Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

From Logs to Insights in the Pulp & Paper Industry: Generating
Structured Alarm Reports Using LLMs and RAG

Handri Santoso*!, Oktavianus Hendry Wijaya?, Febri Andriani®, Sonny Prijantono*

!'Graduate Program in Information Technology, Faculty of Science and Technology, Pradita
University, Indonesia
*Undergraduate Program in Informatics, Faculty of Science and Technology, Pradita University,
Indonesia
34Technical Specialist Department, PT. Yokogawa Indonesia, Indonesia

Email; 'handri.santoso@pradita.ac.id

Received : Aug 3, 2025; Revised : Sep 24, 2025; Accepted : Oct 22, 2025; Published : Oct 26, 2025

Abstract

Effective alarm management is essential in industrial environments to ensure operational safety and minimize costly
downtime. Traditional rule-based reporting systems often struggle to handle heterogeneous alarm log formats and
the complexity of natural language queries, limiting their adaptability in real-world applications. To address these
limitations, this study proposes a generative alarm reporting system that integrates Large Language Models (LLMs)
with a Retrieval-Augmented Generation (RAG) framework. The system converts natural language queries into
structured JSON filters, enabling efficient retrieval of contextual information from historical alarm logs. Three open-
source LLMs—CodeLlama-7B, LLaMA 3.1-8B, and Mistral-7B—were locally deployed and evaluated using both
quantitative and qualitative methods. Experimental results show that CodeLlama-7B achieved the best overall
performance, with an Exact Match Accuracy of 0.80, a Field Match score of 93.8%, and a 0% Parse Failure Rate,
outperforming the other models in reliability and structural consistency. Compared to conventional rule-based
approaches, the proposed LLM-RAG integration demonstrates improved relevance, interpretability, and
responsiveness in alarm reporting. This work represents the first systematic benchmarking of locally deployed open-
source LLMs for industrial alarm management, providing a replicable framework and highlighting their potential to
advance intelligent, real-time, and domain-specific reporting in the pulp and paper industry and beyond

Keywords : Alarm Management, Large Language Model, Retrieval-Augmented Generation, Semantic Search,
Text Embedding.

This work is an open access article and licensed under a Creative Commons Attribution-Non Commercial
4.0 International License

1. INTRODUCTION

Alarm management is a fundamental element in modern industrial control systems, particularly
in critical sectors such as pulp & paper, petrochemical, energy, and manufacturing industries. Alarm
systems are designed to provide early warnings of abnormal operating conditions to prevent the
escalation of events that may endanger safety, damage assets, or cause process downtime. International
standards such as ISA-18.2 and IEC 62682 emphasize that an effective alarm system must encompass
the entire lifecycle—from planning and rationalization to operation, maintenance, and continuous
improvement [1][2]. Figure 1 showed the lifecycle outlines a structured process for effective alarm
system design, deployment, and continuous improvement. It begins with defining an alarm philosophy,
followed by identification, rationalization, and detailed design. Implementation leads to active
operation, which is sustained through maintenance and monitored using key performance indicators
(KPIs). Management of Change (MOC) governs all modifications to ensure traceability, while periodic
audits ensure compliance and long-term effectiveness. This iterative model promotes alarm integrity,
operator effectiveness, and system safety in complex industrial environments [3].

5222

https://jutif.if.unsoed.ac.id/
http://creativecommons.org/licenses/by/4.0/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

Philosophy

v

Identification 4—L
+ Management of Change

Rationalization

v

Detail Design

v

Implementation

Operation —f_)

A
A 4

Maintenance (—f_

Figure 1 Alarm Management Lifecycle

Audit

Monitoring and Assessment

Despite these guidelines, the implementation of alarm systems in practice often faces major
challenges. One of the most critical issues is alarm flooding, a condition in which too many alarms are
triggered simultaneously within a short time window. This phenomenon hampers operators’ ability to
prioritize critical alarms, leading to decision-making errors and potential financial losses. For example,
industrial downtime in the United States has been estimated to cause annual losses exceeding USD 20
billion [4]. To address these challenges, researchers have proposed various approaches, including rule-
based modeling [5], template-based alarm generation [6], and machine learning—based anomaly
detection [7]-[10]. Although these methods have shown significant contributions, their primary
limitations lie in their inflexibility when dealing with heterogeneous alarm log formats and their inability
to process natural language queries issued by operators [11]-[13].

With the advancement of artificial intelligence, particularly in Natural Language Processing
(NLP), approaches based on Large Language Models (LLMs) and Retrieval-Augmented Generation
(RAG) have emerged as promising solutions [14]-[18]. LLMs can interpret operator queries expressed
in natural language, while RAG enhances this capability by retrieving and filtering factual information
from historical log databases [19][20]. This integration allows systems to translate operator instructions
into structured representations (e.g., JSON filters), perform semantic searches over historical logs, and
generate contextual, interpretable reports in real time. Recent studies, such as Michel et al. [21], Rodrigo
et al. [22] and S. Dey [23], have demonstrated the feasibility of Al-driven alarm clustering, causal
analysis and anomaly detection, highlighting the importance of data-driven techniques for reducing
alarm floods and improving report accuracy.

Unlike prior studies that applied template-based or machine learning—based anomaly detection,
this work is the first to integrate locally deployed LLMs with RAG for industrial alarm reporting,
specifically targeting the pulp & paper sector. This novelty lies in combining the generative capabilities
of LLMs with domain-specific retrieval, thereby enabling interpretable, accurate, and real-time alarm
reporting in complex industrial environments.

Based on this background, this study proposes the development of a generative alarm reporting system
that integrates LLMs with RAG to process natural language queries into structured JSON filters for

5223

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

retrieving contextual information from historical alarm logs. The study evaluates three open-source
LLMs—CodeLlama-7B, LLaMA 3.1-8B, and Mistral-7B—by benchmarking their performance using
both quantitative and qualitative methods. The pulp & paper industry, with its high operational
complexity and diverse alarm characteristics, is selected as the case study domain to validate the
system’s effectiveness and demonstrate its applicability in real-world industrial contexts.

2. METHOD

This study develops and evaluates a generative alarm reporting system that integrates Large
Language Models (LLMs) with a Retrieval-Augmented Generation (RAG) framework. The
objective is to convert operator-issued natural language queries into structured JSON filters that enable
efficient retrieval of contextual information from historical industrial alarm logs. Importantly, all LLMs
are locally deployed, ensuring enhanced data privacy, reduced latency, and seamless integration into on-
premises industrial environments.

2.1. System Architecture

The proposed system architecture is depicted in Figure 2, which illustrates the workflow for
generating contextual alarm reports by integrating Large Language Models (LLMs) with a Retrieval-
Augmented Generation (RAG) framework. Alarm and event logs collected from the Distributed Control
System (DCS) undergo a pre-processing phase to clean inconsistencies, extract relevant fields, and
normalize data formats. These processed log entries are then embedded into vector representations using
a pre-trained embedding model and stored in a vector database.

Alarm Logs from User Query
DCS

! !

Preprocess Data LLM Response is

JSON Structured
Model Embedding Retrieve RAG with
JSON Structured
Search in database Send response list
Store [—b based on User
Database If found G
==
L» G —!
= Not found , Send "Nothing was

found”

Figure 2 Proposed System architecture for Alarm Report Generation using LLM- RAG Integration

On the user interaction side, operators submit natural language queries, which are interpreted by
a locally hosted LLM. The model converts the query into a structured JSON filter using a few-shot
prompting strategy. This JSON structure is passed to the RAG module, which conducts a semantic
search in the vector database.

If relevant entries are found, the system returns a structured list of alarms that match the user
query. If no matches are identified, the system responds with a fallback message: “Nothing was found.”
This architecture supports real-time, flexible, and context-aware alarm reporting, enabling improved
operator decision-making in dynamic and complex industrial environments.

5224

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

2.1.1 Alarm Log Collection

Alarm logs were collected directly from the DCS of a pulp & paper manufacturing facility. Each
entry contained metadata such as timestamp, domain, area, tag, and descriptive message. In total, 15 log
files, each covering a 30-minute window, were collected, yielding a dataset of 69,085 entries (16,843
alarms and 52,242 events across 15 types). This ensured diversity and representativeness for system
evaluation.

2.1.2. Data Preprocessing

This stage involves data cleaning (e.g., removal of empty columns), normalization of formats,
and extraction of key fields such as timestamp, area_id, tag number, and description. Furthermore,
alarm types were classified (as either alarm or event) using pattern matching (regex), and additional
metadata such as domain and area were extracted using rule-based logic.

2.1.3. Embedding and Storage

Log segments were transformed into vector representations using the BAAI/bge-small-en
embedding model from HuggingFace. These embeddings were stored in ChromaDB, a vector database
that supports efficient similarity-based retrieval.

2.1.4. Natural Language Query Processing

Users interact with the system by inputting natural language queries (e.g., “Show alarms in
domain 2 on July 15 from 12pm to 2pm”’). These queries are then processed by an LLM to generate a
structured JSON filter format.

2.1.5. JSON Generation by Local LLMs

Three open-source LLMs—CodeLlama-7B, LLaMA 3.1-8B, and Mistral-7B—were locally
deployed to generate JSON filters from natural language queries. These models were selected for their
structured reasoning capabilities and compatibility with available hardware resources.

A few-shot prompting strategy was applied, providing three JSON examples in the prompt template to
guide model generation and ensure consistent field structures across outputs.

The resulting JSON filters included attributes such as timestamp, area id, domain id, and
type, which formed the basis for downstream retrieval.

2.1.6. Retrieval using RAG

The JSON filters are converted into a format compatible with ChromaDB filters, including time
transformation to UNIX format and the use of logical operators such as $gte, $/t, and $or. Retrieval is
conducted using the RAG approach to combine semantic similarity search with structured filtering,
ultimately returning a contextual and relevant alarm report to the user.

2.2. Dataset Description and Data Preparation

The dataset employed in this study was collected from a Distributed Control System (DCS)
operating in a pulp and paper manufacturing facility. It contains a total of 69,085 log entries, consisting
of both alarm and event records. As shown in Table 1, the dataset includes 16,843 alarm entries across
13 alarm types, and 52,242 event entries grouped into 2 event types. The data were extracted from 15
log files, each covering a 30-minute time window, providing sufficient temporal variation and
operational diversity for system evaluation.

5225

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

Table 1 Summary of Alarm and Event Log Dataset Collected from the DCS System
Aspect Details
Total Log Entries 69,085
Number of Log Files 15
Log Duration per File 30 minutes
Log Types Alarm (16,843 entries, 13 types) Event (52,242 entries, 2 types)

To support the semantic modelling and retrieval tasks proposed in this work, the dataset was
carefully selected to reflect the operational complexity and high event frequency typically found in
real-world industrial environments. The structure of each log entry consists of five key attributes:

e Timestamp: indicating the recorded time of the entry

e Area: representing the source domain or plant zone

e Tag Number: denoting the associated control point or sensor tag
e Description: a textual description of the condition or message

e Alarm Type: used to distinguish between alarm and event entries

To enable downstream processing and semantic querying, the dataset underwent a systematic data
preparation pipeline. First, all log entries were cleansed and normalized, including the removal of
missing values, correction of formatting inconsistencies, and unification of timestamp formats. Next,
key fields such as area, domain, and alarm type were extracted using regular expressions (regex) and
standardized across files to ensure consistent field structure. Each cleaned log entry was then converted
into a semantic vector representation using a pre-trained transformer embedding model (BAAI/bge-
small-en) and stored in a ChromaDB vector database for high-performance similarity search.

These preparation steps ensured that the dataset was not only structurally consistent but also
semantically enriched, making it suitable for Retrieval-Augmented Generation (RAG) processing. The
dataset’s contextual richness and structured format thus provide a robust foundation for evaluating the
effectiveness of Large Language Models (LLMs) in generating real-time, context-aware alarm reports
that support operator situational awareness and decision-making.

2.3 Model Evaluation

To assess the system's ability to generate accurate and valid alarm reports, three locally hosted
open-source LLMs—CodelLlama:7b, LLaMA 3.1:8b, and Mistral:7b—were evaluated using a
combination of quantitative and qualitative approaches.

2.3.1 Basic Performance Metrics

The Basic Performance Metrics provide a direct and objective evaluation of each model's output
accuracy and efficiency [24][25]. Four key metrics were used:

a. Exact Match Accuracy (EMA)
Measures the proportion of generated outputs that exactly match the expected (ground truth)
JSON response.

N, exact_match

Exact Match Accuracy =
Niotal (1)

where Nevacr maten 18 the number of outputs identical to the ground truth, and N is the total number
of test queries.

5226

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

b. Average Field Match (AFM)
Calculates the average correctness of individual fields across all generated JSONS.

N
1
Average Field Match = N Z field_match score,
)
where N is the number of queries and field match_score; is the matching score of each field in
the i" query.

c. Average Latency (AL)
Indicates the mean time (in seconds) required by the model to produce an output from the time
the query is submitted.

N
1
Average Latency = N z; t;
im

3)
Where ¢ is the latency time for the i query.
d. Parse Failure Rate (PFR)
Reflects how often a model generates syntactically invalid JSON outputs.
NJ: rse_failur
Parse Failure Rate = ~Tparsefallure
N total (4)

where Nparse fuinre 1S the number of failed parsing attempts due to syntax errors.

2.3.2. LLM-based Judge Evaluation

To complement the quantitative metrics, a semantic and structural evaluation was conducted using
GPT-40-mini as an automated LLM-based judge [26]. This model was selected due to its ability to
provide consistent judgment across generative tasks.
Each output was assessed on a 0—10 scale across four criteria:

a) Correctness (C)
Assesses whether the content of the JSON correctly reflects the user's query intent.
b) Completeness (Cp)
Measures whether all relevant fields required to satisty the query are included in the output.
¢) Format Compliance (F)
Evaluates whether the output conforms to JSON syntax and expected structural format.
d) Overall Quality (Q)
Represents the general coherence, utility, and usability of the generated report.

For each query i, the total judgment score can be represented as:

Ci+ Cpi + F; + Q;
4 (5

Judge Score; =

Then, the overall LLM-based average evaluation is calculated by:

N
Average LLM-Judge Score = % Z Judge Score;
i=1 (6)

5227

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

2.4 Test Case Design and Ground Truth Construction

To assess the system's ability to accurately convert natural language queries into structured JSON
filters, a comprehensive set of 30 test queries was developed. Each query simulates a realistic operator
request that an industrial alarm reporting system may encounter. These include variations in spatial
filtering (e.g., area, domain), temporal constraints (e.g., specific time ranges), and tag-based identifiers
linked to specific sensors or control points.

For each query, a corresponding ground truth JSON filter was manually defined to serve as the
reference output. These JSON structures specify the necessary fields—such as area id, domain _id,
timestamp, type, or tag_numbers—in a format compatible with vector-based retrieval and filtering. The
test cases were curated to ensure broad coverage of representative use cases, including:

¢ Single and multi-area/domain queries

¢ Time-specific alarms or events

e Combined filters with time, area, and tag constraints
e General log retrieval across types

This benchmark suite not only evaluates syntactic accuracy but also reflects semantic fidelity in
transforming human language into machine-interpretable formats. The full list of natural language
queries and their corresponding JSON representations is presented in Table 2.

Table 2 Test Cases: Natural Language Queries and Corresponding Ground Truth JSON Filters for
Alarm Retrieval Evaluation

No Question Ground Truth
{ .
1 Show all events from area 25 "area'_'u'l' 23)
type": "events
i
{ .
2 List everything in area 30 ! area_id": "30
{ .
3 What alarms occurred in area 45 "area'_'u?' 43)
type": "alarms
}
{ .
4 Show events from area 17 "area'_'u?' 17 .
type": "events
i
{
5 Give me all logs from area 22 "area_id": "22"
}
{ . .
6 Show all events from domain 1 "dom? H:—ld : ?1 ’
type": "events
}
{ . .
7 List alarms from domain 2 "dom? H:—ld : (,),2 ’
type": "alarms
}
{
8 What happened in domain 3 "domain_id": "03"
}

5228

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF)
P-ISSN: 2723-3863
E-ISSN: 2723-3871

Vol. 6, No. 5, October 2025, Page. 4022-5236
https://jutif.if.unsoed.ac.id
DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

{
9 Give me events from domain 4 "domain_id": "04",
"type": "events"
}
{ . .
10 Show alarms from domain 5 "dom';'a H,l,—ld) (,),5 ’
type": "alarms
i
{ .
What happened between 8am to tulmes? n"lg 2i 11-2 .00-00"
11 | 9am on November 28, 2024? Sgte”: "2024-11-28T08:00:00",
’ ' "$1t": "2024-11-28T09:00:00"
H
}s
{
"timestamp": {
"$gte": "2024-05-08T10:00:00",
1o |Show events on May 8 2024 "$1t": "2024-05-08T11:00:00"
between 10am and 11am !
"type": "events"
}
{
"timestamp": {
Give me alarms from noon to 2pm "bgte”: "2024-07-15T12:00:00",
13 P "$1t": "2024-07-15T14:00:00"
on July 15,2024)
"type": "alarms"
’s
{
"timestamp": {
"$gte": "2024-05-08T15:00:00"
What events occurred between 3pm e PO
14 and Spm on May 8, 2024 \ $1t": "2024-05-08T17:00:00
"type": "events"
i
{
"timestamp": {
"$gte": "2024-09-10T09:00:00"
Show alarms from 9am to 12pm on e OO
15 September 10, 2024 \ $1t": "2024-09-10T12:00:00
"type": "alarms"
i
Show alarms from domains 1, 2, "domain_id": ["01", "02", "03"],
16 and 3 n n.n "
type": "alarms
i
{ .
17 List events from areas 10 and 20 "areawlql 3 10,,’ 207,
type": "events
i
{
18 Give me alarms from domain 5 or "domain_id": ["05", "07"],
domain 7 "type": "alarms"
}

5229

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF)
P-ISSN: 2723-3863
E-ISSN: 2723-3871

Vol. 6, No. 5, October 2025, Page. 4022-5236
https://jutif.if.unsoed.ac.id
DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

{
19 Show events from areas 25 and 30 "areawl(}' [25,,’ 3071,
type": "events
}
{ n : AN n n.n n
20 List alarms from domains 8 and 9 "dom';'a .H,l,—ld) [,,0 8","09"],
type": "alarms
i
{
71 Show events for tag "tag numbers": "210LDAH1031",
210LDAH1031 "type": "events"
i
{ " n.n "
22 | List alarms for tag 25GJI8082D1 "tag_numbers’: "25GJI8082D1",
type": "alarms
{ }
23 SllgiDEI—en 023‘121 logs with tag }"tag_numbers": "210LDAH1032"
{ " n.n "
24 | Show events for tag 25GJI8082D2 "tag_numbers": "25GJI8082D2",
type": "events
}
{ " n.n "
25 | Listalarms for tag 210LDAH1033 "tag_numbers": "210LDAH1033",
type": "alarms
}
{
"area_id": "25",
"type": "alarms",
2% Show alarms from area 25 between "timestamp": {
2pm and 4pm on June 15, 2024 "$gte": "2024-06-15T14:00:00",
"$lt": "2024-06-15T16:00:00"
}
i
. . . "domain_id": "03",
27 ;%tf];i‘glfggrln domain 3 with tag "tag_numbers" "210LDAH1031",
type": "events
}
{
"area id": "25",
"tag numbers": "25GJ18082D1",
Show alarms from area 25 for tag "type": "alarms",
28 25GJI8082D1 between 9am and "timestamp": {
11am on July 1, 2024": "$gte": "2024-07-01T09:00:00",
"$lt": "2024-07-01T11:00:00"
H
i
{ " . AL n "
Give me events from domain 2 "domf 1r’1'_1d : 92 ’
29 type": "events",
between 1pm and 3pm " i
timestamp": {
"$gte": "2024-07-01T13:00:00",

5230

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236

P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225
"$1t": "2024-07-01T15:00:00"
H
}
{
"area id": "25",
"tag_numbers": "25GJI8082D2",
30 List alarms from area 25 with tag "gnlizs;aﬁql;:@; ’
25GJI18082D2 on August 5, 2024": "Sate": "2024-08-05T00:00:00",
"$1t": "2024-08-05T23:59:59"
H
}
3. RESULT

This section presents the evaluation results of three locally hosted Large Language Models
(LLMs): CodeLlama-7B, LLaMA 3.1-8B, and Mistral-7B, integrated within a Retrieval-Augmented
Generation (RAG) framework for generative alarm reporting. The evaluation was conducted using three
complementary approaches: basic performance metrics, LLM-based semantic judgment, and human
assessment.

3.1. Basic Performance Evaluation

Four quantitative metrics were used to measure the effectiveness of each model:
a) Exact Match Accuracy (EMA) — Measures how often the generated JSON filter exactly matches
the ground truth.
b) Average Field Match — Calculates the average proportion of correctly generated fields across all
test cases.
¢) Average Latency — Captures the average response time in seconds.
d) Parse Failure Rate — Indicates the percentage of responses that failed JSON syntax parsing.
The results are summarized in Table 3:

Table 3. Comparison of Basic Performance Metrics for LLMs-RAG-Based Alarm Filter Generation

Model Exact Match Field Match Latency Parse Failure Rate
Accuracy (%) (s) (%)
CodeLlama-7B 0.8000 93.83 4.04 0.00
LLaMA 3.1- 0.7667 87.22 3.73 0.00
&B
Mistral-7B 0.6000 96.67 4.02 0.033

The results in Table 3 provide a comparative analysis of the three LLM models using four core
performance metrics. In terms of Exact Match Accuracy, which evaluates whether the generated JSON
output precisely matches the ground truth, CodeLlama-7B achieved the highest score of 0.8000,
indicating strong reliability in producing fully correct responses. LLaMA 3.1-8B followed with a score
of 0.7667, while Mistral-7B recorded the lowest score at 0.6000, reflecting greater inconsistency in
generating structurally and semantically accurate outputs.

However, in Average Field Match, which measures the correctness of individual fields in the
JSON structure, Mistral-7B outperformed the other models with a score of 96.67%, demonstrating high
precision at the field level despite its lower overall structural accuracy. CodeLlama-7B also performed
well in this metric, achieving a score of 93.33%, while LLaMA 3.1-8B trailed slightly with 87/22%.

5231

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

Regarding Average Latency, which captures the average time required to generate a response,
LLaMA 3.1-8B led with the fastest response time of 3.7350 seconds, followed by Mistral-7B at 4.0228
seconds, and CodeLlama-7B at 4.0407 seconds. Although these differences are relatively minor, latency
can impact system responsiveness in real-time applications.

The Parse Failure Rate assesses the ability of each model to generate syntactically valid JSON.
Both CodelLlama-7B and LLaMA 3.1-8B achieved a perfect score of 0.0000, indicating that all outputs
were valid and parseable. In contrast, Mistral-7B exhibited a small failure rate of 0.0333, due to
occasional structural issues, such as the generation of invalid Unicode characters that disrupted JSON
validity.

Overall, CodeLlama-7B demonstrated the most balanced performance across all metrics, excelling
in accuracy, reliability, and structural robustness. LLaMA 3.1-8B stood out for its latency and strong
exact match performance, while Mistral-7B showed the highest field-level precision but suffered from
limitations in output structure consistency.

3.2. LLM-Based Evaluation

In addition to quantitative evaluation, a qualitative assessment was conducted using another LLM
as an automated judge. This approach aimed to capture aspects that may not be fully reflected in the
basic performance metrics, such as the model’s ability to accurately interpret instructions and generate
semantically complete outputs. The evaluation focused on four key dimensions: Correctness,
Completeness, Format Compliance, and Overall Quality. The results of this LLM-based assessment are
summarized in Table 4.

Table 4 LLM-Based Evaluation Scores Using GPT-40-mini Across Four Quality Dimensions

Model Correctness Completeness Format Compliance Overall Quality
CodeLlama-7B 9.80 9.60 10.00 9.73
LLaMA 3.1-8B 9.57 9.67 9.97 9.67
Mistral-7B 8.90 9.33 9.67 9.20

The results of the LLM-Based Judge evaluation, as presented in Table 4, offer qualitative insights
into each model's ability to generate semantically accurate and structurally consistent outputs. All three
models achieved high scores across the four evaluated criteria: Correctness, Completeness, Format
Compliance, and Overall Quality.

CodeLlama-7B emerged as the top-performing model, achieving the highest scores in
Correctness (9.8000) and Overall Quality (9.7333), as well as a perfect score of 10.000 in Format
Compliance, indicating strong alignment with expected output formats and consistently structured
results. LLaMA 3.1-8B followed closely, with a score of 9.5667 in Correctness and 9.6667 in both
Completeness and Format Compliance, reflecting reliable performance and strong semantic fidelity.
Mistral-7B, while still competitive, recorded slightly lower scores in Correctness (8.9000) and
Completeness (9.3333), though it maintained a high Format Compliance score of 9.6667. These results
suggest that Mistral-7B may occasionally fall short in capturing complex instructions or producing fully
comprehensive outputs.

Overall, the LLM-based evaluation reinforces the findings from the quantitative analysis, further
validating CodelLlama-7B as the most semantically accurate and structurally robust model in this
evaluation.

3.3. Human Evaluation

In this study, ourselves as human also evaluated to assess the model outputs using the same four
dimensions. The average human-rated scores are shown in Table 5:

5232

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

Table 5. Human Evaluation Scores of LLM Qutputs Based on Semantic and Structural Quality

Model Correctness Completeness Format Compliance Overall Quality
CodeLlama-7B 9.00 8.93 9.80 9.05
LLaMA 3.1-8B 8.00 7.80 8.00 7.90
Mistral-7B 7.33 7.00 8.00 7.45

Human judgments aligned closely with LLM-based evaluation, reinforcing CodeLlama-7B as
the most robust model for the task.

3.4. Analysis

The comparative evaluation reveals that CodeLlama-7B consistently outperforms LLaMA 3.1—
8B and Mistral-7B across all performance and quality metrics. The zero parse failure rate and high
format compliance suggest its superior capability in structured JSON generation—a critical requirement
for alarm reporting systems. While LLaMA 3.1 offered stronger performance than Mistral-7B, its
relatively higher latency and occasional formatting errors reduced its reliability in real-time scenarios.
These findings validate the feasibility of deploying locally hosted LLMs for industrial semantic querying
tasks. Moreover, the inclusion of both automated and human evaluations ensures comprehensive model
validation across technical and contextual dimensions.

4. DISCUSSIONS

The evaluation results presented in this research highlight several important insights regarding
the performance and applicability of open-source Large Language Models (LLMs) in the context of
generative alarm reporting using a Retrieval-Augmented Generation (RAG) framework.

First, CodeLlama-7B consistently demonstrated superior performance across all evaluation
metrics, including Exact Match Accuracy, Field Match percentage, response latency, and parse validity.
This indicates not only its capacity for accurate semantic interpretation of natural language queries but
also its robustness in producing syntactically correct JSON structures—an essential feature for
downstream alarm filtering and report generation. The absence of parsing errors further reinforces its
reliability in high-stakes industrial applications where malformed outputs could cause critical failures
or operator confusion.

Second, the alignment between LLM-based evaluation (using GPT-40-mini) and human
judgment underscores the validity of automated scoring methods for assessing semantic correctness,
completeness, and structural compliance. Both evaluation approaches consistently rated Codel.lama-7B
higher than LLaMA 3.1-8B and Mistral-7B, suggesting a strong correlation between the model’s
quantitative performance and its perceived contextual adequacy by domain experts.

Although LLaMA 3.1-8B showed moderate performance with a good balance of accuracy and
completeness, it was affected by occasional formatting issues and slightly higher latency, making it less
optimal for real-time applications. Mistral-7B, while lightweight and faster in inference, exhibited the
lowest accuracy and the highest parse failure rate, indicating limitations in both structural generation
and context representation.

Another noteworthy observation is the effectiveness of the few-shot prompting strategy, which
enabled the LLMs to generalize well across a diverse range of 30 manually curated queries. This shows
promise for applying such models in industrial domains without extensive fine-tuning, provided
sufficient representative examples are embedded within the prompts.

5233

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

From a system perspective, the integration of LLMs with RAG architecture significantly
enhanced the system’s ability to retrieve and present relevant alarm records in real time. The use of a
vector database (ChromaDB) for semantic search proved effective in capturing contextual similarity
from historical logs, allowing the model to produce more targeted and factually grounded responses.

However, several challenges remain. The reliance on local deployment introduces computational
constraints, especially with larger models like LLaMA 3.1-8B. In production settings, optimization
through quantization, caching mechanisms, or hybrid on-device/cloud inference could be explored to
improve efficiency without compromising output quality.

In summary, the results validate that open-source LLMs, particularly CodeLlama-7B, can be
effectively leveraged within a RAG framework to support intelligent, responsive, and context-aware
alarm management systems. These findings contribute to the growing body of research on the practical
deployment of LLMs in industrial automation and highlight key considerations for model selection,
system architecture, and evaluation methodology.

5. CONCLUSION

This study proposed and evaluated a generative alarm reporting system for industrial
environments by integrating open-source Large Language Models (LLMs) with a Retrieval-Augmented
Generation (RAG) framework. The system was designed to convert natural language queries into
structured JSON filters and retrieve contextually relevant alarm logs from historical data using semantic
search.

Three LLMs—CodeLlama-7B, LLaMA 3.1-8B, and Mistral-7B—were compared across
multiple evaluation dimensions, including syntactic accuracy, semantic completeness, latency, and
human judgment. The results demonstrated that CodeLlama-7B achieved the highest performance
across all evaluation metrics, including a 0% parse failure rate, superior exact match accuracy, and top-
rated scores in both automated and human evaluations. These findings indicate that local LLMs can be
effectively applied to enhance real-time situational awareness and decision-making in industrial alarm
management systems.

While the integration of LLM and RAG has shown promising capabilities, several directions for
future research remain:

a) Domain Adaptation and Fine-tuning: Investigating the impact of further fine-tuning LLMs on
alarm-specific corpora to improve accuracy and domain alignment.

b) Model Optimization: Exploring quantization and pruning techniques to reduce the computational
footprint of local deployments without sacrificing performance.

¢) Multimodal Integration: Incorporating additional sensor data (e.g., temperature, vibration) to
provide richer context for alarm generation and root cause analysis.

d) Natural Language Feedback Loop: Enabling continuous improvement of the system through
human-in-the-loop learning based on operator corrections and feedback.

e) Scalability Evaluation: Assessing system performance in large-scale environments with high-
frequency logs and multiple concurrent users.

Overall, this research highlights the practical potential of combining LLMs with RAG to enable
intelligent, interpretable, and responsive alarm management solutions—paving the way for next-
generation smart control systems in industrial settings.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this paper.
There are no financial, professional, or personal relationships with any organizations or entities that

5234

https://jutif.if.unsoed.ac.id/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

could have influenced the outcomes of this research. All contributions and results were conducted
independently and transparently, including those related to the data provided by industrial collaborators.

ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude to PT Yokogawa Indonesia for providing
access to industrial alarm data and supporting the technical aspects of this research. Appreciation is also
extended to Pradita University, particularly the Faculty of Science and Technology, for facilitating
academic resources and research infrastructure. This work would not have been possible without the
collaborative support and contributions from both institutions.

REFERENCES

[1] ISA, ISA-18.2 Standard: Management of Alarm Systems, 2016.

[2] IEC, IEC 62682: Management of Alarm Systems for the Process Industries, 2014.

[3] B. Hollifield and E. Habibi, The Alarm Management Handbook, 2nd ed., ISA, 2015. [Online].
Available: https://www.isa.org/getmedia/b360ad22-4c7b-4859-bfd4-8de6b076¢cc9e/Alarm-
Management-2nd-Ed_Hollifield-Habibi CH1-Final-3-15.pdf.

[4] S. Akhtar, et al., “Economic impact of alarm flooding,” Journal of Industrial Safety Engineering,
2025.

[5] Parsa, K., Hassall, M., & Naderpour, M. (2021). Process Alarm Modeling Using Graph Theory:
Alarm Design Review and Rationalization. In /[EEE Systems Journal (Vol. 15, Issue 2, pp. 2257—
2268). Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/JSYST.2020.3019041

[6] Manca, G., & Fay, A. (2021). Detection of Historical Alarm Subsequences Using Alarm Events
and a Coactivation Constraint. IEEE Access, 9, 46851-46873.
https://doi.org/10.1109/ACCESS.2021.3067837

[71 Andrade, J. R., Rocha, C., Silva, R., Viana, J. P., Bessa, R. J., Gouveia, C., Almeida, B., Santos,
R. J., Louro, M., Santos, P. M., & Ribeiro, A. F. (2022). Data-Driven Anomaly Detection and
Event Log Profiling of SCADA Alarms. [EEE Access, 10, 73758-73773.
https://doi.org/10.1109/ACCESS.2022.3190398

[8] A. Raveendran, B. Radhakrishnan, and R. Sivakumar, “Best Practices in Alarm Rationalization:
A Data-Driven Approach,” IS4 Transactions, vol. 102, pp. 390-402, Jul. 2020, doi:
10.1016/j.isatra.2020.02.006.

[9] Hindy, H., Brosset, D., Bayne, E., Seeam, A., & Bellekens, X. (2019). Improving SIEM for
Critical SCADA Water Infrastructures Using Machine Learning. https://doi.org/10.1007/978-3-
030-12786-2 1.

[10] Schummer, P., del Rio, A., Serrano, J., Jimenez, D., Sanchez, G., & Llorente, A. (2024). Machine
Learning-Based Network Anomaly Detection: Design, Implementation, and Evaluation. A1, 5(4),
2967-2983. https://doi.org/10.3390/2i5040143

[11] Z. Jiang, L. Wang, and M. Zhou, “Evaluation of Industrial NLP for Process Safety: Applications
to Alarm Logs,” Computers & Chemical Engineering, vol. 172, p. 108184, Apr. 2023, doi:
10.1016/j.compchemeng.2023.108184.

[12] Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J.,, Wang, M., & Wang, H.
(2023). Retrieval-Augmented Generation for Large Language Models: A Survey.
http://arxiv.org/abs/2312.10997

[13] W. Zhao, X. Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong,
Z.,Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., Wen, J.-R.
(2023). A Survey of Large Language Models. ArXiv. http://arxiv.org/abs/2303.18223

5235

https://jutif.if.unsoed.ac.id/
https://www.isa.org/getmedia/b360ad22-4c7b-4859-bfd4-8de6b076cc9e/Alarm-Management-2nd-Ed_Hollifield-Habibi_CH1-Final-3-15.pdf
https://www.isa.org/getmedia/b360ad22-4c7b-4859-bfd4-8de6b076cc9e/Alarm-Management-2nd-Ed_Hollifield-Habibi_CH1-Final-3-15.pdf
https://doi.org/10.1109/JSYST.2020.3019041
https://doi.org/10.1109/ACCESS.2022.3190398
https://doi.org/10.1007/978-3-030-12786-2_1
https://doi.org/10.1007/978-3-030-12786-2_1
http://arxiv.org/abs/2303.18223

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 4022-5236
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id
E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5225

[14]

[15]
[16]

[17]

[18]

[22]

(23]

[24]
[25]

[26]

T. Brown, et al., “Language Models are Few-Shot Learners,” in Advances in Neural Information
Processing Systems (NeurlPS), vol. 33, pp. 1877-1901, 2020.

OpenAl, “GPT-4 Technical Report,” arXiv preprint arXiv:2303.08774, 2023.

S. Bubeck, et al., “Sparks of Artificial General Intelligence: Early experiments with GPT-4,”
arXiv preprint arXiv:2303.12712, 2023.

P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,” in
Advances in Neural Information Processing Systems (NeurIPS), 2020

B. Ni, Z. Liu, L. Wang, Y. Lei, Y. Zhao, X. Cheng, Q. Zeng, L. Dong, Y. Xia, K. Kenthapadi, R.
Rossi, F. Dernoncourt, M. M. Tanjim, N. Ahmed, X. Liu, W. Fan, E. Blasch, Y. Wang, M. Jiang,
and T. Derr, “Towards Trustworthy Retrieval-Augmented Generation for Large Language
Models: A Survey,” arXiv preprint arXiv:2404.10968, Apr. 2024.

V. Karpukhin ef al., “Dense Passage Retrieval for Open-Domain Question Answering,” in Proc.
EMNLP, 2020.

Q. Zhang et al., “VBase: Unifying Online Vector Similarity Search and Relational Queries via
Relaxed Monotonicity,” in Proc. 17th USENIX OSDI, 2023.

Michel, D. D. E., Clovis, T. N., Christian, T. T., Mohamadou, A., & Sone, M. E. (2023). Machine
Learning-Based Alarms Classification and Correlation in an SDH/WDM Optical Network to
Improve Network Maintenance. Journal of Computer and Communications, 11(02), 122—-141.
https://doi.org/10.4236/jcc.2023.112009

Rodrigo, V., Chioua, M., Hagglund, T., & Hollender, M. (2016). Causal analysis for alarm flood
reduction.

S. Dey, “Effective Semantic Search: Vector Databases in the LLM Era,” Medium, Dec. 7, 2024.
[Online]. Available: https://medium.com/(@soumavadey/effective-semantic-search-vector-
databases-in-the-llm-era-5720f1bfObbf

P. Gupta et al., “Evaluating Structured Output in Generative Models: A Case for Field-Level
Matching,” in Proc. AAAI Conf. Artificial Intelligence, vol. 37, no. 13, pp. 14972-14980, 2023.
M. Biesialska, K. Biesialska, and J. M. Pino, “Evaluation of Machine Translation Output for
Syntactic Correctness,” Computational Linguistics, vol. 47, no. 4, pp. 789822, 2021.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing,
H. Zhang, J. E. Gonzalez, and 1. Stoica, “Judging LLM-as-a-Judge with MT-Bench and Chatbot
Arena,” *arXiv preprint*, arXiv:2306.05685v4, Dec. 2023.

5236

https://jutif.if.unsoed.ac.id/
https://medium.com/@soumavadey/effective-semantic-search-vector-databases-in-the-llm-era-5720f1bf0bbf
https://medium.com/@soumavadey/effective-semantic-search-vector-databases-in-the-llm-era-5720f1bf0bbf

