Logistic Regression with default parameters (tuned marginally via cross-

validation). Table 1 show metrics for representative settings (we omit trivial combinations where 

thresholding removes nearly all features). As it can be seen from the Table 1, the best-performing 

configuration is SHAP Top-30 + SMOTE at threshold =  0.7, as it achieves ROC-AUC = 0.976 and F1 

= 0.778 on the rare infiltration class. 

 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.4.5233


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 4, August 2025, Page. 2693-2706 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.5233 

 

 

2700 

Table 1. Ablation Result Across Configuration 

Model Threshold ROC-AUC Precision Recall F1 

Baseline (All) 0.3 

0.5 

0.7 

0.9573 0.043 

0.233 

1.000 

0.818 

0.636 

0.545 

0.081 

0.341 

0.706 

SHAP Top-5 0.3 

0.5 

0.7 

0.8986 0.006 

0.033 

1.000 

0.727 

0.636 

0.545 

0.012 

0.062 

0.706 

SHAP Top-5 

SMOTE 

0.3 

0.5 

0.7 

0.9112 0.007 

0.031 

0.750 

0.727 

0.636 

0.545 

0.015 

0.060 

0.632 

SHAP Top-30 0.3 

0.5 

0.7 

0.9340 0.020 

0.292 

1.000 

0.727 

0.636 

0.545 

0.039 

0.400 

0.706 

SHAP Top-30 

SMOTE 

0.3 

0.5 

0.7 

0.9758 0.034 

0.364 

1.000 

0.818 

0.727 

0.636 

0.065 

0.485 

0.778 

 

The Table 1, also can be represented as precision-recall trade-off plot, as shown in Figure 3. 

Figure 3 illustrates the precision-recall trade-off for the five model configurations when applied to 

infiltration detection on the severely imbalanced CIC-IDS 2017 dataset. For each model, the solid line 

depicts recall, measuring the ability to identify true attacks, while the dashed line represents precision, 

measuring the reliability of the alerts. 

 

 
Figure 3. Precision-Recall Tradeoff 

 

The plot highlights the critical operational dilemma in intrusion detection. At a low threshold of 

0.3, models act as highly sensitive detectors. They achieve high recall (catching over 81% of attacks, 

with a maximum of 0.818 for the Baseline and SHAP Top-30 + SMOTE models), but this comes at the 

cost of extremely low precision, as also shown in Figure 4. Such a configuration would detect most 

threats but would also flood security analysts with an unmanageable number of false alarms. Conversely, 

at a high threshold of 0.7, the models become highly specific. While four configurations achieve perfect 

precision (1.000), this reliability comes at the dangerous cost of reduced recall, meaning a portion of 

attacks would be missed. 

This analysis underscores the superior performance of models enhanced with the Synthetic 

Minority Over-sampling Technique (SMOTE) to combat the dataset's severe class imbalance. The 

SHAP Top-30 + SMOTE model (purple line) emerges as the most effective and practical configuration. 
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At the 0.7 threshold, it achieves a perfect precision of 1.000, effectively generating zero false alarms. 

Critically, it does so while maintaining a strong recall of 0.636, successfully detecting nearly 64% of all 

infiltration events. This superior balance yields the highest F1-Score of 0.778 (as shown in Table 1) and 

represents an ideal profile for a real-world security tool that minimizes analyst fatigue while maintaining 

robust threat detection. 

 

 
Figure 4. Precision-Recall Across Ablation Result 

 

Figure 5 provides a conclusive summary of model performance by comparing the F1-Scores, a 

critical metric for the imbalanced intrusion detection task, across all configurations and thresholds. A 

clear trend emerges where the F1-Score consistently improves as the threshold increases from 0.3 to 0.7, 

indicating that the gains in precision at higher thresholds create a better overall model balance. The chart 

culminates in identifying the optimal configuration: the SHAP Top-30 + SMOTE model, when paired 

with a 0.7 threshold, achieves a distinctly superior F1-Score of 0.778. This result quantitatively confirms 

the conclusions from the precision-recall analysis, demonstrating that the synergy between advanced 

feature selection (SHAP) and robust class imbalance handling (SMOTE) produces the most effective 

and well-balanced model for this security application. 

 

 
Figure 5. F1-Score Comparison Across Models 
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To provide operational insight, we add confusion matrices for the best configuration (SHAP Top-

30 + SMOTE) across thresholds on the test set (BENIGN = 75,826; Infiltration = 11) as shown in Table 

2. At 𝜃 = 0.7, the ensemble outputs zero false positives (𝐹𝑃 = 0) and only seven positive predictions, 

all of which are true attacks (𝑇𝑃 = 7), hence 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  1.000. This occurs because a higher 

decision threshold requires higher posterior confidence from the soft-voting ensemble (weights [1,1,2]); 

borderline benign flows stay below 0.7 and are not flagged. The trade-off is lower recall (
7

11
 =  0.636) 

because some true attacks with scores between 0.3 − 0.7 are no longer captured. Conversely, at 𝜃 = 0.3 

the detector becomes very sensitive (𝑇𝑃 = 9) but admits many low-confidence alerts (𝐹𝑃 = 257), 

sharply reducing precision to 0.0338 on an extremely imbalanced test set. With 75,826 negatives in the 

test set, even a small number of FP can sharply depress precision, especially at low thresholds. 

This demonstrates the classic precision–recall trade-off in IDS: raising the decision threshold 

eliminates false positives but simultaneously degrades recall by allowing more attacks to slip through. 

These matrices complement Table 2 by making the operational trade-off explicit: security teams can 

tune 𝜃 depending on tolerance to false alarms (favoring higher 𝜃) versus missed attacks (favoring lower 

𝜃). The 𝜃 = 0.7 setting is attractive when minimizing analyst fatigue is paramount, while 𝜃 = 0.5 offers 

a middle-ground with improved recall at the cost of some false positives.  

 

Table 2. Confusion matrices for SHAP Top-30 + SMOTE across thresholds (test set) 

Threshold TN FP FN TP Precision Recall F1 

0.3 75,569 257 2 9 0.034 0.818 0.065 

0.5 75,812 14 3 8 0.364 0.727 0.485 

0.7 75,826 0 4 7 1.000 0.636 0.778 

4. DISCUSSIONS 

Our experiments highlight the critical trade-offs involved in designing an effective intrusion 

detection system, particularly for the imbalanced CIC-IDS 2017 dataset. The results confirm that a 

multi-faceted approach, balancing feature selection, class imbalance, and threshold tuning, is necessary 

for optimal performance. 

The most significant factor in model performance was the application of the Synthetic Minority 

Over-sampling Technique (SMOTE). Without it, models tuned for high precision via a high threshold 

(0.7) saw their recall and F1-scores collapse. With SMOTE, the classifier could effectively learn the 

patterns of the minority "Infiltration" class, greatly improving recall. This aligns perfectly with findings 

in the literature; many IDS studies on the CIC-IDS 2017 dataset report that resampling techniques like 

SMOTE are essential to mitigate bias and enhance the model's ability to distinguish minority attack 

classes [14], [19]. Empirically, studies that inject SMOTE into IDS pipelines (KDD, CSE-CIC-

IDS2018) report improved minority detection [27]; our ablation echoes those gains when SMOTE is 

combined with SHAP-ranked features (Top-30). In our case, enabling SMOTE was the key factor that 

allowed the SHAP Top-30 + SMOTE model to maintain a high recall of 0.636 even at a threshold that 

enforced perfect precision. Severe class imbalance is a well-documented barrier in IDS; recent surveys 

reiterate that accuracy alone is misleading, and that recall/precision (or F-scores) should be foregrounded 

[28], matching our metric choices. 

Threshold selection provides a tunable lever to manage operational priorities. Our results showed 

a clear trade-off: a low threshold (0.3) maximized recall at the cost of extremely low precision (flooding 

analysts with false alarms), while a high threshold (0.7) maximized precision at the cost of recall 

(missing potential attacks). While theory suggests a compromise is often best, our findings indicate that 

for this specific problem, the 0.7 threshold was optimal. It pushed precision to a perfect 1.0, and the 

SMOTE-enhanced model was robust enough to absorb this pressure without a catastrophic loss of recall, 
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ultimately yielding the highest F1-Score of 0.778. This demonstrates that for environments where the 

cost of false positives is very high, a high threshold can be viable if the model is properly balanced. 

The feature selection comparison revealed that including more SHAP-informed features (Top-30 

vs. Top-5) was beneficial. The 30-feature models consistently outperformed the 5-feature models in F1-

score, suggesting the additional features carried meaningful signals for distinguishing attacks. This 

validates the use of SHAP for creating an effective and efficient feature set, one that is compressed from 

the original dataset but not so aggressively that it loses critical information. This approach is consistent 

with other state-of-the-art systems where explainable AI-driven feature selection is combined with 

ensemble classifiers to improve IDS performance and transparency [12], [13], [14]. 

Overall, the superior performance of the SHAP Top-30 + SMOTE configuration confirms that an 

ensemble classifier + SHAP-based feature selection + SMOTE is a highly effective recipe for 

imbalanced intrusion detection. The clear patterns visualized in the Precision-Recall curves provide 

actionable insight for real-world deployment, quantifying exactly how much recall is sacrificed for gains 

in precision at each decision point. This allows practitioners to tune the system explicitly to meet specific 

operational needs, balancing the risk of missed attacks against the cost of false alarms. Our findings are 

consistent with ensemble-based IDS literature that reports accuracy and robustness gains from 

combining heterogeneous learners. Beyond accuracy, interpretability is increasingly emphasized: works 

that pair SHAP explanations with IDS show how feature-attribution improves analyst trust and triage, 

and even explore LLM-generated narratives over SHAP outputs to make decisions auditably human-

readable [29]; our SHAP-guided feature selection aligns with this direction. 

Comparing to prior studies, our results are competitive with the current state of the art. When 

contextualized with recent literature, our work highlights the distinct advantages of a supervised 

classification approach for detecting specific rare attacks. A study by Panwar et al. [30] on the CICIDS-

2017 dataset provides a compelling point of comparison. Using an anomaly detection framework, where 

the model is trained primarily on benign data to identify deviations, their Random Forest classifier with 

RFE feature selection achieved a near-perfect F1-Score of 0.9992 for the "Infiltration" class. This 

impressive result suggests the "Infiltration" traffic is highly distinct from normal traffic, making it easily 

flaggable as an anomaly. 

While anomaly detection is a common approach, our study employed a different paradigm: a 

supervised Voting Classifier explicitly trained on both benign and "Infiltration" samples that were 

balanced by SMOTE. While our resulting F1-Score of 0.78 is more modest, our methodology achieved 

a perfect precision of 1.0. This distinction is critical: the anomaly detection approach proved effective 

at identifying outliers, but our supervised method was tuned to produce high-certainty alerts with zero 

false positives. For a security operations team focused on mitigating a known threat like lateral 

movement, every alert is actionable, demonstrating the unique value of a targeted, supervised learning 

approach for producing high-certainty alerts with zero false positives. 

These results underscore the urgency of strengthening east-west monitoring in 

virtualized/VXLAN data centers, where encapsulated VM-to-VM flows can bypass perimeter inspection 

and create blind spots for traditional IDS. By pairing interpretable selection (SHAP) with class-

imbalance handling (SMOTE), the proposed ensemble offers a practical route to high-certainty alerts 

under such constraints, even under extreme imbalance. This complements ensemble/XAI frameworks 

that emphasize modularity and deployability [31] 

Limitations: The study acknowledges several limitations that suggest avenues for future research: 

• Dataset Scope: The evaluation was confined to the CIC-IDS2017 "Infiltration" dataset. Future 

studies should examine other lateral-movement scenarios, such as internal reconnaissance, to test 

the generalizability of the findings. 
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• Model Specificity: A specific ensemble with fixed hyperparameters was used. Exploring different 

architectures, such as neural networks or other classifiers, could yield different results. 

• Feature Set: Real-world virtualized networks may offer additional meta-features (e.g., VNI tags) 

that were not available in this dataset but could be incorporated to enhance detection. 

Despite these limitations, the core findings, that SHAP and SMOTE are crucial for balancing the 

precision-recall. Trade-off are expected to generalize to other imbalanced security scenarios. 

Ethical considerations: While SMOTE corrects minority under-representation, synthetic 

interpolation can alter local data geometry and amplify atypical patterns if overused [27], [32]. To reduce 

optimism and leakage risk, we apply SMOTE on training only and keep the test distribution intact; this 

mirrors best-practice cautions in IDS studies on imbalanced data. Future work should check whether 

oversampling biases SHAP attributions and perform fairness audits across sub-populations. 

5. CONCLUSION 

This study successfully demonstrated the effectiveness of a voting ensemble IDS for detecting 

rare infiltration attacks on the CICIDS2017 dataset. Through a systematic ablation study, we confirmed 

that combining SHAP-driven feature selection with SMOTE for data balancing is a highly effective 

strategy. Our best configuration, SHAP Top-30 + SMOTE with decision threshold 𝜃 = 0.7, achieves 

𝐹1 =  0.778 (77.8%),  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  1.000, and 𝑟𝑒𝑐𝑎𝑙𝑙 =  0.636 on the infiltration class. This 

reflects a deliberate operating point that prioritizes high-certainty alerts while maintaining competitive 

recall.  Operationally, threshold tuning dramatically reduces false alarms in real-time settings: false 

positives drop from 257 at 𝜃 = 0.3 to 14 at 𝜃 = 0.5, and to 0 at 𝜃 = 0.7. This yields high-certainty 

alerts while preserving competitive recall, improving analyst efficiency in virtualized/VXLAN 

environments where east-west traffic is highly imbalanced. By pairing interpretable selection (SHAP) 

with training-only oversampling (SMOTE) inside a soft-voting ensemble, the approach provides a 

practical, tunable IDS that balances transparency and performance. Future work will validate on live 

virtualized traffic and extending it to other types of network attacks. 
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