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Abstract 

Effective alarm management is essential in industrial environments to ensure operational safety and minimize costly 

downtime. Traditional rule-based reporting systems often struggle to handle heterogeneous alarm log formats and 

the complexity of natural language queries, limiting their adaptability in real-world applications. To address these 

limitations, this study proposes a generative alarm reporting system that integrates Large Language Models (LLMs) 

with a Retrieval-Augmented Generation (RAG) framework. The system converts natural language queries into 

structured JSON filters, enabling efficient retrieval of contextual information from historical alarm logs. Three open-

source LLMs—CodeLlama-7B, LLaMA 3.1-8B, and Mistral-7B—were locally deployed and evaluated using both 

quantitative and qualitative methods. Experimental results show that CodeLlama-7B achieved the best overall 

performance, with an Exact Match Accuracy of 0.80, a Field Match score of 93.8%, and a 0% Parse Failure Rate, 

outperforming the other models in reliability and structural consistency. Compared to conventional rule-based 

approaches, the proposed LLM-RAG integration demonstrates improved relevance, interpretability, and 

responsiveness in alarm reporting. This work represents the first systematic benchmarking of locally deployed open-

source LLMs for industrial alarm management, providing a replicable framework and highlighting their potential to 

advance intelligent, real-time, and domain-specific reporting in the pulp and paper industry and beyond 

 

Keywords : Alarm Management, Large Language Model, Retrieval-Augmented Generation, Semantic Search, 
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1. INTRODUCTION 

Alarm management is a fundamental element in modern industrial control systems, particularly 

in critical sectors such as pulp & paper, petrochemical, energy, and manufacturing industries. Alarm 

systems are designed to provide early warnings of abnormal operating conditions to prevent the 

escalation of events that may endanger safety, damage assets, or cause process downtime. International 

standards such as ISA-18.2 and IEC 62682 emphasize that an effective alarm system must encompass 

the entire lifecycle—from planning and rationalization to operation, maintenance, and continuous 

improvement [1][2]. Figure 1 showed the lifecycle outlines a structured process for effective alarm 

system design, deployment, and continuous improvement. It begins with defining an alarm philosophy, 

followed by identification, rationalization, and detailed design. Implementation leads to active 

operation, which is sustained through maintenance and monitored using key performance indicators 

(KPIs). Management of Change (MOC) governs all modifications to ensure traceability, while periodic 

audits ensure compliance and long-term effectiveness. This iterative model promotes alarm integrity, 

operator effectiveness, and system safety in complex industrial environments [3]. 
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Figure 1 Alarm Management Lifecycle 

 

Despite these guidelines, the implementation of alarm systems in practice often faces major 

challenges. One of the most critical issues is alarm flooding, a condition in which too many alarms are 

triggered simultaneously within a short time window. This phenomenon hampers operators’ ability to 

prioritize critical alarms, leading to decision-making errors and potential financial losses. For example, 

industrial downtime in the United States has been estimated to cause annual losses exceeding USD 20 

billion [4]. To address these challenges, researchers have proposed various approaches, including rule-

based modeling [5], template-based alarm generation [6], and machine learning–based anomaly 

detection [7]-[10]. Although these methods have shown significant contributions, their primary 

limitations lie in their inflexibility when dealing with heterogeneous alarm log formats and their inability 

to process natural language queries issued by operators [11]-[13]. 

With the advancement of artificial intelligence, particularly in Natural Language Processing 

(NLP), approaches based on Large Language Models (LLMs) and Retrieval-Augmented Generation 

(RAG) have emerged as promising solutions [14]-[18]. LLMs can interpret operator queries expressed 

in natural language, while RAG enhances this capability by retrieving and filtering factual information 

from historical log databases [19][20]. This integration allows systems to translate operator instructions 

into structured representations (e.g., JSON filters), perform semantic searches over historical logs, and 

generate contextual, interpretable reports in real time. Recent studies, such as Michel et al. [21], Rodrigo 

et al. [22] and S. Dey [23], have demonstrated the feasibility of AI-driven alarm clustering, causal 

analysis and anomaly detection, highlighting the importance of data-driven techniques for reducing 

alarm floods and improving report accuracy. 

Unlike prior studies that applied template-based or machine learning–based anomaly detection, 

this work is the first to integrate locally deployed LLMs with RAG for industrial alarm reporting, 

specifically targeting the pulp & paper sector. This novelty lies in combining the generative capabilities 

of LLMs with domain-specific retrieval, thereby enabling interpretable, accurate, and real-time alarm 

reporting in complex industrial environments. 

Based on this background, this study proposes the development of a generative alarm reporting system 

that integrates LLMs with RAG to process natural language queries into structured JSON filters for 

https://jutif.if.unsoed.ac.id/
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retrieving contextual information from historical alarm logs. The study evaluates three open-source 

LLMs—CodeLlama-7B, LLaMA 3.1–8B, and Mistral-7B—by benchmarking their performance using 

both quantitative and qualitative methods. The pulp & paper industry, with its high operational 

complexity and diverse alarm characteristics, is selected as the case study domain to validate the 

system’s effectiveness and demonstrate its applicability in real-world industrial contexts. 

2. METHOD 

This study develops and evaluates a generative alarm reporting system that integrates Large 

Language Models (LLMs) with a Retrieval-Augmented Generation (RAG) framework. The 

objective is to convert operator-issued natural language queries into structured JSON filters that enable 

efficient retrieval of contextual information from historical industrial alarm logs. Importantly, all LLMs 

are locally deployed, ensuring enhanced data privacy, reduced latency, and seamless integration into on-

premises industrial environments. 

2.1.  System Architecture 

The proposed system architecture is depicted in Figure 2, which illustrates the workflow for 

generating contextual alarm reports by integrating Large Language Models (LLMs) with a Retrieval-

Augmented Generation (RAG) framework. Alarm and event logs collected from the Distributed Control 

System (DCS) undergo a pre-processing phase to clean inconsistencies, extract relevant fields, and 

normalize data formats. These processed log entries are then embedded into vector representations using 

a pre-trained embedding model and stored in a vector database. 

 

 
Figure 2 Proposed System architecture for Alarm Report Generation using LLM- RAG Integration 

 

On the user interaction side, operators submit natural language queries, which are interpreted by 

a locally hosted LLM. The model converts the query into a structured JSON filter using a few-shot 

prompting strategy. This JSON structure is passed to the RAG module, which conducts a semantic 

search in the vector database. 

If relevant entries are found, the system returns a structured list of alarms that match the user 

query. If no matches are identified, the system responds with a fallback message: “Nothing was found.” 

This architecture supports real-time, flexible, and context-aware alarm reporting, enabling improved 

operator decision-making in dynamic and complex industrial environments. 

https://jutif.if.unsoed.ac.id/
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2.1.1  Alarm Log Collection 

Alarm logs were collected directly from the DCS of a pulp & paper manufacturing facility. Each 

entry contained metadata such as timestamp, domain, area, tag, and descriptive message. In total, 15 log 

files, each covering a 30-minute window, were collected, yielding a dataset of 69,085 entries (16,843 

alarms and 52,242 events across 15 types). This ensured diversity and representativeness for system 

evaluation. 

2.1.2.  Data Preprocessing 

This stage involves data cleaning (e.g., removal of empty columns), normalization of formats, 

and extraction of key fields such as timestamp, area_id, tag_number, and description. Furthermore, 

alarm types were classified (as either alarm or event) using pattern matching (regex), and additional 

metadata such as domain and area were extracted using rule-based logic. 

2.1.3.  Embedding and Storage 

Log segments were transformed into vector representations using the BAAI/bge-small-en 

embedding model from HuggingFace. These embeddings were stored in ChromaDB, a vector database 

that supports efficient similarity-based retrieval. 

2.1.4.  Natural Language Query Processing 

Users interact with the system by inputting natural language queries (e.g., “Show alarms in 

domain 2 on July 15 from 12pm to 2pm”). These queries are then processed by an LLM to generate a 

structured JSON filter format. 

2.1.5.  JSON Generation by Local LLMs 

Three open-source LLMs—CodeLlama-7B, LLaMA 3.1–8B, and Mistral-7B—were locally 

deployed to generate JSON filters from natural language queries. These models were selected for their 

structured reasoning capabilities and compatibility with available hardware resources. 

A few-shot prompting strategy was applied, providing three JSON examples in the prompt template to 

guide model generation and ensure consistent field structures across outputs. 

The resulting JSON filters included attributes such as timestamp, area_id, domain_id, and 

type, which formed the basis for downstream retrieval. 

2.1.6.  Retrieval using RAG 

The JSON filters are converted into a format compatible with ChromaDB filters, including time 

transformation to UNIX format and the use of logical operators such as $gte, $lt, and $or. Retrieval is 

conducted using the RAG approach to combine semantic similarity search with structured filtering, 

ultimately returning a contextual and relevant alarm report to the user. 

2.2.  Dataset Description and Data Preparation 

The dataset employed in this study was collected from a Distributed Control System (DCS) 

operating in a pulp and paper manufacturing facility. It contains a total of 69,085 log entries, consisting 

of both alarm and event records. As shown in Table 1, the dataset includes 16,843 alarm entries across 

13 alarm types, and 52,242 event entries grouped into 2 event types. The data were extracted from 15 

log files, each covering a 30-minute time window, providing sufficient temporal variation and 

operational diversity for system evaluation. 
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Table 1 Summary of Alarm and Event Log Dataset Collected from the DCS System 

Aspect Details 

Total Log Entries 69,085 

Number of Log Files 15 

Log Duration per File 30 minutes 

Log Types Alarm (16,843 entries, 13 types) Event (52,242 entries, 2 types) 

 

To support the semantic modelling and retrieval tasks proposed in this work, the dataset was 

carefully selected to reflect the operational complexity and high event frequency typically found in 

real-world industrial environments. The structure of each log entry consists of five key attributes: 

• Timestamp: indicating the recorded time of the entry 

• Area: representing the source domain or plant zone 

• Tag Number: denoting the associated control point or sensor tag 

• Description: a textual description of the condition or message 

• Alarm Type: used to distinguish between alarm and event entries 

To enable downstream processing and semantic querying, the dataset underwent a systematic data 

preparation pipeline. First, all log entries were cleansed and normalized, including the removal of 

missing values, correction of formatting inconsistencies, and unification of timestamp formats. Next, 

key fields such as area, domain, and alarm type were extracted using regular expressions (regex) and 

standardized across files to ensure consistent field structure. Each cleaned log entry was then converted 

into a semantic vector representation using a pre-trained transformer embedding model (BAAI/bge-

small-en) and stored in a ChromaDB vector database for high-performance similarity search. 

These preparation steps ensured that the dataset was not only structurally consistent but also 

semantically enriched, making it suitable for Retrieval-Augmented Generation (RAG) processing. The 

dataset’s contextual richness and structured format thus provide a robust foundation for evaluating the 

effectiveness of Large Language Models (LLMs) in generating real-time, context-aware alarm reports 

that support operator situational awareness and decision-making. 

2.3  Model Evaluation 

To assess the system's ability to generate accurate and valid alarm reports, three locally hosted 

open-source LLMs—CodeLlama:7b, LLaMA 3.1:8b, and Mistral:7b—were evaluated using a 

combination of quantitative and qualitative approaches. 

2.3.1  Basic Performance Metrics 

The Basic Performance Metrics provide a direct and objective evaluation of each model's output 

accuracy and efficiency [24][25]. Four key metrics were used: 

a. Exact Match Accuracy (EMA) 

Measures the proportion of generated outputs that exactly match the expected (ground truth) 

JSON response. 

       (1) 

where Nexact_match is the number of outputs identical to the ground truth, and Ntotal is the total number 

of test queries. 
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b. Average Field Match (AFM) 

Calculates the average correctness of individual fields across all generated JSONs. 

   (2) 

where N is the number of queries and field_match_scorei  is the matching score of each field in 

the ith query. 

c. Average Latency (AL) 

Indicates the mean time (in seconds) required by the model to produce an output from the time 

the query is submitted. 

     (3) 

Where ti is the latency time for the ith query. 

d. Parse Failure Rate (PFR) 

Reflects how often a model generates syntactically invalid JSON outputs. 

    (4)  

where Nparse_failure is the number of failed parsing attempts due to syntax errors. 

2.3.2. LLM-based Judge Evaluation 

To complement the quantitative metrics, a semantic and structural evaluation was conducted using 

GPT-4o-mini as an automated LLM-based judge [26]. This model was selected due to its ability to 

provide consistent judgment across generative tasks. 

Each output was assessed on a 0–10 scale across four criteria: 

a) Correctness (C) 

Assesses whether the content of the JSON correctly reflects the user's query intent. 

b) Completeness (Cp) 

Measures whether all relevant fields required to satisfy the query are included in the output. 

c) Format Compliance (F) 

Evaluates whether the output conforms to JSON syntax and expected structural format. 

d) Overall Quality (Q) 

Represents the general coherence, utility, and usability of the generated report. 

For each query i, the total judgment score can be represented as: 

      (5) 

Then, the overall LLM-based average evaluation is calculated by: 

    (6) 
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2.4  Test Case Design and Ground Truth Construction 

To assess the system's ability to accurately convert natural language queries into structured JSON 

filters, a comprehensive set of 30 test queries was developed. Each query simulates a realistic operator 

request that an industrial alarm reporting system may encounter. These include variations in spatial 

filtering (e.g., area, domain), temporal constraints (e.g., specific time ranges), and tag-based identifiers 

linked to specific sensors or control points. 

For each query, a corresponding ground truth JSON filter was manually defined to serve as the 

reference output. These JSON structures specify the necessary fields—such as area_id, domain_id, 

timestamp, type, or tag_numbers—in a format compatible with vector-based retrieval and filtering. The 

test cases were curated to ensure broad coverage of representative use cases, including: 

• Single and multi-area/domain queries 

• Time-specific alarms or events 

• Combined filters with time, area, and tag constraints 

• General log retrieval across types 

This benchmark suite not only evaluates syntactic accuracy but also reflects semantic fidelity in 

transforming human language into machine-interpretable formats. The full list of natural language 

queries and their corresponding JSON representations is presented in Table 2. 

 

Table 2 Test Cases: Natural Language Queries and Corresponding Ground Truth JSON Filters for 

Alarm Retrieval Evaluation 

No Question Ground Truth 

1 Show all events from area 25 

 { 

      "area_id": "25", 

      "type": "events" 

    } 

2 List everything in area 30 

{ 

      "area_id": "30" 

    } 

 

3 What alarms occurred in area 45 

{ 

      "area_id": "45", 

      "type": "alarms" 

    } 

4 Show events from area 17 

{ 

      "area_id": "17", 

      "type": "events" 

    } 

5 Give me all logs from area 22 

{ 

      "area_id": "22" 

    } 

6 Show all events from domain 1 

{ 

      "domain_id": "01", 

      "type": "events" 

    } 

7 List alarms from domain 2 

{ 

      "domain_id": "02", 

      "type": "alarms" 

    } 

8 What happened in domain 3  

{ 

      "domain_id": "03" 

    } 

https://jutif.if.unsoed.ac.id/
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9 
Give me events from domain 4  

 

{ 

      "domain_id": "04", 

      "type": "events" 

    } 

10 Show alarms from domain 5 

{ 

      "domain_id": "05", 

      "type": "alarms" 

    } 

11 

What happened between 8am to 

9am on November 28, 2024? 

 

{ 

      "timestamp": { 

        "$gte": "2024-11-28T08:00:00", 

        "$lt": "2024-11-28T09:00:00" 

      } 

    }, 

12 
Show events on May 8, 2024 

between 10am and 11am 

{ 

      "timestamp": { 

        "$gte": "2024-05-08T10:00:00", 

        "$lt": "2024-05-08T11:00:00" 

      }, 

      "type": "events" 

} 

13 
Give me alarms from noon to 2pm 

on July 15, 2024 

{ 

      "timestamp": { 

        "$gte": "2024-07-15T12:00:00", 

        "$lt": "2024-07-15T14:00:00" 

      }, 

      "type": "alarms" 

    }, 

14 
What events occurred between 3pm 

and 5pm on May 8, 2024 

{ 

      "timestamp": { 

        "$gte": "2024-05-08T15:00:00", 

        "$lt": "2024-05-08T17:00:00" 

      }, 

      "type": "events" 

    } 

15 
Show alarms from 9am to 12pm on 

September 10, 2024 

{ 

      "timestamp": { 

        "$gte": "2024-09-10T09:00:00", 

        "$lt": "2024-09-10T12:00:00" 

      }, 

      "type": "alarms" 

    } 

16 

Show alarms from domains 1, 2, 

and 3 

 

{ 

      "domain_id": ["01", "02", "03"], 

      "type": "alarms" 

    } 

17 List events from areas 10 and 20 

{ 

      "area_id": ["10", "20"], 

      "type": "events" 

    } 

18 
Give me alarms from domain 5 or 

domain 7 

{ 

      "domain_id": ["05", "07"], 

      "type": "alarms" 

    } 

https://jutif.if.unsoed.ac.id/
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19 Show events from areas 25 and 30 

{ 

      "area_id": ["25", "30"], 

      "type": "events" 

    } 

20 List alarms from domains 8 and 9 

{ 

      "domain_id": ["08", "09"], 

      "type": "alarms" 

    } 

21 
Show events for tag 

210LDAH1031 

{ 

     "tag_numbers": "210LDAH1031", 

      "type": "events" 

    } 

22 List alarms for tag 25GJI8082D1 

{ 

      "tag_numbers": "25GJI8082D1", 

      "type": "alarms" 

    } 

23 
Give me all logs with tag 

210LDAH1032 

{ 

      "tag_numbers": "210LDAH1032" 

    } 

24 Show events for tag 25GJI8082D2 

{ 

      "tag_numbers": "25GJI8082D2", 

      "type": "events" 

    } 

25 List alarms for tag 210LDAH1033 

{ 

      "tag_numbers": "210LDAH1033", 

      "type": "alarms" 

    } 

26 
Show alarms from area 25 between 

2pm and 4pm on June 15, 2024 

{ 

      "area_id": "25", 

      "type": "alarms", 

      "timestamp": { 

        "$gte": "2024-06-15T14:00:00", 

        "$lt": "2024-06-15T16:00:00" 

      } 

    } 

27 
List events from domain 3 with tag 

210LDAH1031 

{ 

      "domain_id": "03", 

      "tag_numbers": "210LDAH1031", 

      "type": "events" 

    } 

28 

Show alarms from area 25 for tag 

25GJI8082D1 between 9am and 

11am on July 1, 2024":  

{ 

      "area_id": "25", 

      "tag_numbers": "25GJI8082D1", 

      "type": "alarms", 

      "timestamp": { 

        "$gte": "2024-07-01T09:00:00", 

        "$lt": "2024-07-01T11:00:00" 

      } 

    } 

29 
Give me events from domain 2 

between 1pm and 3pm 

{ 

      "domain_id": "02", 

      "type": "events", 

      "timestamp": { 

        "$gte": "2024-07-01T13:00:00", 

https://jutif.if.unsoed.ac.id/
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        "$lt": "2024-07-01T15:00:00" 

      } 

    } 

30 
List alarms from area 25 with tag 

25GJI8082D2 on August 5, 2024":  

{ 

      "area_id": "25", 

      "tag_numbers": "25GJI8082D2", 

      "type": "alarms", 

      "timestamp": { 

        "$gte": "2024-08-05T00:00:00", 

        "$lt": "2024-08-05T23:59:59" 

      } 

    } 

 

3. RESULT 

This section presents the evaluation results of three locally hosted Large Language Models 

(LLMs): CodeLlama-7B, LLaMA 3.1–8B, and Mistral-7B, integrated within a Retrieval-Augmented 

Generation (RAG) framework for generative alarm reporting. The evaluation was conducted using three 

complementary approaches: basic performance metrics, LLM-based semantic judgment, and human 

assessment. 

3.1.  Basic Performance Evaluation 

Four quantitative metrics were used to measure the effectiveness of each model: 

a) Exact Match Accuracy (EMA) – Measures how often the generated JSON filter exactly matches 

the ground truth. 

b) Average Field Match – Calculates the average proportion of correctly generated fields across all 

test cases. 

c) Average Latency – Captures the average response time in seconds. 

d) Parse Failure Rate – Indicates the percentage of responses that failed JSON syntax parsing. 

The results are summarized in Table 3: 

 

Table 3. Comparison of Basic Performance Metrics for LLMs-RAG-Based Alarm Filter Generation 

Model Exact Match 

Accuracy 

Field Match 

(%) 

Latency 

(s) 

Parse Failure Rate 

(%) 

CodeLlama-7B 0.8000 93.83 4.04 0.00 

LLaMA 3.1–

8B 

0.7667 87.22 3.73 0.00 

Mistral-7B 0.6000 96.67 4.02 0.033 

 

The results in Table 3 provide a comparative analysis of the three LLM models using four core 

performance metrics. In terms of Exact Match Accuracy, which evaluates whether the generated JSON 

output precisely matches the ground truth, CodeLlama-7B achieved the highest score of 0.8000, 

indicating strong reliability in producing fully correct responses. LLaMA 3.1–8B followed with a score 

of 0.7667, while Mistral-7B recorded the lowest score at 0.6000, reflecting greater inconsistency in 

generating structurally and semantically accurate outputs. 

However, in Average Field Match, which measures the correctness of individual fields in the 

JSON structure, Mistral-7B outperformed the other models with a score of 96.67%, demonstrating high 

precision at the field level despite its lower overall structural accuracy. CodeLlama-7B also performed 

well in this metric, achieving a score of 93.33%, while LLaMA 3.1–8B trailed slightly with 87/22%. 
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Regarding Average Latency, which captures the average time required to generate a response, 

LLaMA 3.1–8B led with the fastest response time of 3.7350 seconds, followed by Mistral-7B at 4.0228 

seconds, and CodeLlama-7B at 4.0407 seconds. Although these differences are relatively minor, latency 

can impact system responsiveness in real-time applications. 

The Parse Failure Rate assesses the ability of each model to generate syntactically valid JSON. 

Both CodeLlama-7B and LLaMA 3.1–8B achieved a perfect score of 0.0000, indicating that all outputs 

were valid and parseable. In contrast, Mistral-7B exhibited a small failure rate of 0.0333, due to 

occasional structural issues, such as the generation of invalid Unicode characters that disrupted JSON 

validity. 

Overall, CodeLlama-7B demonstrated the most balanced performance across all metrics, excelling 

in accuracy, reliability, and structural robustness. LLaMA 3.1–8B stood out for its latency and strong 

exact match performance, while Mistral-7B showed the highest field-level precision but suffered from 

limitations in output structure consistency. 

3.2.  LLM-Based Evaluation 

In addition to quantitative evaluation, a qualitative assessment was conducted using another LLM 

as an automated judge. This approach aimed to capture aspects that may not be fully reflected in the 

basic performance metrics, such as the model’s ability to accurately interpret instructions and generate 

semantically complete outputs. The evaluation focused on four key dimensions: Correctness, 

Completeness, Format Compliance, and Overall Quality. The results of this LLM-based assessment are 

summarized in Table 4.  

 

Table 4 LLM-Based Evaluation Scores Using GPT-4o-mini Across Four Quality Dimensions 

Model Correctness Completeness Format Compliance Overall Quality 

CodeLlama-7B 9.80 9.60 10.00 9.73 

LLaMA 3.1–8B 9.57 9.67 9.97 9.67 

Mistral-7B 8.90 9.33 9.67 9.20 

 

The results of the LLM-Based Judge evaluation, as presented in Table 4, offer qualitative insights 

into each model's ability to generate semantically accurate and structurally consistent outputs. All three 

models achieved high scores across the four evaluated criteria: Correctness, Completeness, Format 

Compliance, and Overall Quality. 

CodeLlama-7B emerged as the top-performing model, achieving the highest scores in 

Correctness (9.8000) and Overall Quality (9.7333), as well as a perfect score of 10.000 in Format 

Compliance, indicating strong alignment with expected output formats and consistently structured 

results. LLaMA 3.1–8B followed closely, with a score of 9.5667 in Correctness and 9.6667 in both 

Completeness and Format Compliance, reflecting reliable performance and strong semantic fidelity. 

Mistral-7B, while still competitive, recorded slightly lower scores in Correctness (8.9000) and 

Completeness (9.3333), though it maintained a high Format Compliance score of 9.6667. These results 

suggest that Mistral-7B may occasionally fall short in capturing complex instructions or producing fully 

comprehensive outputs. 

Overall, the LLM-based evaluation reinforces the findings from the quantitative analysis, further 

validating CodeLlama-7B as the most semantically accurate and structurally robust model in this 

evaluation. 

3.3.  Human Evaluation 

In this study, ourselves as human also evaluated to assess the model outputs using the same four 

dimensions. The average human-rated scores are shown in Table 5: 
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Table 5. Human Evaluation Scores of LLM Outputs Based on Semantic and Structural Quality 

Model Correctness Completeness Format Compliance Overall Quality 

CodeLlama-7B 9.00 8.93 9.80 9.05 

LLaMA 3.1–8B 8.00 7.80 8.00 7.90 

Mistral-7B 7.33 7.00 8.00 7.45 

 

Human judgments aligned closely with LLM-based evaluation, reinforcing CodeLlama-7B as 

the most robust model for the task. 

3.4.  Analysis 

The comparative evaluation reveals that CodeLlama-7B consistently outperforms LLaMA 3.1–

8B and Mistral-7B across all performance and quality metrics. The zero parse failure rate and high 

format compliance suggest its superior capability in structured JSON generation—a critical requirement 

for alarm reporting systems. While LLaMA 3.1 offered stronger performance than Mistral-7B, its 

relatively higher latency and occasional formatting errors reduced its reliability in real-time scenarios. 

These findings validate the feasibility of deploying locally hosted LLMs for industrial semantic querying 

tasks. Moreover, the inclusion of both automated and human evaluations ensures comprehensive model 

validation across technical and contextual dimensions. 

4. DISCUSSIONS 

The evaluation results presented in this research highlight several important insights regarding 

the performance and applicability of open-source Large Language Models (LLMs) in the context of 

generative alarm reporting using a Retrieval-Augmented Generation (RAG) framework. 

First, CodeLlama-7B consistently demonstrated superior performance across all evaluation 

metrics, including Exact Match Accuracy, Field Match percentage, response latency, and parse validity. 

This indicates not only its capacity for accurate semantic interpretation of natural language queries but 

also its robustness in producing syntactically correct JSON structures—an essential feature for 

downstream alarm filtering and report generation. The absence of parsing errors further reinforces its 

reliability in high-stakes industrial applications where malformed outputs could cause critical failures 

or operator confusion. 

Second, the alignment between LLM-based evaluation (using GPT-4o-mini) and human 

judgment underscores the validity of automated scoring methods for assessing semantic correctness, 

completeness, and structural compliance. Both evaluation approaches consistently rated CodeLlama-7B 

higher than LLaMA 3.1–8B and Mistral-7B, suggesting a strong correlation between the model’s 

quantitative performance and its perceived contextual adequacy by domain experts. 

Although LLaMA 3.1–8B showed moderate performance with a good balance of accuracy and 

completeness, it was affected by occasional formatting issues and slightly higher latency, making it less 

optimal for real-time applications. Mistral-7B, while lightweight and faster in inference, exhibited the 

lowest accuracy and the highest parse failure rate, indicating limitations in both structural generation 

and context representation. 

Another noteworthy observation is the effectiveness of the few-shot prompting strategy, which 

enabled the LLMs to generalize well across a diverse range of 30 manually curated queries. This shows 

promise for applying such models in industrial domains without extensive fine-tuning, provided 

sufficient representative examples are embedded within the prompts. 
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From a system perspective, the integration of LLMs with RAG architecture significantly 

enhanced the system’s ability to retrieve and present relevant alarm records in real time. The use of a 

vector database (ChromaDB) for semantic search proved effective in capturing contextual similarity 

from historical logs, allowing the model to produce more targeted and factually grounded responses. 

However, several challenges remain. The reliance on local deployment introduces computational 

constraints, especially with larger models like LLaMA 3.1–8B. In production settings, optimization 

through quantization, caching mechanisms, or hybrid on-device/cloud inference could be explored to 

improve efficiency without compromising output quality. 

In summary, the results validate that open-source LLMs, particularly CodeLlama-7B, can be 

effectively leveraged within a RAG framework to support intelligent, responsive, and context-aware 

alarm management systems. These findings contribute to the growing body of research on the practical 

deployment of LLMs in industrial automation and highlight key considerations for model selection, 

system architecture, and evaluation methodology. 

5. CONCLUSION 

This study proposed and evaluated a generative alarm reporting system for industrial 

environments by integrating open-source Large Language Models (LLMs) with a Retrieval-Augmented 

Generation (RAG) framework. The system was designed to convert natural language queries into 

structured JSON filters and retrieve contextually relevant alarm logs from historical data using semantic 

search. 

Three LLMs—CodeLlama-7B, LLaMA 3.1–8B, and Mistral-7B—were compared across 

multiple evaluation dimensions, including syntactic accuracy, semantic completeness, latency, and 

human judgment. The results demonstrated that CodeLlama-7B achieved the highest performance 

across all evaluation metrics, including a 0% parse failure rate, superior exact match accuracy, and top-

rated scores in both automated and human evaluations. These findings indicate that local LLMs can be 

effectively applied to enhance real-time situational awareness and decision-making in industrial alarm 

management systems. 

While the integration of LLM and RAG has shown promising capabilities, several directions for 

future research remain: 

a) Domain Adaptation and Fine-tuning: Investigating the impact of further fine-tuning LLMs on 

alarm-specific corpora to improve accuracy and domain alignment. 

b) Model Optimization: Exploring quantization and pruning techniques to reduce the computational 

footprint of local deployments without sacrificing performance. 

c) Multimodal Integration: Incorporating additional sensor data (e.g., temperature, vibration) to 

provide richer context for alarm generation and root cause analysis. 

d) Natural Language Feedback Loop: Enabling continuous improvement of the system through 

human-in-the-loop learning based on operator corrections and feedback. 

e) Scalability Evaluation: Assessing system performance in large-scale environments with high-

frequency logs and multiple concurrent users. 

Overall, this research highlights the practical potential of combining LLMs with RAG to enable 

intelligent, interpretable, and responsive alarm management solutions—paving the way for next-

generation smart control systems in industrial settings. 
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