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Abstract 

The manual diagnosis of dysarthria is often time-consuming and requires the expertise of trained specialists, which 

can delay early intervention and treatment. This study aims to develop an automated detection system to improve 

diagnostic accuracy and efficiency. Mel-Frequency Cepstral Coefficients (MFCC) are used as the primary features, 

and three classification models are evaluated: Support Vector Machine (SVM), Multilayer Perceptron (MLP), and a 

stacking ensemble that combines both. The evaluation is conducted on a dataset of 240 audio samples. Experimental 

results show that the stacking ensemble achieves the highest performance, with an accuracy of 97.92%, surpassing 

SVM (95.83%) and MLP (93.75%). These findings highlight the significant potential of voice-based classification 

to accelerate dysarthria diagnosis, thus supporting clinical screening and speech therapy applications. 
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1. INTRODUCTION 

Speech is a complex motor activity that allows individuals to express ideas and emotions while 

interacting with their environment. As one of the five verbal abilities—speaking, language, reading, 

writing, and spelling—speech production involves neurocognitive processing, motor planning, and 

muscle coordination necessary for verbal communication [1]. Dysarthria, a motor speech disorder 

caused by neurological damage affecting speech production muscles, is classified into spastic, flaccid, 

hypokinetic, hyperkinetic, ataxic, and mixed types, with newer subtypes like unilateral upper motor 

neuron dysarthria recognized [2][3]. Articulating the "R" sound is particularly challenging for 

individuals with dysarthria, as it requires precise coordination of the tongue, lips, and articulators 

[4][5][6]. Difficulty in pronouncing this sound reduces speech clarity, significantly impacting 

communication. Dysarthria can arise from various causes, including neurological diseases [7][8], 

alcoholism[9][10], or fatigue, making timely and accurate diagnosis critical. 

Conventional dysarthria assessment requires expert clinicians and is often time-consuming, 

thereby increasing the demand for automated approaches. Automatic Speech Recognition (ASR)-based 

systems have been explored [6][11], with applications in medical diagnosis, assistive technology, and 

law enforcement[12][13]. The assessment process typically involves two stages: first detecting the 

presence of dysarthria and then estimating its severity[14]. Among acoustic features, Mel-Frequency 

Cepstral Coefficients (MFCC) remain the most widely adopted due to their effectiveness in representing 

spectral envelopes relevant to articulation [15][16][17][18]. Several studies have demonstrated the 

utility of MFCC in capturing the phonetic characteristics of articulation disorders, including dysarthria, 

and in supporting clinical decision-making regarding therapy[14]. 
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At the modeling stage, machine learning approaches such as the MLP [19][20][21] and 

SVM[22][23] are frequently employed. MLP serves as an efficient tool for pattern recognition [24][25] 

and classification [26][27], with strong capabilities in capturing nonlinear relationships between input 

and output data. For instance, [4] employed MFCC with MLP and achieved 100% accuracy on a dataset 

of 200 samples, underscoring MLP’s potential. However, this study did not explore ensemble methods, 

raising questions about robustness across broader conditions. Meanwhile, SVMs have consistently 

demonstrated effectiveness in voice-based detection tasks, achieving accuracies ranging from 75% [22] 

to 90%  in studies related to Parkinson’s disease. Nevertheless, SVMs are sensitive to the choice of 

kernel and margin constraints, which may limit generalization in ambiguous cases. More recently, deep 

sequence models such as Bidirectional Long Short-Term Memory (BiLSTM) have been applied[28], 

showcasing a strong ability to capture long-term temporal dynamics. However, such models generally 

require larger datasets, complex tuning, and incur high computational costs, often leading to overfitting 

when trained on small corpora. 

Despite advancements, most prior works remain single-model in nature, with limited exploration 

of ensemble techniques. For instance, [4] utilized MFCC with a MLP but did not implement ensemble 

strategies, resulting in reduced robustness to channel variability and speaker-specific traits. Other studies 

employing SVM, MLP, or Bidirectional Long Short-Term Memory (BiLSTM) models show good 

performance but lack cross-conditional stability when facing ambiguous or borderline samples. This 

underscores the need for approaches that combine the complementary strengths of different classifiers. 

To address this gap, the current study proposes a stacking ensemble that integrates SVM and 

MLP, leveraging the margin-based discrimination of SVM and the nonlinear representation capabilities 

of MLP. A meta-classifier is used to combine their outputs, aiming to: (1) reduce variance by avoiding 

dependence on a single model, (2) improve robustness in ambiguous cases where one model 

underperforms, and (3) enhance the precision-recall balance in the clinically positive (dysarthria) class. 

This ensemble approach aims to provide more robust classification than individual models, without the 

data and computational demands associated with deep sequence architectures. Thus, this research seeks 

to develop an automatic dysarthria detection system utilizing MFCC features and a stacking ensemble 

of SVM and MLP, with the goal of enhancing classification accuracy and robustness compared to single-

model approaches. 

2. METHOD 

 
Figure 1. Research Methodology Flowchart 
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The development of a classification model to identify dysarthria using a combination of MLP and 

SVM followed the research framework outlined in Figure 1. The process began with the collection of 

an audio dataset, which comprised recordings of word pronunciations by both individuals with 

dysarthria and typical individuals. These audio recordings were then stored as digital files within the 

dataset. 

The methodology of this research plays a crucial role in illustrating the workflow and 

implementation mechanisms of the audio-based dysarthria classification model. This system is designed 

to ensure that the processes of audio signal processing, feature extraction, model training, and result 

evaluation are carried out in a structured and efficient manner. With a clear system design, it is expected 

to provide a better understanding of the important stages and the interrelationships among the 

components involved in the overall dysarthria classification process. The explanation of this research 

methodology is as follows: 

2.1. Data Collection 

Data were collected through conventional speech recordings, following procedures similar to 

those in previous studies [4]. The voice recordings involved two groups: individuals with dysarthria and 

control subjects without dysarthria. The data processing environment and procedures are outlined as 

follows: 

1. Recording Environment: Recordings took place in a controlled clinical room with low 

background noise, using a condenser microphone. Participants were seated upright approximately 

15–20 cm from the microphone.  

2. Subject Demographics: The study included 240 participants, comprising 120 clinical cases and 

120 control subjects, aged between 5 and 25 years, with a gender distribution of [Male/Female]. 

3. Clinical Confirmation and Labeling: Dysarthria status was determined by a professional clinician 

based on clinical diagnosis and oral motor assessment, with consensus verification in ambiguous 

cases. 

4. Audio Quality and Recording Protocol: Audio was recorded in mono at a sample rate of 16 kHz 

and a bit depth of 16-bit, with a peak level set at –6 dBFS. The recording protocol involved 

pronouncing the critical phoneme ('R'), suppressed vowels, and standardized sentences to capture 

the articulatory aspects of dysarthria. 

2.2. Preprocessing and Feature Scaling 

The initial research phase emphasizes data collection and preparation, which is essential for model 

development. The dataset consists of 240 audio samples, evenly split into 120 dysarthric and 120 non-

dysarthric recordings. To enhance robustness and variability, data augmentation techniques, including 

background noise addition, pitch shifting, and speed variation, were applied, effectively doubling the 

dataset to 480 samples while maintaining class balance. This enriched the training data diversity and 

reduced the risk of overfitting. During preprocessing, audio signals were cleaned and trimmed to 

eliminate irrelevant silences, followed by feature extraction using Mel-Frequency Cepstral Coefficients 

(MFCC) to capture the spectral properties of speech signals. Feature scaling was conducted by 

normalizing the extracted features to prevent bias from scale differences. Finally, the dataset was divided 

into training and testing subsets, allowing the model to be trained on one portion while its performance 

was validated on unseen data to evaluate generalization capabilities 

2.3. Model Development 

Once the data is prepared, the next stage is Model Development, where various machine learning 

algorithms are trained to recognize patterns within the data. In this study, the models employed include 
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the MLP, which is a layered artificial neural network designed for classification; the SVM, an effective 

algorithm for classification with optimal margins; and a model ensemble method known as Stacking, 

where multiple models are combined to enhance prediction accuracy and stability by leveraging the 

strengths of each individual model. 

2.3.1. Model Architecture 

2.3.1.1. Multi-Layer Perceptron (MLP) 

The Multi-Layer Perceptron (MLP) serves as a sophisticated feature extractor that identifies non-

linear patterns in MFCC features. Its architecture comprises 2 to 3 hidden layers, with each layer 

consisting of 128, 64, and 32 neurons, respectively, all utilizing the ReLU (Rectified Linear Unit) 

activation function. The MLP configuration includes the following details: 

- Number of layers: 2 to 3 hidden layers 

- Neurons per layer: 128, 64, and 32 neurons. 

- Activation function: ReLU 

- Optimizer: Adam 

- Epochs: 50 to 500 iterations 

- Batch size: 32 

- Learning rate: 0.001 

The training of the MLP employs backpropagation to minimize the categorical crossentropy loss 

function. 

2.3.1.2. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is employed as a classifier to distinguish feature data into 

dysarthria and non-dysarthria classes. The kernel utilized is a Radial Basis Function (RBF) kernel, which 

is capable of effectively handling non-linear data. The key parameters that are adjusted include: 

- C (regularization parameter): This parameter controls the trade-off between the risk of error and 

the margin width. 

- Gamma: This parameter determines the range of influence of a data point within the RBF kernel. 

These parameters can be optimized using grid search with cross-validation to identify the best 

combination. 

2.3.1.3. Ensemble Method (Stacking) 

Model stacking is an ensemble technique that improves classification performance by combining 

predictions from the MLP and SVM models. The outputs from both models serve as inputs to a meta-

classifier, such as logistic regression or another SVM, which is trained to deliver the final predictions. 

The key benefit of stacking is its ability to leverage the strengths of both models, each capturing distinct 

data characteristics. The training process occurs in three sequential steps: 

- Training the MLP and SVM independently on the training data. 

- Using the prediction outputs of both models as features for the meta-classifier model. 

- Training the meta-classifier to produce the final predictions 

2.4. Prediction and Classification   

During the Prediction and Classification stage, the trained model is applied to the test data, where 

it predicts a label or category for each sample based on patterns learned during training. These 

predictions are classified to identify a speech condition (normal or dysarthria). After hyperparameter 

optimization, the final model is retrained on the entire training dataset and evaluated on a separate test 

dataset. In this study, the test set comprises 48 samples, representing approximately 20% of the total 
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dataset. This test subset is used to assess model performance and generate a confusion matrix. The 

dataset division is as follows: Training Set = 192 samples (80%); Test Set = 48 samples (20%). 

2.5. Model Evaluation   

The final stage in the diagram is Model Evaluation, which aims to measure the performance of 

the model using various evaluation metrics such as accuracy, precision, recall, and F1-score. This 

evaluation is crucial for assessing the model's effectiveness in classification tasks and ensuring that it 

performs well when applied to real-world data. Model performance is evaluated using four common 

classification metrics: accuracy, precision, recall, and F1-score. The mathematical formulations for each 

metric are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (4) 

• TP (True Positive): The number of dysarthric samples that were correctly classified. 

• TN (True Negative): The number of normal samples that were correctly classified. 

• FP (False Positive): The number of normal samples that were incorrectly classified as dysarthric. 

• FN (False Negative): The number of dysarthric samples that were incorrectly classified as normal 

2.6. Pseudo-code: MLP + SVM 

Input: 

- Dataset D = { (x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ) } 

- Parameter MLP: layer sizes, activation function, learning rate, epochs 

- Parameter SVM: regularization constant C, kernel function K(·,·) 

Output: 

- Trained SVM model 

- Predicted labels ŷ for test data 

• Step 1: Preprocessing 

Normalize all xᵢ ∈ D 

Split D → D_train, D_test 

• Step 2: Train MLP (Feature Extractor) 

Initialize weights and biases of MLP 

for epoch = 1 to MaxEpochs: 

for each (xᵢ, yᵢ) in D_train: 

zᵢ ← MLP(xᵢ)          // Forward pass 

L ← Loss(zᵢ, yᵢ)       // e.g. Cross-Entropy or MSE 

Backpropagate and update weights 

• Step 3: Extract MLP Features 

for each (xᵢ, yᵢ) in D_train: 

zᵢ ← MLP(xᵢ)       // Output of last hidden layer 

Z_train ← {z₁, z₂, ..., zₙ} 
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• Step 4: Train SVM 

Solve optimization: 

Maximize α subject to: 

∑ αᵢ yᵢ = 0 

0 ≤ αᵢ ≤ C 

Compute: 

b ← bias term 

f(z) ← ∑ αᵢ yᵢ K(zᵢ, z) + b 

• Step 5: Predict using MLP + SVM 

for each xⱼ in D_test: 

zⱼ ← MLP(xⱼ) 

f(zⱼ) ← ∑ αᵢ yᵢ K(zᵢ, zⱼ) + b 

ŷⱼ ← sign(f(zⱼ)) 

• Step 6: Evaluate 

Accuracy ← Number of correct predictions / total test samples 

 

The combined objective of the MLP and SVM algorithms is to use the MLP as a feature extractor, 

and subsequently leverage the SVM for final classification based on the extracted features. 

Explanation of the Algorithm :  

The algorithm combines two machine learning methods, MLP and SVM, for data classification. 

Initially, the input features are normalized to ensure a uniform scale, and the data is divided into training 

and testing datasets. The MLP is trained as a feature extractor by performing a forward pass, calculating 

the loss between predictions and original labels, and updating the weights through backpropagation over 

several epochs until well-trained. 

Once training is complete, the final features from the last hidden layer of the MLP are used as 

new feature representations for each training instance. These extracted features are then input into the 

SVM model, which learns by solving an optimization problem to find the best hyperplane that separates 

the classes with the largest margin, using a specified regularization parameter C and kernel function. 

The trained SVM model predicts the labels of the test data by transforming each test instance into 

features through the MLP, and then calculating the decision function based on the weights and kernel. 

Finally, prediction results are evaluated by calculating accuracy, defined as the ratio of correct 

predictions to total test data. In this hybrid approach, the MLP acts as a generator of complex features, 

while the SVM serves as a classifier that optimally separates the data in that feature space. This 

combination enhances the accuracy of automatic dysarthria detection by leveraging the strengths of both 

methods. 

3. RESULT 

In this section, the results obtained from the testing process of the audio-based dysarthria 

classification system will be presented, along with a comprehensive analysis of the performance of each 

developed model. The results will be compared and evaluated using various evaluation metrics to 

identify the strengths and weaknesses of the applied methods. Furthermore, the implications of these 

findings will be discussed in the context of real-world applications, as well as the potential 

improvements that can be made to enhance the accuracy and reliability of the system in the future. 

3.1. Preprocessing and Augmentation  

The initial dataset consisted of 240 audio samples (120 dysarthric and 120 normal) recorded using 

conventional methods. To enhance acoustic variation and mitigate the risk of overfitting, data 
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augmentation techniques were employed, including the addition of background noise, pitch alteration, 

and variation in speech rate. Following augmentation, the dataset was expanded to a total of 480 

samples, which were subsequently processed using Mel-Frequency Cepstral Coefficients (MFCC) with 

16 coefficients. An examination of the MFCC distribution revealed that augmentation enriched the 

variation in spectral patterns, particularly within the frequency range of 500–1500 Hz, which is pertinent 

to the articulation of the phoneme "r." 

3.2.  Model Training Performance  

The MLP model was trained with 16 input neurons and 128 hidden neurons, employing an 80:20 

data split scheme. The learning curve indicates stable convergence after 50 epochs, with the training 

loss consistently decreasing to below 0.05. The SVM model, utilizing an RBF kernel (C=10, γ=0.1), 

successfully established an optimal classification margin on the training data. Two baseline algorithms 

were utilized: SVM and MLP. Both models were trained using an 80%-20% train-test split. The baseline 

model without augmentation achieved accuracies of 91.25% for the SVM and 92.08% for the MLP. 

Following the application of data augmentation, the accuracy improved to 95.83% for the SVM and 

93.75% for the MLP. To enhance robustness, a stacking ensemble approach was adopted, incorporating 

a logistic regression meta-classifier that combined the predictions of both the SVM and MLP models. 

3.3. Model Performance Results 

The results of the performance evaluation of the dysarthria audio classification model utilized 

three main approaches: SVM, MLP, and a Stacked model (a combination of SVM and MLP). 

 

Table 1. Classification Report for SVM: 

 precision recall f1-score support 

Dysarthria 0.92 1.00 0.96 24 

non_ Dysarthria 1.00 0.92 0.96 24 

accuracy   0.96 48 

macro avg 0.96 0.96 0.96 48 

weighted avg 0.96 0.96 0.96 48 

 

Table 2. Classification Report for MLP: 

 precision recall f1-score support 

Dysarthria 0.96 0.92 0.94 24 

non_ Dysarthria 0.92 0.96 0.94 24 

accuracy   0.94 48 

macro avg 0.94 0.94 0.94 48 

weighted avg 0.94 0.94 0.94 48 

 

Table 3. Classification Report for Stacked: 

 precision recall f1-score support 

Dysarthria 0.96 1.00 0.98 24 

non_ Dysarthria 1.00 0.96 0.98 24 

accuracy   0.98 48 

macro avg 0.98 0.98 0.98 48 

weighted avg 0.98 0.98 0.98 48 
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To further illustrate the comparative performance of the three models, Figure 2 presents a bar 

chart depicting accuracy, precision, recall, and F1-score for the SVM, MLP, and Stacking model. The 

visualization clearly demonstrates the superior performance of the Stacking model across all metrics, 

particularly in terms of recall and F1-score, thereby confirming its robustness in comparison to single-

model approaches. 

 

 
Figure 2. Comparasion of Model Performance 

 

This visual representation reinforces the numerical results presented in Tables 1–3, demonstrating 

that the ensemble model consistently outperforms both the SVM and MLP in terms of classification 

stability and reliability. 

Table 1 presents the classification results obtained using the SVM model. The results indicate that 

the recall for the dysarthria class reached 1.00, which means that all samples with speech disorders were 

accurately identified without any missed cases (false negatives = 0). This outcome holds significant 

clinical importance, as false negatives (patients with dysarthria being misclassified as normal) can lead 

to serious consequences, such as delays in receiving necessary speech therapy or neurological 

examinations. With perfect recall, this system demonstrates maximum sensitivity towards patients with 

dysarthria, functioning as a highly reliable screening tool. 

Conversely, the precision for the non-dysarthria class also achieved a value of 1.00, indicating 

that no normal patients were incorrectly classified as having dysarthria. The combination of high recall 

for dysarthric patients and high precision for healthy individuals signifies that this model is not only 

sensitive but also specific, minimizing the risk of diagnostic errors. Overall, the accuracy of 0.96, along 

with a balanced F1-score across both classes, demonstrates that the SVM model is robust and consistent. 

Table 2 presents the classification results for the MLP model, which achieved an overall accuracy 

of 94% with balanced performance across both classes. The model reached a precision of 0.96 and a 

recall of 0.92 for the dysarthria class, indicating relatively few false positives but that 8% of dysarthric 

cases were not correctly identified. This presents a clinical risk, as false negatives could delay necessary 

interventions. Conversely, the recall for the non-dysarthria class was higher at 0.96, suggesting most 

normal cases were accurately classified, though some were misclassified as dysarthric. 

Table 3 highlights the performance of the Stacked model, which integrates the strengths of both 

SVM and MLP, achieving a significant improvement with an overall accuracy of 98%. Notably, the 

recall for the dysarthria class reached 1.00, indicating accurate identification of all dysarthric cases 

without false negatives. This result is clinically significant as it maximizes sensitivity in detecting 

patients with speech disorders. Additionally, the non-dysarthria class achieved a precision of 1.00, 

ensuring no healthy individuals were misclassified as dysarthric. This demonstrates both high sensitivity 

and high specificity, crucial for reliable medical screening tools. 
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The Stacked model's superiority is further emphasized by its F1-score of 0.98, indicating a more 

optimal balance between precision and recall compared to the MLP. The ensemble approach effectively 

reduces prediction errors and stabilizes classification outcomes by leveraging the complementary 

strengths of the base models. These results confirm that ensemble learning enhances accuracy and 

ensures robustness against diagnostic errors, making it highly suitable for real-world clinical 

applications. 

The findings of this study demonstrate the promising performance of audio-based dysarthria 

classification models. The stacking ensemble of SVM and MLP achieved the highest overall accuracy 

of 98%, surpassing the individual SVM and MLP models. This marks a significant improvement over 

previous research, such as [4], which reported an accuracy of 95% using MFCC features with an MLP 

classifier. While the single MLP model effectively distinguished between dysarthric and non-dysarthric 

speech, the stacking model provided enhanced predictive stability and reduced classification errors. 

Additionally, the use of data augmentation techniques improved the model's robustness against 

variations in recording quality and speaker conditions, which is crucial for practical applications in 

uncontrolled environments. The results suggest that ensemble-based approaches, when combined with 

data augmentation, can deliver more reliable performance, making them promising for scalable clinical 

and community-level screening systems. 

3.4. Confusion Matrix Results Analysis 

To understand the classification performance of the model in detecting dysarthria, an analysis was 

conducted on the confusion matrix of the three developed models: SVM, MLP, and the Stacked model, 

which is an ensemble of SVM and MLP. 

 

  
Figure 2 Confusion Matrix SVM Figure 3. Confusion Matrix MLP 

 

 
Figure 4. Confusion Matrix Stacked SVM+MLP 
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The SVM model demonstrated excellent performance in identifying dysarthria cases, correctly 

classifying 24 dysarthria samples (true positives) and 22 non-dysarthria samples (true negatives). There 

were 2 false positives, but no false negatives, indicating a perfect recall rate for dysarthria detection. 

However, this resulted in some false alarms regarding non-dysarthria samples. In contrast, the MLP 

model showed a slight decrease in dysarthria detection performance, with 22 true positives and 23 true 

negatives, 2 false negatives, and 1 false positive. This indicates that while MLP maintains a good balance 

between sensitivity and specificity, some dysarthria cases may go undetected. The Stacked model, which 

combines the predictions of SVM and MLP, achieved the best performance, correctly classifying 24 

dysarthria samples and 23 non-dysarthria samples, with only 1 false positive and no missed dysarthria 

cases. This ensemble approach enhanced accuracy and reduced prediction errors, making it the most 

reliable model for automatic dysarthria detection from audio. 

3.5. Analysis of Misprediction Examples in Dysarthria Detection Models  

In addition to quantitative evaluation using metrics and confusion matrix, qualitative analysis of 

instances of misclassification is also crucial for understanding the limitations and challenges of the 

model in real-world applications. This case study of mispredictions is derived from audio samples that 

are actually labeled as "non_dysarthria," yet were classified by the model as "dysarthria" (positive 

dysarthria). 

 

Table 4 Prediction results 

filename actual_label predicted_label confidence 

TC17.wav non_dysarthria dysarthria 0.6648 

 

Example of a wrong prediction: TC17.wav 

Original label: non_dysarthria 

Prediction: dysarthria 
 

 
Figure 5. Prediction: dysarthria 

 

Displaying audio visualization of test data: 

 

 
Figure 6. Original label: non_dysarthria 
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Table 4 presents the prediction results from a classification system for the audio file named 

"TC17.wav." In this table, the "actual_label" column lists the original label of the file, which is 

"non_dysarthria," indicating that the file originates from an individual without dysarthric speech 

disorder. However, the system predicted the label "dysarthria" for this file, indicating the presence of a 

speech impairment. The confidence level of this prediction is 0.6648, suggesting that the system is 

reasonably confident in its prediction despite the incorrect outcome. Thus, this table represents a case 

where the classification system made an error by predicting dysarthria in a file that should not exhibit 

such a disorder. 

Figure 5 presents an example of a prediction error from an audio classification system designed 

to detect dysarthria in voice recordings. The audio file "TC17.wav," originally labeled as 

"non_dysarthria," was incorrectly predicted as "dysarthria" by the system. The waveform displayed in 

Figure 5 shows the sound amplitude over time, while Figure 6 highlights the original "non_dysarthria" 

label. These figures illustrate that despite the audio signal being from a normal voice, the system made 

an erroneous classification. 

The visual analysis of both the spectrogram and waveform indicates that certain acoustic features 

of the misclassified "non-dysarthria" samples share similarities with those typical of dysarthria. This 

may be due to variations in pronunciation, background noise, or recording conditions affecting the 

accuracy of MFCC feature extraction, leading to high confidence in an incorrect prediction. This 

situation highlights the challenges of dysarthria detection, especially when healthy individuals' voice 

samples display phonetic variations that mimic speech disorder patterns. Additionally, the small dataset 

size and class imbalance may hinder the model's generalization capabilities. Such misclassifications in 

clinical settings underscore the need for developing more robust models and considering supplementary 

data sources, like clinical metadata or video analysis, to improve diagnostic accuracy. 

 

 
Figure 7-a. Non-dysarthric speech 

 
Figure 7-b. Dysarthric speech 

 

To clarify the differences between dysarthric and non-dysarthric speech, Mel-Frequency Cepstral 

Coefficients (MFCC) were visualized for samples from both categories (Figure 7-a,b). The MFCC for 

non-dysarthric speech (Figure 7-a) shows a stable and homogeneous distribution of coefficients over 

time, reflecting consistent articulation and a clear spectral structure. In contrast, the MFCC for dysarthric 

speech (Figure 7-b) reveals irregular fluctuations with significant variations in amplitude and less 

uniform patterns, indicating instability in articulation and disrupted phonation, which are typical of 

dysarthria. These visual differences in MFCC patterns justify the feature selection process, as they 

capture the spectral and temporal irregularities inherent in dysarthric speech. This reinforces the decision 

to use MFCCs as the primary features for classification models (SVM, MLP, and stacked ensemble). 

Thus, the MFCC representation not only supports the quantitative performance outcomes but also 

qualitatively illustrates the effectiveness of the chosen features in differentiating between dysarthric and 

non-dysarthric speech. 
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Figure 8-a. Non-Dysarthria (Mispredicted) 

 
Figure 8-b. Dysarthria (Mispredicted) 

 

Figure 8-a and Figure 8-b illustrate examples of misclassified MFCC representations for non-

dysarthric and dysarthric samples, respectively. In the case of non-dysarthric misclassification, the 

MFCC pattern exhibits unstable spectral fluctuations in the lower coefficients, which resemble 

characteristics of dysarthric speech, leading to incorrect predictions. Conversely, the dysarthric sample 

that was misclassified as non-dysarthric demonstrates relatively smoother and more stable coefficient 

variations, thereby reducing its distinguishability from normal speech.  These findings suggest that 

overlapping spectral features and individual variability significantly contribute to model errors. 

Furthermore, the limitations of MFCC in capturing temporal dynamics indicate that integrating 

complementary features, such as prosodic or temporal descriptors, could enhance classification 

robustness. 

3.6. Distribusi confidence score 

Figure 9 shows the confidence score distribution for the SVM, MLP, and Stacked models. Most 

predictions are concentrated between 0.9 and 1.0, signifying high confidence and robustness in 

classification. In clinical settings, such high scores are vital for healthcare professionals' trust in the 

models as diagnostic tools. The Stacked model demonstrates more stability than the individual SVM 

and MLP models, leading to more consistent predictions and reduced uncertainty, making it particularly 

useful in resource-limited environments. 

Analysis of the confidence score distribution reveals that all three models show high certainty in 

classifying dysarthria and non-dysarthria classes, with a peak between 0.95 and 1.0. However, 

predictions within the 0.5 to 0.8 range indicate borderline cases, increasing the risk of misclassification. 

The Stacked model shows a denser distribution in the high-confidence area, confirming that ensemble 

techniques enhance predictive stability. Conversely, the lower confidence range is more scattered, with 

no significant differences among models. This highlights that while the Stacked model is superior in 

overall confidence stability, all models face challenges with a small number of ambiguous cases, 

aligning with the confusion matrix findings on mispredictions.  

 

 
Figure 9 Confidence score distribution 
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3.7. Computational Contributions and Potential Applications 

The stacking approach proposed in this study enhances computational methods for audio-based 

diagnostics by integrating the margin-based discrimination advantages of SVM with the nonlinear 

representation capabilities of MLP within a single meta-classifier. By combining these two paradigms, 

the system is able to: 

1. Improve performance stability on medium-scale datasets, where a single model may be 

susceptible to variations in recording channels, environmental conditions, or individual 

differences. 

2. Reduce the risk of misclassification, particularly in borderline cases, as the weaknesses of one 

model can be compensated for by the strengths of another. 

3. Maintain clinical sensitivity, as evidenced by a recall of 1.00 in the dysarthria class, indicating 

that the system does not overlook positive cases—a critical aspect in healthcare applications. 

From an application perspective, the advantages of the stacking approach are particularly relevant 

for Internet of Medical Things (IoMT) systems and mobile health applications. This model can be 

implemented in edge devices or cloud-based applications, enabling: 

1. Early, real-time detection, for instance, through a smartphone or wearable device equipped with 

a standard microphone. 

2. Integration into telemedicine systems, allowing patients to record their voices from home, with 

the automated system providing initial analyses prior to consulting a healthcare professional. 

3. High scalability, as stacking-based algorithms are relatively lightweight compared to deep 

sequence models, such as Bidirectional LSTMs (BiLSTM), making them suitable for large-scale 

datasets with lower computational costs. 

Thus, this research not only offers improved accuracy compared to previous studies but also 

illustrates a promising direction for audio-based diagnostics that is practical, cost-effective, and ready 

for integration into the digital healthcare ecosystem. 

4. DISCUSSIONS 

The evaluation results obtained from the SVM, MLP, and stacking models demonstrate strong 

performance in classifying individuals with articulation disorders (dysarthria) versus those without. The 

confusion matrices reflect the models’ ability to recognize the test data, with the majority of samples 

classified correctly. As shown in Table 1 (SVM classification report), the model achieved balanced 

precision and recall across both classes, correctly identifying 24 dysarthric and 22 non-dysarthric cases, 

with only two errors. This indicates that SVM is able to capture the core vocal feature patterns that 

differentiate the two groups. In Table 2 (MLP classification report), performance remains satisfactory 

but with slightly reduced precision for the non-dysarthric class, suggesting that the model occasionally 

mislabels healthy speakers as impaired. The most consistent performance is found in Table 3 (Stacked 

SVM + MLP), where recall for dysarthria reaches 1.00 and F1-scores approach perfection. This finding 

is clinically significant because it ensures that no patient with true speech impairment is missed during 

screening, which is essential in clinical settings where minimizing false negatives is a top priority. 

The distribution of confidence scores (Figure 9) further illustrates model robustness. The stacking 

ensemble produces a confidence clustering tightly near 1.0, indicating stable predictions and reduced 

uncertainty compared to single models. This robustness is particularly valuable in real-world 

deployment, where recording variability (e.g., environmental noise, device heterogeneity, or accents) 

could otherwise undermine prediction reliability. 

Comparison with prior works reinforces the novelty of this study. Previous Parkinson’s Disease 

(PD)-focused studies, such as [29] (rehabilitative therapy monitoring), [30](multi-stage severity 

classification), and [22](acoustic biomarkers like jitter and shimmer), validated the utility of voice-based 
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markers for neurological disorders. Unlike those studies, our work addresses dysarthria detection 

directly, emphasizing high recall as a screening metric. While earlier works reported accuracies in the 

range of 90–95%, our ensemble model achieved 98% accuracy with perfect sensitivity to dysarthric 

cases. This advancement highlights the potential of ensemble strategies for robust voice-based clinical 

screening and supports future deployment in mobile health or community-based screening programs. 

The relatively small test dataset of 48 samples from a total of 240 limits the generalizability of 

the findings. While misclassifications were few, they indicate vulnerability to variations in recording 

quality and speaker-specific traits. To improve robustness, future work could expand the dataset, apply 

advanced augmentation strategies, incorporate richer acoustic-prosodic features, or adopt deeper neural 

architectures. Considering demographic and longitudinal data would enhance clinical applicability, 

enabling more personalized and scalable automatic screening of articulation disorders. 

5. CONCLUSION 

The stacking model based on SVM and MLP utilizing MFCC features achieved an accuracy of 

97.92%, surpassing that of the SVM (95.83%) and MLP (93.75%). Furthermore, it demonstrated a recall 

of 1.00 in the dysarthria class, thereby confirming its clinical reliability. This study advances speech-

based diagnostic algorithms within the field of computational health informatics, facilitating scalable, 

accurate, and easily integrated dysarthria screening in Internet of Medical Things (IoMT) systems and 

mobile health applications. Consequently, it directly contributes to the development of practical and 

real-world AI-based diagnostic methods. 

For future research, development efforts can be directed towards the application of hybrid deep 

learning architectures, such as Convolutional Neural Networks (CNN) combined with Long Short-Term 

Memory (LSTM) networks or Bidirectional LSTM (BiLSTM) networks. These architectures are capable 

of extracting spatial representations through CNNs while simultaneously capturing long-term temporal 

dynamics via LSTMs. Additionally, multimodal feature integration, which involves combining audio 

data (including MFCC and prosody) with facial or lip movements from video recordings, could enhance 

the system's ability to detect dysarthria not only from voice but also from visual-motor expressions. This 

multimodal approach is anticipated to increase the model's robustness against varying acoustic 

conditions and strengthen its clinical validity for real-world applications. Furthermore, employing 

transfer learning from pre-trained audio-speech models, such as Wav2Vec 2.0 or HuBERT, holds 

promise for improving generalization on datasets of limited size. 
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