
Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5222

From Logs to Insights in the Pulp & Paper Industry: Generating

Structured Alarm Reports Using LLMs and RAG

Handri Santoso*1, Oktavianus Hendry Wijaya2, Febri Andriani3, Sonny Prijantono4

1Graduate Program in Information Technology, Faculty of Science and Technology, Pradita

University, Indonesia
2Undergraduate Program in Informatics, Faculty of Science and Technology, Pradita University,

Indonesia
3,4Technical Specialist Department, PT. Yokogawa Indonesia, Indonesia

Email: 1handri.santoso@pradita.ac.id

Received : Aug 3, 2025; Revised : Sep 24, 2025; Accepted : Oct 22, 2025; Published : Oct 26, 2025

Abstract

Effective alarm management is essential in industrial environments to ensure operational safety and minimize costly

downtime. Traditional rule-based reporting systems often struggle to handle heterogeneous alarm log formats and

the complexity of natural language queries, limiting their adaptability in real-world applications. To address these

limitations, this study proposes a generative alarm reporting system that integrates Large Language Models (LLMs)

with a Retrieval-Augmented Generation (RAG) framework. The system converts natural language queries into

structured JSON filters, enabling efficient retrieval of contextual information from historical alarm logs. Three open-

source LLMs—CodeLlama-7B, LLaMA 3.1-8B, and Mistral-7B—were locally deployed and evaluated using both

quantitative and qualitative methods. Experimental results show that CodeLlama-7B achieved the best overall

performance, with an Exact Match Accuracy of 0.80, a Field Match score of 93.8%, and a 0% Parse Failure Rate,

outperforming the other models in reliability and structural consistency. Compared to conventional rule-based

approaches, the proposed LLM-RAG integration demonstrates improved relevance, interpretability, and

responsiveness in alarm reporting. This work represents the first systematic benchmarking of locally deployed open-

source LLMs for industrial alarm management, providing a replicable framework and highlighting their potential to

advance intelligent, real-time, and domain-specific reporting in the pulp and paper industry and beyond

Keywords : Alarm Management, Large Language Model, Retrieval-Augmented Generation, Semantic Search,

Text Embedding.

This work is an open access article and licensed under a Creative Commons Attribution-Non Commercial

4.0 International License

1. INTRODUCTION

Alarm management is a fundamental element in modern industrial control systems, particularly

in critical sectors such as pulp & paper, petrochemical, energy, and manufacturing industries. Alarm

systems are designed to provide early warnings of abnormal operating conditions to prevent the

escalation of events that may endanger safety, damage assets, or cause process downtime. International

standards such as ISA-18.2 and IEC 62682 emphasize that an effective alarm system must encompass

the entire lifecycle—from planning and rationalization to operation, maintenance, and continuous

improvement [1][2]. Figure 1 showed the lifecycle outlines a structured process for effective alarm

system design, deployment, and continuous improvement. It begins with defining an alarm philosophy,

followed by identification, rationalization, and detailed design. Implementation leads to active

operation, which is sustained through maintenance and monitored using key performance indicators

(KPIs). Management of Change (MOC) governs all modifications to ensure traceability, while periodic

audits ensure compliance and long-term effectiveness. This iterative model promotes alarm integrity,

operator effectiveness, and system safety in complex industrial environments [3].

https://jutif.if.unsoed.ac.id/
http://creativecommons.org/licenses/by/4.0/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5223

Figure 1 Alarm Management Lifecycle

Despite these guidelines, the implementation of alarm systems in practice often faces major

challenges. One of the most critical issues is alarm flooding, a condition in which too many alarms are

triggered simultaneously within a short time window. This phenomenon hampers operators’ ability to

prioritize critical alarms, leading to decision-making errors and potential financial losses. For example,

industrial downtime in the United States has been estimated to cause annual losses exceeding USD 20

billion [4]. To address these challenges, researchers have proposed various approaches, including rule-

based modeling [5], template-based alarm generation [6], and machine learning–based anomaly

detection [7]-[10]. Although these methods have shown significant contributions, their primary

limitations lie in their inflexibility when dealing with heterogeneous alarm log formats and their inability

to process natural language queries issued by operators [11]-[13].

With the advancement of artificial intelligence, particularly in Natural Language Processing

(NLP), approaches based on Large Language Models (LLMs) and Retrieval-Augmented Generation

(RAG) have emerged as promising solutions [14]-[18]. LLMs can interpret operator queries expressed

in natural language, while RAG enhances this capability by retrieving and filtering factual information

from historical log databases [19][20]. This integration allows systems to translate operator instructions

into structured representations (e.g., JSON filters), perform semantic searches over historical logs, and

generate contextual, interpretable reports in real time. Recent studies, such as Michel et al. [21], Rodrigo

et al. [22] and S. Dey [23], have demonstrated the feasibility of AI-driven alarm clustering, causal

analysis and anomaly detection, highlighting the importance of data-driven techniques for reducing

alarm floods and improving report accuracy.

Unlike prior studies that applied template-based or machine learning–based anomaly detection,

this work is the first to integrate locally deployed LLMs with RAG for industrial alarm reporting,

specifically targeting the pulp & paper sector. This novelty lies in combining the generative capabilities

of LLMs with domain-specific retrieval, thereby enabling interpretable, accurate, and real-time alarm

reporting in complex industrial environments.

Based on this background, this study proposes the development of a generative alarm reporting system

that integrates LLMs with RAG to process natural language queries into structured JSON filters for

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5224

retrieving contextual information from historical alarm logs. The study evaluates three open-source

LLMs—CodeLlama-7B, LLaMA 3.1–8B, and Mistral-7B—by benchmarking their performance using

both quantitative and qualitative methods. The pulp & paper industry, with its high operational

complexity and diverse alarm characteristics, is selected as the case study domain to validate the

system’s effectiveness and demonstrate its applicability in real-world industrial contexts.

2. METHOD

This study develops and evaluates a generative alarm reporting system that integrates Large

Language Models (LLMs) with a Retrieval-Augmented Generation (RAG) framework. The

objective is to convert operator-issued natural language queries into structured JSON filters that enable

efficient retrieval of contextual information from historical industrial alarm logs. Importantly, all LLMs

are locally deployed, ensuring enhanced data privacy, reduced latency, and seamless integration into on-

premises industrial environments.

2.1. System Architecture

The proposed system architecture is depicted in Figure 2, which illustrates the workflow for

generating contextual alarm reports by integrating Large Language Models (LLMs) with a Retrieval-

Augmented Generation (RAG) framework. Alarm and event logs collected from the Distributed Control

System (DCS) undergo a pre-processing phase to clean inconsistencies, extract relevant fields, and

normalize data formats. These processed log entries are then embedded into vector representations using

a pre-trained embedding model and stored in a vector database.

Figure 2 Proposed System architecture for Alarm Report Generation using LLM- RAG Integration

On the user interaction side, operators submit natural language queries, which are interpreted by

a locally hosted LLM. The model converts the query into a structured JSON filter using a few-shot

prompting strategy. This JSON structure is passed to the RAG module, which conducts a semantic

search in the vector database.

If relevant entries are found, the system returns a structured list of alarms that match the user

query. If no matches are identified, the system responds with a fallback message: “Nothing was found.”

This architecture supports real-time, flexible, and context-aware alarm reporting, enabling improved

operator decision-making in dynamic and complex industrial environments.

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5225

2.1.1 Alarm Log Collection

Alarm logs were collected directly from the DCS of a pulp & paper manufacturing facility. Each

entry contained metadata such as timestamp, domain, area, tag, and descriptive message. In total, 15 log

files, each covering a 30-minute window, were collected, yielding a dataset of 69,085 entries (16,843

alarms and 52,242 events across 15 types). This ensured diversity and representativeness for system

evaluation.

2.1.2. Data Preprocessing

This stage involves data cleaning (e.g., removal of empty columns), normalization of formats,

and extraction of key fields such as timestamp, area_id, tag_number, and description. Furthermore,

alarm types were classified (as either alarm or event) using pattern matching (regex), and additional

metadata such as domain and area were extracted using rule-based logic.

2.1.3. Embedding and Storage

Log segments were transformed into vector representations using the BAAI/bge-small-en

embedding model from HuggingFace. These embeddings were stored in ChromaDB, a vector database

that supports efficient similarity-based retrieval.

2.1.4. Natural Language Query Processing

Users interact with the system by inputting natural language queries (e.g., “Show alarms in

domain 2 on July 15 from 12pm to 2pm”). These queries are then processed by an LLM to generate a

structured JSON filter format.

2.1.5. JSON Generation by Local LLMs

Three open-source LLMs—CodeLlama-7B, LLaMA 3.1–8B, and Mistral-7B—were locally

deployed to generate JSON filters from natural language queries. These models were selected for their

structured reasoning capabilities and compatibility with available hardware resources.

A few-shot prompting strategy was applied, providing three JSON examples in the prompt template to

guide model generation and ensure consistent field structures across outputs.

The resulting JSON filters included attributes such as timestamp, area_id, domain_id, and

type, which formed the basis for downstream retrieval.

2.1.6. Retrieval using RAG

The JSON filters are converted into a format compatible with ChromaDB filters, including time

transformation to UNIX format and the use of logical operators such as $gte, $lt, and $or. Retrieval is

conducted using the RAG approach to combine semantic similarity search with structured filtering,

ultimately returning a contextual and relevant alarm report to the user.

2.2. Dataset Description and Data Preparation

The dataset employed in this study was collected from a Distributed Control System (DCS)

operating in a pulp and paper manufacturing facility. It contains a total of 69,085 log entries, consisting

of both alarm and event records. As shown in Table 1, the dataset includes 16,843 alarm entries across

13 alarm types, and 52,242 event entries grouped into 2 event types. The data were extracted from 15

log files, each covering a 30-minute time window, providing sufficient temporal variation and

operational diversity for system evaluation.

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5226

Table 1 Summary of Alarm and Event Log Dataset Collected from the DCS System

Aspect Details

Total Log Entries 69,085

Number of Log Files 15

Log Duration per File 30 minutes

Log Types Alarm (16,843 entries, 13 types) Event (52,242 entries, 2 types)

To support the semantic modelling and retrieval tasks proposed in this work, the dataset was

carefully selected to reflect the operational complexity and high event frequency typically found in

real-world industrial environments. The structure of each log entry consists of five key attributes:

• Timestamp: indicating the recorded time of the entry

• Area: representing the source domain or plant zone

• Tag Number: denoting the associated control point or sensor tag

• Description: a textual description of the condition or message

• Alarm Type: used to distinguish between alarm and event entries

To enable downstream processing and semantic querying, the dataset underwent a systematic data

preparation pipeline. First, all log entries were cleansed and normalized, including the removal of

missing values, correction of formatting inconsistencies, and unification of timestamp formats. Next,

key fields such as area, domain, and alarm type were extracted using regular expressions (regex) and

standardized across files to ensure consistent field structure. Each cleaned log entry was then converted

into a semantic vector representation using a pre-trained transformer embedding model (BAAI/bge-

small-en) and stored in a ChromaDB vector database for high-performance similarity search.

These preparation steps ensured that the dataset was not only structurally consistent but also

semantically enriched, making it suitable for Retrieval-Augmented Generation (RAG) processing. The

dataset’s contextual richness and structured format thus provide a robust foundation for evaluating the

effectiveness of Large Language Models (LLMs) in generating real-time, context-aware alarm reports

that support operator situational awareness and decision-making.

2.3 Model Evaluation

To assess the system's ability to generate accurate and valid alarm reports, three locally hosted

open-source LLMs—CodeLlama:7b, LLaMA 3.1:8b, and Mistral:7b—were evaluated using a

combination of quantitative and qualitative approaches.

2.3.1 Basic Performance Metrics

The Basic Performance Metrics provide a direct and objective evaluation of each model's output

accuracy and efficiency [24][25]. Four key metrics were used:

a. Exact Match Accuracy (EMA)

Measures the proportion of generated outputs that exactly match the expected (ground truth)

JSON response.

 (1)

where Nexact_match is the number of outputs identical to the ground truth, and Ntotal is the total number

of test queries.

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5227

b. Average Field Match (AFM)

Calculates the average correctness of individual fields across all generated JSONs.

 (2)

where N is the number of queries and field_match_scorei is the matching score of each field in

the ith query.

c. Average Latency (AL)

Indicates the mean time (in seconds) required by the model to produce an output from the time

the query is submitted.

 (3)

Where ti is the latency time for the ith query.

d. Parse Failure Rate (PFR)

Reflects how often a model generates syntactically invalid JSON outputs.

 (4)

where Nparse_failure is the number of failed parsing attempts due to syntax errors.

2.3.2. LLM-based Judge Evaluation

To complement the quantitative metrics, a semantic and structural evaluation was conducted using

GPT-4o-mini as an automated LLM-based judge [26]. This model was selected due to its ability to

provide consistent judgment across generative tasks.

Each output was assessed on a 0–10 scale across four criteria:

a) Correctness (C)

Assesses whether the content of the JSON correctly reflects the user's query intent.

b) Completeness (Cp)

Measures whether all relevant fields required to satisfy the query are included in the output.

c) Format Compliance (F)

Evaluates whether the output conforms to JSON syntax and expected structural format.

d) Overall Quality (Q)

Represents the general coherence, utility, and usability of the generated report.

For each query i, the total judgment score can be represented as:

 (5)

Then, the overall LLM-based average evaluation is calculated by:

 (6)

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5228

2.4 Test Case Design and Ground Truth Construction

To assess the system's ability to accurately convert natural language queries into structured JSON

filters, a comprehensive set of 30 test queries was developed. Each query simulates a realistic operator

request that an industrial alarm reporting system may encounter. These include variations in spatial

filtering (e.g., area, domain), temporal constraints (e.g., specific time ranges), and tag-based identifiers

linked to specific sensors or control points.

For each query, a corresponding ground truth JSON filter was manually defined to serve as the

reference output. These JSON structures specify the necessary fields—such as area_id, domain_id,

timestamp, type, or tag_numbers—in a format compatible with vector-based retrieval and filtering. The

test cases were curated to ensure broad coverage of representative use cases, including:

• Single and multi-area/domain queries

• Time-specific alarms or events

• Combined filters with time, area, and tag constraints

• General log retrieval across types

This benchmark suite not only evaluates syntactic accuracy but also reflects semantic fidelity in

transforming human language into machine-interpretable formats. The full list of natural language

queries and their corresponding JSON representations is presented in Table 2.

Table 2 Test Cases: Natural Language Queries and Corresponding Ground Truth JSON Filters for

Alarm Retrieval Evaluation

No Question Ground Truth

1 Show all events from area 25

 {

 "area_id": "25",

 "type": "events"

 }

2 List everything in area 30

{

 "area_id": "30"

 }

3 What alarms occurred in area 45

{

 "area_id": "45",

 "type": "alarms"

 }

4 Show events from area 17

{

 "area_id": "17",

 "type": "events"

 }

5 Give me all logs from area 22

{

 "area_id": "22"

 }

6 Show all events from domain 1

{

 "domain_id": "01",

 "type": "events"

 }

7 List alarms from domain 2

{

 "domain_id": "02",

 "type": "alarms"

 }

8 What happened in domain 3

{

 "domain_id": "03"

 }

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5229

9
Give me events from domain 4

{

 "domain_id": "04",

 "type": "events"

 }

10 Show alarms from domain 5

{

 "domain_id": "05",

 "type": "alarms"

 }

11

What happened between 8am to

9am on November 28, 2024?

{

 "timestamp": {

 "$gte": "2024-11-28T08:00:00",

 "$lt": "2024-11-28T09:00:00"

 }

 },

12
Show events on May 8, 2024

between 10am and 11am

{

 "timestamp": {

 "$gte": "2024-05-08T10:00:00",

 "$lt": "2024-05-08T11:00:00"

 },

 "type": "events"

}

13
Give me alarms from noon to 2pm

on July 15, 2024

{

 "timestamp": {

 "$gte": "2024-07-15T12:00:00",

 "$lt": "2024-07-15T14:00:00"

 },

 "type": "alarms"

 },

14
What events occurred between 3pm

and 5pm on May 8, 2024

{

 "timestamp": {

 "$gte": "2024-05-08T15:00:00",

 "$lt": "2024-05-08T17:00:00"

 },

 "type": "events"

 }

15
Show alarms from 9am to 12pm on

September 10, 2024

{

 "timestamp": {

 "$gte": "2024-09-10T09:00:00",

 "$lt": "2024-09-10T12:00:00"

 },

 "type": "alarms"

 }

16

Show alarms from domains 1, 2,

and 3

{

 "domain_id": ["01", "02", "03"],

 "type": "alarms"

 }

17 List events from areas 10 and 20

{

 "area_id": ["10", "20"],

 "type": "events"

 }

18
Give me alarms from domain 5 or

domain 7

{

 "domain_id": ["05", "07"],

 "type": "alarms"

 }

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5230

19 Show events from areas 25 and 30

{

 "area_id": ["25", "30"],

 "type": "events"

 }

20 List alarms from domains 8 and 9

{

 "domain_id": ["08", "09"],

 "type": "alarms"

 }

21
Show events for tag

210LDAH1031

{

 "tag_numbers": "210LDAH1031",

 "type": "events"

 }

22 List alarms for tag 25GJI8082D1

{

 "tag_numbers": "25GJI8082D1",

 "type": "alarms"

 }

23
Give me all logs with tag

210LDAH1032

{

 "tag_numbers": "210LDAH1032"

 }

24 Show events for tag 25GJI8082D2

{

 "tag_numbers": "25GJI8082D2",

 "type": "events"

 }

25 List alarms for tag 210LDAH1033

{

 "tag_numbers": "210LDAH1033",

 "type": "alarms"

 }

26
Show alarms from area 25 between

2pm and 4pm on June 15, 2024

{

 "area_id": "25",

 "type": "alarms",

 "timestamp": {

 "$gte": "2024-06-15T14:00:00",

 "$lt": "2024-06-15T16:00:00"

 }

 }

27
List events from domain 3 with tag

210LDAH1031

{

 "domain_id": "03",

 "tag_numbers": "210LDAH1031",

 "type": "events"

 }

28

Show alarms from area 25 for tag

25GJI8082D1 between 9am and

11am on July 1, 2024":

{

 "area_id": "25",

 "tag_numbers": "25GJI8082D1",

 "type": "alarms",

 "timestamp": {

 "$gte": "2024-07-01T09:00:00",

 "$lt": "2024-07-01T11:00:00"

 }

 }

29
Give me events from domain 2

between 1pm and 3pm

{

 "domain_id": "02",

 "type": "events",

 "timestamp": {

 "$gte": "2024-07-01T13:00:00",

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5231

 "$lt": "2024-07-01T15:00:00"

 }

 }

30
List alarms from area 25 with tag

25GJI8082D2 on August 5, 2024":

{

 "area_id": "25",

 "tag_numbers": "25GJI8082D2",

 "type": "alarms",

 "timestamp": {

 "$gte": "2024-08-05T00:00:00",

 "$lt": "2024-08-05T23:59:59"

 }

 }

3. RESULT

This section presents the evaluation results of three locally hosted Large Language Models

(LLMs): CodeLlama-7B, LLaMA 3.1–8B, and Mistral-7B, integrated within a Retrieval-Augmented

Generation (RAG) framework for generative alarm reporting. The evaluation was conducted using three

complementary approaches: basic performance metrics, LLM-based semantic judgment, and human

assessment.

3.1. Basic Performance Evaluation

Four quantitative metrics were used to measure the effectiveness of each model:

a) Exact Match Accuracy (EMA) – Measures how often the generated JSON filter exactly matches

the ground truth.

b) Average Field Match – Calculates the average proportion of correctly generated fields across all

test cases.

c) Average Latency – Captures the average response time in seconds.

d) Parse Failure Rate – Indicates the percentage of responses that failed JSON syntax parsing.

The results are summarized in Table 3:

Table 3. Comparison of Basic Performance Metrics for LLMs-RAG-Based Alarm Filter Generation

Model Exact Match

Accuracy

Field Match

(%)

Latency

(s)

Parse Failure Rate

(%)

CodeLlama-7B 0.8000 93.83 4.04 0.00

LLaMA 3.1–

8B

0.7667 87.22 3.73 0.00

Mistral-7B 0.6000 96.67 4.02 0.033

The results in Table 3 provide a comparative analysis of the three LLM models using four core

performance metrics. In terms of Exact Match Accuracy, which evaluates whether the generated JSON

output precisely matches the ground truth, CodeLlama-7B achieved the highest score of 0.8000,

indicating strong reliability in producing fully correct responses. LLaMA 3.1–8B followed with a score

of 0.7667, while Mistral-7B recorded the lowest score at 0.6000, reflecting greater inconsistency in

generating structurally and semantically accurate outputs.

However, in Average Field Match, which measures the correctness of individual fields in the

JSON structure, Mistral-7B outperformed the other models with a score of 96.67%, demonstrating high

precision at the field level despite its lower overall structural accuracy. CodeLlama-7B also performed

well in this metric, achieving a score of 93.33%, while LLaMA 3.1–8B trailed slightly with 87/22%.

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5232

Regarding Average Latency, which captures the average time required to generate a response,

LLaMA 3.1–8B led with the fastest response time of 3.7350 seconds, followed by Mistral-7B at 4.0228

seconds, and CodeLlama-7B at 4.0407 seconds. Although these differences are relatively minor, latency

can impact system responsiveness in real-time applications.

The Parse Failure Rate assesses the ability of each model to generate syntactically valid JSON.

Both CodeLlama-7B and LLaMA 3.1–8B achieved a perfect score of 0.0000, indicating that all outputs

were valid and parseable. In contrast, Mistral-7B exhibited a small failure rate of 0.0333, due to

occasional structural issues, such as the generation of invalid Unicode characters that disrupted JSON

validity.

Overall, CodeLlama-7B demonstrated the most balanced performance across all metrics, excelling

in accuracy, reliability, and structural robustness. LLaMA 3.1–8B stood out for its latency and strong

exact match performance, while Mistral-7B showed the highest field-level precision but suffered from

limitations in output structure consistency.

3.2. LLM-Based Evaluation

In addition to quantitative evaluation, a qualitative assessment was conducted using another LLM

as an automated judge. This approach aimed to capture aspects that may not be fully reflected in the

basic performance metrics, such as the model’s ability to accurately interpret instructions and generate

semantically complete outputs. The evaluation focused on four key dimensions: Correctness,

Completeness, Format Compliance, and Overall Quality. The results of this LLM-based assessment are

summarized in Table 4.

Table 4 LLM-Based Evaluation Scores Using GPT-4o-mini Across Four Quality Dimensions

Model Correctness Completeness Format Compliance Overall Quality

CodeLlama-7B 9.80 9.60 10.00 9.73

LLaMA 3.1–8B 9.57 9.67 9.97 9.67

Mistral-7B 8.90 9.33 9.67 9.20

The results of the LLM-Based Judge evaluation, as presented in Table 4, offer qualitative insights

into each model's ability to generate semantically accurate and structurally consistent outputs. All three

models achieved high scores across the four evaluated criteria: Correctness, Completeness, Format

Compliance, and Overall Quality.

CodeLlama-7B emerged as the top-performing model, achieving the highest scores in

Correctness (9.8000) and Overall Quality (9.7333), as well as a perfect score of 10.000 in Format

Compliance, indicating strong alignment with expected output formats and consistently structured

results. LLaMA 3.1–8B followed closely, with a score of 9.5667 in Correctness and 9.6667 in both

Completeness and Format Compliance, reflecting reliable performance and strong semantic fidelity.

Mistral-7B, while still competitive, recorded slightly lower scores in Correctness (8.9000) and

Completeness (9.3333), though it maintained a high Format Compliance score of 9.6667. These results

suggest that Mistral-7B may occasionally fall short in capturing complex instructions or producing fully

comprehensive outputs.

Overall, the LLM-based evaluation reinforces the findings from the quantitative analysis, further

validating CodeLlama-7B as the most semantically accurate and structurally robust model in this

evaluation.

3.3. Human Evaluation

In this study, ourselves as human also evaluated to assess the model outputs using the same four

dimensions. The average human-rated scores are shown in Table 5:

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5233

Table 5. Human Evaluation Scores of LLM Outputs Based on Semantic and Structural Quality

Model Correctness Completeness Format Compliance Overall Quality

CodeLlama-7B 9.00 8.93 9.80 9.05

LLaMA 3.1–8B 8.00 7.80 8.00 7.90

Mistral-7B 7.33 7.00 8.00 7.45

Human judgments aligned closely with LLM-based evaluation, reinforcing CodeLlama-7B as

the most robust model for the task.

3.4. Analysis

The comparative evaluation reveals that CodeLlama-7B consistently outperforms LLaMA 3.1–

8B and Mistral-7B across all performance and quality metrics. The zero parse failure rate and high

format compliance suggest its superior capability in structured JSON generation—a critical requirement

for alarm reporting systems. While LLaMA 3.1 offered stronger performance than Mistral-7B, its

relatively higher latency and occasional formatting errors reduced its reliability in real-time scenarios.

These findings validate the feasibility of deploying locally hosted LLMs for industrial semantic querying

tasks. Moreover, the inclusion of both automated and human evaluations ensures comprehensive model

validation across technical and contextual dimensions.

4. DISCUSSIONS

The evaluation results presented in this research highlight several important insights regarding

the performance and applicability of open-source Large Language Models (LLMs) in the context of

generative alarm reporting using a Retrieval-Augmented Generation (RAG) framework.

First, CodeLlama-7B consistently demonstrated superior performance across all evaluation

metrics, including Exact Match Accuracy, Field Match percentage, response latency, and parse validity.

This indicates not only its capacity for accurate semantic interpretation of natural language queries but

also its robustness in producing syntactically correct JSON structures—an essential feature for

downstream alarm filtering and report generation. The absence of parsing errors further reinforces its

reliability in high-stakes industrial applications where malformed outputs could cause critical failures

or operator confusion.

Second, the alignment between LLM-based evaluation (using GPT-4o-mini) and human

judgment underscores the validity of automated scoring methods for assessing semantic correctness,

completeness, and structural compliance. Both evaluation approaches consistently rated CodeLlama-7B

higher than LLaMA 3.1–8B and Mistral-7B, suggesting a strong correlation between the model’s

quantitative performance and its perceived contextual adequacy by domain experts.

Although LLaMA 3.1–8B showed moderate performance with a good balance of accuracy and

completeness, it was affected by occasional formatting issues and slightly higher latency, making it less

optimal for real-time applications. Mistral-7B, while lightweight and faster in inference, exhibited the

lowest accuracy and the highest parse failure rate, indicating limitations in both structural generation

and context representation.

Another noteworthy observation is the effectiveness of the few-shot prompting strategy, which

enabled the LLMs to generalize well across a diverse range of 30 manually curated queries. This shows

promise for applying such models in industrial domains without extensive fine-tuning, provided

sufficient representative examples are embedded within the prompts.

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5234

From a system perspective, the integration of LLMs with RAG architecture significantly

enhanced the system’s ability to retrieve and present relevant alarm records in real time. The use of a

vector database (ChromaDB) for semantic search proved effective in capturing contextual similarity

from historical logs, allowing the model to produce more targeted and factually grounded responses.

However, several challenges remain. The reliance on local deployment introduces computational

constraints, especially with larger models like LLaMA 3.1–8B. In production settings, optimization

through quantization, caching mechanisms, or hybrid on-device/cloud inference could be explored to

improve efficiency without compromising output quality.

In summary, the results validate that open-source LLMs, particularly CodeLlama-7B, can be

effectively leveraged within a RAG framework to support intelligent, responsive, and context-aware

alarm management systems. These findings contribute to the growing body of research on the practical

deployment of LLMs in industrial automation and highlight key considerations for model selection,

system architecture, and evaluation methodology.

5. CONCLUSION

This study proposed and evaluated a generative alarm reporting system for industrial

environments by integrating open-source Large Language Models (LLMs) with a Retrieval-Augmented

Generation (RAG) framework. The system was designed to convert natural language queries into

structured JSON filters and retrieve contextually relevant alarm logs from historical data using semantic

search.

Three LLMs—CodeLlama-7B, LLaMA 3.1–8B, and Mistral-7B—were compared across

multiple evaluation dimensions, including syntactic accuracy, semantic completeness, latency, and

human judgment. The results demonstrated that CodeLlama-7B achieved the highest performance

across all evaluation metrics, including a 0% parse failure rate, superior exact match accuracy, and top-

rated scores in both automated and human evaluations. These findings indicate that local LLMs can be

effectively applied to enhance real-time situational awareness and decision-making in industrial alarm

management systems.

While the integration of LLM and RAG has shown promising capabilities, several directions for

future research remain:

a) Domain Adaptation and Fine-tuning: Investigating the impact of further fine-tuning LLMs on

alarm-specific corpora to improve accuracy and domain alignment.

b) Model Optimization: Exploring quantization and pruning techniques to reduce the computational

footprint of local deployments without sacrificing performance.

c) Multimodal Integration: Incorporating additional sensor data (e.g., temperature, vibration) to

provide richer context for alarm generation and root cause analysis.

d) Natural Language Feedback Loop: Enabling continuous improvement of the system through

human-in-the-loop learning based on operator corrections and feedback.

e) Scalability Evaluation: Assessing system performance in large-scale environments with high-

frequency logs and multiple concurrent users.

Overall, this research highlights the practical potential of combining LLMs with RAG to enable

intelligent, interpretable, and responsive alarm management solutions—paving the way for next-

generation smart control systems in industrial settings.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this paper.

There are no financial, professional, or personal relationships with any organizations or entities that

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5235

could have influenced the outcomes of this research. All contributions and results were conducted

independently and transparently, including those related to the data provided by industrial collaborators.

ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude to PT Yokogawa Indonesia for providing

access to industrial alarm data and supporting the technical aspects of this research. Appreciation is also

extended to Pradita University, particularly the Faculty of Science and Technology, for facilitating

academic resources and research infrastructure. This work would not have been possible without the

collaborative support and contributions from both institutions.

REFERENCES

[1] ISA, ISA-18.2 Standard: Management of Alarm Systems, 2016.

[2] IEC, IEC 62682: Management of Alarm Systems for the Process Industries, 2014.

[3] B. Hollifield and E. Habibi, The Alarm Management Handbook, 2nd ed., ISA, 2015. [Online].

Available: https://www.isa.org/getmedia/b360ad22-4c7b-4859-bfd4-8de6b076cc9e/Alarm-

Management-2nd-Ed_Hollifield-Habibi_CH1-Final-3-15.pdf.

[4] S. Akhtar, et al., “Economic impact of alarm flooding,” Journal of Industrial Safety Engineering,

2025.

[5] Parsa, K., Hassall, M., & Naderpour, M. (2021). Process Alarm Modeling Using Graph Theory:

Alarm Design Review and Rationalization. In IEEE Systems Journal (Vol. 15, Issue 2, pp. 2257–

2268). Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/JSYST.2020.3019041

[6] Manca, G., & Fay, A. (2021). Detection of Historical Alarm Subsequences Using Alarm Events

and a Coactivation Constraint. IEEE Access, 9, 46851–46873.

https://doi.org/10.1109/ACCESS.2021.3067837

[7] Andrade, J. R., Rocha, C., Silva, R., Viana, J. P., Bessa, R. J., Gouveia, C., Almeida, B., Santos,

R. J., Louro, M., Santos, P. M., & Ribeiro, A. F. (2022). Data-Driven Anomaly Detection and

Event Log Profiling of SCADA Alarms. IEEE Access, 10, 73758–73773.

https://doi.org/10.1109/ACCESS.2022.3190398

[8] A. Raveendran, B. Radhakrishnan, and R. Sivakumar, “Best Practices in Alarm Rationalization:

A Data-Driven Approach,” ISA Transactions, vol. 102, pp. 390–402, Jul. 2020, doi:

10.1016/j.isatra.2020.02.006.
[9] Hindy, H., Brosset, D., Bayne, E., Seeam, A., & Bellekens, X. (2019). Improving SIEM for

Critical SCADA Water Infrastructures Using Machine Learning. https://doi.org/10.1007/978-3-

030-12786-2_1.

[10] Schummer, P., del Rio, A., Serrano, J., Jimenez, D., Sánchez, G., & Llorente, Á. (2024). Machine

Learning-Based Network Anomaly Detection: Design, Implementation, and Evaluation. AI, 5(4),

2967-2983. https://doi.org/10.3390/ai5040143
[11] Z. Jiang, L. Wang, and M. Zhou, “Evaluation of Industrial NLP for Process Safety: Applications

to Alarm Logs,” Computers & Chemical Engineering, vol. 172, p. 108184, Apr. 2023, doi:

10.1016/j.compchemeng.2023.108184.

[12] Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M., & Wang, H.

(2023). Retrieval-Augmented Generation for Large Language Models: A Survey.

http://arxiv.org/abs/2312.10997

[13] W. Zhao, X. Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong,

Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., Wen, J.-R.

(2023). A Survey of Large Language Models. ArXiv. http://arxiv.org/abs/2303.18223

https://jutif.if.unsoed.ac.id/
https://www.isa.org/getmedia/b360ad22-4c7b-4859-bfd4-8de6b076cc9e/Alarm-Management-2nd-Ed_Hollifield-Habibi_CH1-Final-3-15.pdf
https://www.isa.org/getmedia/b360ad22-4c7b-4859-bfd4-8de6b076cc9e/Alarm-Management-2nd-Ed_Hollifield-Habibi_CH1-Final-3-15.pdf
https://doi.org/10.1109/JSYST.2020.3019041
https://doi.org/10.1109/ACCESS.2022.3190398
https://doi.org/10.1007/978-3-030-12786-2_1
https://doi.org/10.1007/978-3-030-12786-2_1
http://arxiv.org/abs/2303.18223

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

5236

[14] T. Brown, et al., “Language Models are Few-Shot Learners,” in Advances in Neural Information

Processing Systems (NeurIPS), vol. 33, pp. 1877–1901, 2020.

[15] OpenAI, “GPT-4 Technical Report,” arXiv preprint arXiv:2303.08774, 2023.

[16] S. Bubeck, et al., “Sparks of Artificial General Intelligence: Early experiments with GPT-4,”

arXiv preprint arXiv:2303.12712, 2023.

[17] P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,” in

Advances in Neural Information Processing Systems (NeurIPS), 2020

[18] B. Ni, Z. Liu, L. Wang, Y. Lei, Y. Zhao, X. Cheng, Q. Zeng, L. Dong, Y. Xia, K. Kenthapadi, R.

Rossi, F. Dernoncourt, M. M. Tanjim, N. Ahmed, X. Liu, W. Fan, E. Blasch, Y. Wang, M. Jiang,

and T. Derr, “Towards Trustworthy Retrieval-Augmented Generation for Large Language

Models: A Survey,” arXiv preprint arXiv:2404.10968, Apr. 2024.

[19] V. Karpukhin et al., “Dense Passage Retrieval for Open-Domain Question Answering,” in Proc.

EMNLP, 2020.

[20] Q. Zhang et al., “VBase: Unifying Online Vector Similarity Search and Relational Queries via

Relaxed Monotonicity,” in Proc. 17th USENIX OSDI, 2023.

[21] Michel, D. D. E., Clovis, T. N., Christian, T. T., Mohamadou, A., & Sone, M. E. (2023). Machine

Learning-Based Alarms Classification and Correlation in an SDH/WDM Optical Network to

Improve Network Maintenance. Journal of Computer and Communications, 11(02), 122–141.

https://doi.org/10.4236/jcc.2023.112009

[22] Rodrigo, V., Chioua, M., Hagglund, T., & Hollender, M. (2016). Causal analysis for alarm flood

reduction.

[23] S. Dey, “Effective Semantic Search: Vector Databases in the LLM Era,” Medium, Dec. 7, 2024.

[Online]. Available: https://medium.com/@soumavadey/effective-semantic-search-vector-

databases-in-the-llm-era-5720f1bf0bbf

[24] P. Gupta et al., “Evaluating Structured Output in Generative Models: A Case for Field-Level

Matching,” in Proc. AAAI Conf. Artificial Intelligence, vol. 37, no. 13, pp. 14972–14980, 2023.

[25] M. Biesialska, K. Biesialska, and J. M. Pino, “Evaluation of Machine Translation Output for

Syntactic Correctness,” Computational Linguistics, vol. 47, no. 4, pp. 789–822, 2021.

[26] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing,

H. Zhang, J. E. Gonzalez, and I. Stoica, “Judging LLM-as-a-Judge with MT-Bench and Chatbot

Arena,” *arXiv preprint*, arXiv:2306.05685v4, Dec. 2023.

https://jutif.if.unsoed.ac.id/
https://medium.com/@soumavadey/effective-semantic-search-vector-databases-in-the-llm-era-5720f1bf0bbf
https://medium.com/@soumavadey/effective-semantic-search-vector-databases-in-the-llm-era-5720f1bf0bbf

