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Abstract 

The conversion of farmland into non-agricultural purposes has emerged as a pressing concern in many urban regions, 

including Koto Tangah District, Padang City. In this area, agricultural land experienced a 4% shift in land use between 

2022 and 2024. If this trend continues, it could lead to a notable decline in rice production and ultimately threaten 

food security. This research focuses on examining spatial transformations of rice fields from 2022 to 2024 by utilizing 

Sentinel-2 satellite imagery along with advanced classification techniques. Vegetation and moisture features were 

extracted using NDVI, NDWI, texture analysis through GLCM, and Principal Component Analysis (PCA). To 

classify land cover changes and assess model accuracy, two machine learning approaches were applied: Multilayer 

Perceptron (MLP) and Support Vector Machine (SVM). The findings reveal a considerable reduction in dense 

vegetation, indicated by the downward shift of NDVI values in 2024. MLP achieved an accuracy of 82%, 

outperforming SVM, which reached 71%. Furthermore, MLP obtained a higher F1-score for non-rice field detection 

(0.75 vs. 0.74) and produced more realistic delineations of rice field boundaries during spatial validation. These 

outcomes highlight the potential of MLP in monitoring land use conversion, supporting agricultural land 

conservation, and guiding sustainable urban planning. Moreover, the study contributes to computer science by 

advancing the use of machine learning for spatio-temporal analysis and reinforcing the role of non-linear models in 

satellite image classification. 
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1. INTRODUCTION 

Koto Tangah District in Padang City encompasses a relatively large agricultural area and serves 

as one of the region’s key agricultural sectors [1]. However, in recent years, the district has experienced 

a notable reduction in rice paddy land due to land conversion. Based on statistical records, the area of 

rice paddies declined from 36.219,80 hectares in 2019 to 26.196,06 hectares in 2023 [2]. This downward 

trend indicates a land-use shift that warrants serious concern, as it directly affects food security. The 

reduction of paddy fields inevitably impacts rice production. With an average yield of 5.2 tons per 

hectare per season [2], the loss of approximately 60 hectares conversion into a reduction of several 

hundred tons of rice annually [3]. This situation is increasingly alarming given the rising population and 

growing national demand for staple food [4]. 

The primary factor driving this decline is land conversion for development purposes, including 

residential housing, infrastructure, and commercial areas [5]. This phenomenon is consistent with 

international findings for instance, Oakleaf reported that agrarian ecosystems are particularly vulnerable 

to conversion pressures [3]. In China, for example, the proportion of cultivated land decreased from 
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59.75% in 1990 to 50.21% in 2020 [6]. Other studies also reveal that land with high ecological value is 

being converted at an accelerating rate for construction activities [7] [8] [9]. 

The Indonesian government has taken steps to address this challenge through various legal 

frameworks. Law Number 41 of 2009 concerning the Protection of Sustainable Food Agricultural Land 

(PLP2B) serves as the primary legal foundation to safeguard paddy fields from conversion pressures 

[10]. At the local level, the Padang City Government established a Regional Spatial Plan (RTRW) and 

issued Mayoral Regulation Number 20 of 2015 on the Optimization of Vacant Land Utilization. These 

policies aim to ensure sustainable land management and strengthen regional food security. 

Within this context, a method capable of providing real-time and spatially explicit monitoring of 

land-use change is essential. Remote sensing technology offers an effective solution for periodically and 

comprehensively tracking land-use dynamics. Satellite imagery, such as Sentinel-2, which delivers 

multispectral data at a 10-meter spatial resolution, enables detailed analysis of vegetation conditions and 

land-cover changes. Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) 

and the Normalized Difference Water Index (NDWI) derived from combinations of red (B4), near-

infrared (B8), green (B3), and blue (B2) bands [11], have been extensively applied to detect paddy field 

changes and soil moisture variations [12]. 

Nevertheless, while remote sensing provides rich quantitative data, its interpretation requires 

advanced classification methods [13]. Major challenges arise from spatial complexity and the non-linear 

relationships between variables, which conventional algorithms often fail to capture effectively [14]. To 

address this gap, the present study developed an artificial intelligence–based approach using the 

Multilayer Perceptron (MLP) algorithm as the primary tool for classifying paddy field changes based 

on Sentinel-2 imagery during the 2022–2024 period. 

MLP is a type of artificial neural network that operates through interconnected neurons arranged 

in multiple hidden layers [15]. It has proven effective in identifying hidden patterns within data 

characterized by complex and non-linear structures [16]. One of MLP’s main advantages lies in its 

capacity for optimization through hyperparameter tuning techniques, such as GridSearchCV, which 

allow systematic improvement of model performance [17]. 

As part of model evaluation, this study also compared the classification outcomes of MLP with 

those generated by the Support Vector Machine (SVM) algorithm. SVM, a margin-based machine 

learning method, is widely used in image classification tasks [18] because of its effectiveness in handling 

high-dimensional data [19]. Guido [20] noted that SVM can deliver relatively stable classification 

accuracy even when training data are limited, provided that the classes are well-separated. However, its 

main limitations are reduced flexibility in modeling complex spatial structures [21] and the inability to 

account for spatial relationships between pixels an important consideration in remote sensing 

applications  [22]. 

While many prior studies have employed vegetation indices and conventional classifiers such as 

SVM for land-use change detection, these methods still struggle to effectively capture spatial complexity 

and non-linear relationships among features [23]. This often leads to reduced classification accuracy, 

particularly in transitional zones between active and inactive rice fields. Similarly, Ricardo highlighted 

that several studies rely exclusively on basic spectral features, overlooking the integration of texture 

information or dimensionality reduction techniques that could enhance data representation [24]. To 

overcome these limitations, the present study integrates Sentinel-2 multispectral data with NDVI, 

NDWI, GLCM-based texture features, and PCA, before applying MLP as a more adaptive, non-linear 

model capable of capturing spatiotemporal variations. By comparing its performance with SVM, this 

research aims to advance the application of machine learning in satellite image classification and to 

provide a more accurate and practical model for monitoring rice field conversion. 

https://jutif.if.unsoed.ac.id/
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Through this comparative analysis, the study seeks not only to map and assess rice field changes 

in Koto Tangah District but also to identify the most effective classification method for detecting land-

use changes using multispectral satellite imagery. In summary, the objectives of this study are: (1) to 

analyze spatial changes in rice fields in Koto Tangah District for the 2022–2024 period using Sentinel-

2 imagery, (2) to apply and evaluate the MLP algorithm in the classification of rice field changes based 

on remote sensing features, and (3) to compare the classification performance of MLP and SVM in order 

to determine the most suitable approach for spatial analysis. 

2. METHOD 

2.1. Study Area and Dataset 

This study was carried out in Padang City, a major rice-producing region in West Sumatra 

Province, as illustrated in Figure 1. The figure presents the study area on a map, highlighting the 

designated region with a total coverage of 232.25 km². The primary data used were Sentinel-2 Level-

1C satellite images with a spatial resolution of 10 meters, downloaded from the Google Earth Engine 

(GEE) platform for three time periods 2022, 2023, and 2024, to detect temporal changes in rice fields. 

The main dataset consisted of Sentinel-2 multispectral imagery in GeoTIFF format, complemented by 

shapefile data representing administrative boundaries and masking areas. Demographic data for the 

study area were used solely as supporting information. Land cover was classified into five categories: 

Built-up Land, Open Land, Mangrove Vegetation, Non-Mangrove Vegetation, and Water Bodies. 

 

 
Figure 1. Administrative Boundaries of Koto Tangah District 

 

In this study, a series of steps were undertaken to analyze land-use changes and evaluate the 

performance of two machine learning algorithms in managing non-linear spatial data, as shown in Figure 

2. The rice field classification methodology began with data acquisition, followed by preprocessing tasks 

such as atmospheric correction, cloud masking, and image compositing. Subsequently, feature 

extraction was carried out using vegetation and water indices, texture analysis, and dimensionality 

reduction techniques. These extracted features served as inputs for the classification stage, where the 

Multilayer Perceptron (MLP) and Support Vector Machine (SVM) algorithms were implemented 

https://jutif.if.unsoed.ac.id/
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Finally, performance evaluation and spatial validation were conducted to assess the accuracy and 

robustness of the classification outcomes. 

 

 
Figure 2. The Methodology for Rice Field Classification 

 

 

2.2. Data Preprocessing 

The data pre-processing stage is a crucial initial step to ensure the quality of remote sensing 

imagery prior to classification and analysis [25]. This stage aims to eliminate atmospheric and cloud-

related distortions and to standardize the data spatially and temporally. In this study, several pre-

processing procedures were applied to the Sentinel-2 imagery accessed via Google Earth Engine (GEE), 

including Atmospheric Correction with Sen2Cor. Atmospheric correction involves removing 

atmospheric effects such as gases, aerosols, and water vapor that can distort surface reflectance values 

[26]. Sentinel-2 Level-1C imagery available in GEE contains top-of-atmosphere (TOA) reflectance 

values, which do not accurately represent actual surface conditions [27]. Therefore, the imagery was 

converted to Level-2A (bottom-of-atmosphere/BOA) using the Sen2Cor algorithm, a physically based 

atmospheric correction module developed by the European Space Agency (ESA) [28]. This conversion 

results in images with corrected surface reflectance values, making them suitable for quantitative 

analysis [29]. In Next step, Cloud Masking using Band QA60, Clouds and their shadows pose a 

significant challenge in optical image analysis, as they introduce noise and reduce classification 

accuracy [30]. To address this issue, a cloud masking technique was implemented using the QA60 band, 

a quality assessment band provided in Sentinel-2 products, which detects pixels affected by clouds and 

other atmospheric artifacts [31]. The maskClouds() function was utilized to automatically detect and 

exclude pixels affected by clouds and shadows, ensuring that only cloud-free and relevant image regions 

were preserved for subsequent analysis [32]. Followed by Compiling Median Composite Images per 

Year, to achieve a stable representation of land conditions and mitigate seasonal variability, median 

composite images were generated for each observation year: 2022, 2023, and 2024. These composite 

images were derived from all available Sentinel-2 scenes in each year after cloud masking. The median 

compositing technique reduces temporary fluctuations caused by weather or atmospheric conditions and 

provides a statistically consistent representation of surface features [33]. This method also minimizes 

bias that can occur from selecting a single scene for analysis [34]. After the composite imagery was 

compiled, the next step was to clip the study area to include only the administrative boundaries of Koto 

Tangah District. This process was performed using a shapefile representing the district’s administrative 

extent. Clipping the study area ensures that the entire classification and spatial analysis processes are 

focused solely on areas relevant to the research objectives, while also reducing unnecessary 

computational load [35]. 

2.3. Feature Extraction 

The feature extraction stage is a critical process in satellite imagery-based classification systems, 

as it directly influences the quality of information used for model training and prediction [36]. In this 

study, features were extracted from Sentinel-2 imagery to represent land characteristics such as 

https://jutif.if.unsoed.ac.id/
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vegetation, moisture, surface texture, and spectral components. These features were designed to capture 

spatial and spectral variations relevant to detecting changes in rice fields. The extracted features include 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Gray 

Level Co-occurrence Matrix (GLCM) Texture Features. 

NDVI is the most widely used vegetation index for monitoring vegetation cover and land 

productivity  [37]. It is calculated based on the ratio of spectral reflectance values in the Near-Infrared 

(B8) and Red (B4) bands [38] as shown in Equation (1). 

𝑁𝐷𝑉𝐼 =
(𝐵8−𝐵4)

(𝐵8+𝐵4)
    ( 1 ) 

NDVI values range from -1 to +1, with higher values indicating healthier and denser vegetation 

[39]. NDVI is particularly relevant in agricultural applications, as it can reflect plant growth phases, 

canopy density, and vegetation changes resulting from land use transformations [40]. In this study, 

NDVI was used to identify active rice field areas and detect changes in growth intensity [41]. 

NDWI is used to detect the presence of water or moisture on the land surface, an important 

indicator in rice field analysis [42], particularly in the early stages of planting and irrigation. It is 

computed using the spectral ratio between the Green (B3) and Near-Infrared (B8) bands, as shown in 

Equation (2). 

𝑁𝐷𝑊𝐼 =
(𝐵3−𝐵8)

(𝐵3+𝐵8)
 (2) 

NDWI is effective in distinguishing wetlands or flooded areas from dry surfaces and is often used 

to identify newly plowed, recently planted, or water-saturated rice fields [43]. When combined with 

NDVI, NDWI can enhance the accuracy of active rice field classification. 

In addition to spectral features, this study also incorporated texture features derived from the Gray 

Level Co-occurrence Matrix (GLCM) to capture spatial patterns and structures of the land surface. 

Texture images were generated from the NDVI channel by calculating a spatial gray-level correlation 

matrix and extracting several key statistical descriptors, (a) Contrast, which measures the intensity of 

local variation. High contrast typically appears at the edges of rice fields or in transitional land cover 

zones, (b) Homogeneity, which assesses the uniformity of pixel values. High homogeneity indicates a 

smooth, consistent texture, such as regularly planted rice fields, (c) Entropy, which quantifies the 

complexity or randomness of texture. High entropy reflects a high diversity of pixel values, often found 

in mixed or transitional land areas [44]. These GLCM-based texture features complement NDVI and 

NDWI by providing additional spatial context, thereby improving classification accuracy in areas with 

similar spectral characteristics but differing spatial structures [45]. 

To reduce redundancy and correlation among features and lower data dimensionality without 

losing critical information, Principal Component Analysis (PCA) was applied. PCA is a linear 

transformation technique that converts the original correlated variables into a new set of uncorrelated 

variables called principal components [46]. In this study, PCA was applied to four Sentinel-2 spectral 

bands (B2, B3, B4, B8) along with the NDVI and NDWI indices. The first three components (PC1–

PC3) were used as additional features for classification. PCA helps minimize the risk of model 

overfitting and accelerates the training process of both MLP and SVM algorithms, while preserving 

essential information about land characteristics. 

2.4. Classification Models 

The Multilayer Perceptron (MLP) is a type of artificial neural network (ANN) known for its high 

capability in capturing non-linear and complex relationships between features, particularly in spatial-

https://jutif.if.unsoed.ac.id/
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temporal data-based classification tasks [47]. In this study, the MLP was employed to classify changes 

in rice fields using spectral and textural features extracted from Sentinel-2 imagery [48]. The model 

architecture was designed to optimally map input characteristics into two target classes: change and no 

change. The MLP model was constructed with the following network structure  [49]: 

a. Input Layer 

The input layer receives six primary extracted features: NDVI, NDWI, three GLCM-based texture 

features (contrast, homogeneity, entropy), and one principal component derived from PCA. The 

number of neurons in the input layer corresponds to the number of input features, resulting in 6 

neurons. 

b. Hidden Layers 

The model comprises two hidden layers containing 64 and 32 neurons, respectively. This 

configuration was chosen to balance model complexity and prevent overfitting while enabling the 

network to capture non-linear patterns in the data. Each neuron employs the Rectified Linear Unit 

(ReLU) activation function, which is effective in deep networks due to its ability to mitigate the 

vanishing gradient problem and accelerate convergence. 

c. Output Layer 

The output layer consists of a single neuron with a sigmoid activation function, converting the 

output into a probabilistic value between 0 and 1. The sigmoid function is appropriate for binary 

classification problems, as it directly models the likelihood that a pixel or spatial unit belongs to 

the "land change" or "no change" class. 

For the training process, the Adam (Adaptive Moment Estimation) optimization algorithm was 

utilized. Adam combines the strengths of the RMSProp and momentum algorithms and can adapt to 

gradient changes efficiently. It was selected for its stability and effectiveness in handling datasets with 

uneven distributions and features of varying scales  [50]. 

The model was trained for 200 epochs with a batch size of 32, meaning the training data was 

divided into mini-batches of 32 samples per iteration. The number of epochs was determined based on 

preliminary testing of loss function convergence and validation performance stability. To prevent 

overfitting, an early stopping technique was applied based on the validation loss. If no improvement was 

observed over a number of consecutive epochs, the training process was halted early. The model was 

trained using 80% of the dataset with stratified k-fold cross-validation to ensure robust generalization. 

The Support Vector Machine (SVM) is a widely used machine learning technique in remote 

sensing image classification due to its efficiency and accuracy in handling high-dimensional data [51]. 

Based on the principle of maximum margin, SVM aims to identify a separating hyperplane that 

maximizes the margin between classes, thereby reducing the risk of generalization error [52]. In this 

study, SVM was used as a comparative model to the MLP in classifying rice field changes based on 

features extracted from Sentinel-2 imagery. SVM was selected due to its robustness with limited training 

data and stability in datasets with good class separability. 

a. Kernel Function 

The SVM model was configured with a Radial Basis Function (RBF) kernel, a commonly used 

non-linear kernel that implicitly maps data into a higher-dimensional feature space. This enables 

the model to classify patterns that are not linearly separable in the original feature space, a frequent 

condition in spatial datasets with variable characteristics such as rice fields [53]. 

b. Parameter Tuning (Hyperparameter Optimization) 

The two main SVM parameters, C and gamma, were optimized using a grid search approach, a 

systematic method of evaluating parameter combinations based on cross-validation performance. 

The regularization parameter C = 10 controls the trade-off between maximizing the margin and 

minimizing classification error. Higher C values tend to produce a model that fits the training data 

https://jutif.if.unsoed.ac.id/
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more tightly. The gamma parameter, set to 0.1, determines the influence of individual data points. 

This value was chosen to strike a balance between bias and variance, helping to avoid overfitting 

and ensure model generalizability. 

c. Model Validation 

The performance evaluation of the SVM model was conducted using a cross-validation scheme 

with k = 5, in which the training data was divided into five subsets (folds). The model was iteratively 

trained on four subsets and tested on the fifth. This technique was employed to measure model 

stability and prevent evaluation bias resulting from unrepresentative data partitioning. Model 

performance was then quantitatively compared with that of the MLP model using the same 

evaluation metrics: accuracy, precision, recall, F1-score, and the Kappa coefficient. This 

comparison enabled a comprehensive analysis of the advantages and limitations of each algorithm 

in classifying rice field changes within the study area. 

2.5.  Evaluation Metrics 

The effectiveness of the classification models in detecting paddy field conversion was evaluated 

through two complementary approaches: quantitative assessment and spatial validation. Both Multilayer 

Perceptron (MLP) and Support Vector Machine (SVM) were examined to ensure a comprehensive 

evaluation of classification accuracy and robustness. 

For the quantitative part, the evaluation relied on a confusion matrix framework, which consists 

of four fundamental components: True Positive (TP), representing correctly classified instances of 

paddy field conversion; False Positive (FP), denoting non-converted areas that were incorrectly labeled 

as converted; True Negative (TN), referring to correctly identified non-converted areas; and False 

Negative (FN), which captures actual conversions that the model failed to detect. Based on these values, 

several well-established metrics were employed. Accuracy represents the ratio of correctly classified 

samples to the total number of observations, though it may provide misleading results when class 

distributions are imbalanced. Precision measures the proportion of TP predictions among all positive 

predictions, which is essential to minimize FP occurrences. Recall evaluates the ability of the model to 

identify actual positive cases, making it particularly important in change detection where undetected 

conversions (FN) should be avoided. F1-score combines precision and recall into a single value using 

their harmonic mean, offering a balanced assessment when both metrics are equally critical. 

In addition, the Receiver Operating Characteristic (ROC) curve was used to illustrate the trade-

off between sensitivity (TP rate) and 1–specificity (FP rate), while the Area Under the Curve (AUC) 

served as a global indicator of the model’s discriminatory capability, with larger values indicating 

stronger performance. 

To complement statistical evaluation, spatial validation was carried out by comparing 

classification outputs with a reference dataset (ground truth) generated from visual interpretation, field 

surveys, or trusted secondary sources. This procedure assessed how well the classification maps 

corresponded to actual conditions. By overlaying predicted maps with the reference, pixel-by-pixel 

agreement could be measured, enabling the detection of systematic errors such as overestimation or 

underestimation of converted areas. This step is particularly crucial in spatial planning and agricultural 

land monitoring, where positional accuracy is as important as statistical measures. 

Evaluation metrics such as Accuracy, Precision, Recall, and F1 score were calculated using their 

standard formulas, as shown in Table 1. For ROC–AUC analysis, ROC curves were plotted across 

varying thresholds, and the AUC was obtained as a scalar summary of overall separability. Spatial 

validation was conducted through pixel-level overlay between classified maps and the reference dataset. 

All numerical metrics were calculated using Python’s scikit-learn library, while spatial analysis and 

overlay operations were performed in QGIS 3.40. 
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Table 1. Evaluation Metrics 

Measure Formula 

Precision 
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F-measure 
= 2 ∗ 

𝑅𝑒𝑐𝑎𝑙𝑙 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Accuracy 
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + +𝐹𝑁 + 𝑇𝑁
 

Specificity 
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

3. RESULT 

3.1. Data Collecting 

The main dataset employed in this research comprises Sentinel-2 multispectral imagery from 

2022, 2023, and 2024, covering the administrative area of Koto Tangah District (Figure 1) and 

summarized in Table 2. The imagery was obtained from two sources: Google Earth Engine (GEE) and 

the Copernicus Data Space Ecosystem, with the purpose of ensuring data availability within the required 

temporal range. 

 

Table 2. Data Collecting 

Year Source Sensor 
Bands Used - Spatial 

Resolution 

Cloud 

Coverage (%) 
Format 

2022 
GEE dan 

Copernicus 
MSI 

B2, B3, B4, B8 = 10 m 

B11, B12 = 20m 
< 30% GeoTIFF 

2023 
GEE dan 

Copernicus 
MSI 

B2, B3, B4, B8 = 10 m 

B11, B12 = 20m 
< 30% GeoTIFF 

2024 
GEE dan 

Copernicus 
MSI 

B2, B3, B4, B8 = 10 m 

B11, B12 = 20m 
< 30% GeoTIFF 

 

3.2. Data Preprocessing 

Preprocessing was carried out by filtering the imagery within the defined Area of Interest (AOI) 

using the Google Collaboratory platform. The procedure included filtering by location and acquisition 

date, applying cloud-percentage thresholds, generating a median composite, and clipping to the study 

area. These steps ensured that the resulting datasets captured meaningful differences in imagery. 

The process began with selecting images based on their spatial coverage and acquisition 

timeframe to guarantee relevance to the study period. Subsequently, filtering by cloud cover percentage 

was applied to minimize atmospheric disturbances and reduce cloud contamination, which can 

negatively impact classification accuracy. The retained images were then composited using the median 

https://jutif.if.unsoed.ac.id/
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method to suppress noise and provide more stable reflectance values across acquisition dates. This 

approach produced clearer satellite imagery for analysis, as illustrated in Figure 3 dan Figure 4. 

 

 

 

(a) 

 

(b) 

Figure 3. (a) Raw Satellite Imagery (Before Filtering) 2022, (b) Satellite Image (After Filtering) 

2022 

 

 

(a) 

 

(b) 

Figure 4. Raw Satellite Imagery (Before Filtering) 2024, (b) Satellite Image (After Filtering) 2024 
 

 

Figures 3.a and 4.a illustrate satellite imagery that is still influenced by atmospheric disturbances 

and relatively high cloud coverage, especially in the central to northern regions of the study area. These 

conditions reduce the visual clarity of the imagery, making land cover interpretation more challenging. 

As a result, the contrast between vegetated and non-vegetated areas becomes less distinguishable, 

indicating the need for further image correction. 

Meanwhile, Figures 3.b and 4.b present imagery that has undergone median compositing and the 

selection of scenes with lower cloud percentages. This preprocessing step produces a clearer 

representation of the study area, allowing better differentiation between vegetation (displayed in dark 

green), built-up areas and open land (displayed in reddish-brown), as well as the remaining cloud cover. 

The contrast between these two sets of imagery highlights the critical role of preprocessing techniques 

particularly cloud filtering and image compositing in obtaining more reliable spatial information and 

supporting subsequent analytical processes. 

https://jutif.if.unsoed.ac.id/
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3.3. Spectral and Textural Feature Extraction Results 

Figure 5 presents the histograms of Sentinel-2 bands (B2, B3, B4, and B8), illustrating the 

differences in digital number (DN) value distributions between raw and preprocessed imagery. In the 

raw image, DN values are more broadly spread, with the highest frequency appearing around the mid-

range. In contrast, the preprocessed image shows a more concentrated distribution, predominantly within 

the lower DN range. These changes indicate that the radiometric and atmospheric correction processes 

have successfully adjusted the surface reflectance values to better represent actual conditions in the field. 

For example, in Band 8 (NIR), a shift in the distribution toward higher values is observed, indicating 

improved vegetation information. Meanwhile, in the visible bands (B2, B3, and B4), the shift in the 

distribution toward lower DN values indicates a reduction in atmospheric effects and improved contrast 

between objects. 

 

 
Figure 5. Preprocessed Image 

 

 

Figure 6 presents a histogram of NDVI (Normalized Difference Vegetation Index) values in 

Padang City for 2022, derived from post-processed Sentinel-2 imagery. The histogram illustrates the 

distribution of vegetation values in terms of pixel frequency across NDVI value ranges. The horizontal 

axis (X-axis) represents NDVI values, which theoretically range from -1 to +1; however, the values in 

this histogram fall between -0.2 and +0.8. NDVI values below zero generally correspond to non-

vegetated features such as water bodies, built-up areas (e.g., buildings and roads), or bare land. In 

contrast, values above zero indicate vegetated areas, with higher values signifying healthier and denser 

vegetation. 

The vertical axis (Y-axis) shows the number of pixels within each NDVI range, reflecting the 

relative spatial extent of various land cover types based on vegetation density. Principal Component 

Analysis (PCA) was successfully used to reduce feature dimensionality without significantly 

compromising important information. 
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Figure 6. Feature Extraction Results 

(a) NDVI 2022, (b) NDVI 2024, (c) Composite Band PCA 
 
 

Based on the histogram of Figure 6, the majority of NDVI values are concentrated between 0.5 

and 0.6, with the mode around 0.55. This suggests that, during the observation year, most areas in 

Padang City exhibited moderate to high vegetation density, indicative of active rice fields, shrublands, 

or other well-established vegetation. Conversely, NDVI values below 0.2 account for only a small 

number of pixels, indicating that areas with very little or no vegetation (e.g., dense settlements, open 

fields, or water bodies) occupy a relatively smaller area compared to vegetated regions. Furthermore, 

the number of pixels with NDVI values above 0.6 decreases drastically, suggesting that only a limited 

area contains very dense vegetation, such as primary forests or rice fields at their peak growing season. 

Overall, this distribution pattern indicates that Padang City in 2022 remained dominated by medium to 

high vegetation density, highlighting the significance of sustainable green spaces and productive 

agriculture amid increasing urbanization pressures. 

The NDVI distribution histogram for 2024 provides a comprehensive overview of vegetation 

conditions in Padang City based on Sentinel-2 remote sensing imagery. NDVI values are shown on the 
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horizontal (X) axis, ranging from -0.35 to +0.75, while the vertical (Y) axis represents the number of 

pixels in each NDVI class, reflecting the relative extent of each land cover category. An NDVI value 

below 0 generally corresponds to non-vegetative areas such as water bodies, bare soil, or artificial 

surfaces like buildings. Values between 0.1 and 0.4 indicate sparse vegetation or early-stage plant 

growth, whereas values above 0.5 to 0.75 correspond to dense vegetation, such as actively growing rice 

fields. 

The 2024 histogram displays an interesting bimodal pattern, with two prominent distribution 

peaks. The first peak appears around NDVI values of 0.0–0.1, while the second lies in the range of 0.55–

0.6. The emergence of the first peak, more prominent than in 2022 indicates an increase in areas with 

very low or no vegetation. This change may be attributed to land use conversion, fallow rice fields 

between planting seasons, or expansion of water bodies. Meanwhile, the second, relatively stable peak 

at NDVI > 0.5 suggests that areas with dense vegetation such as active rice fields, home gardens, or 

unconverted natural vegetation remain present. 

This distribution pattern indicates that, while pockets of healthy vegetation persist in Padang City, 

there was a significant expansion of non-vegetative areas in 2024. This finding underscores the urgency 

of protecting productive agricultural land and promoting data-driven spatial planning policies to prevent 

further degradation of vegetation cover. 

A comparison of the NDVI distributions between 2022 and 2024 reveals notable changes in 

vegetative land cover characteristics in Padang City. In 2022, the NDVI distribution was dominated by 

a single peak in the 0.55–0.6 range, reflecting the dominance of areas with dense vegetation, such as 

active and healthy rice fields. However, by 2024, the distribution had shifted to a bimodal pattern, with 

a new peak emerging around NDVI values of 0.0–0.1, indicating increased areas with little or no 

vegetation. This shift suggests land cover degradation or conversion of rice fields to non-agricultural 

uses. Although the high NDVI peak (>0.5) remains, the sharp increase in low NDVI values signals 

growing pressure on productive agricultural land and highlights the need for continuous spatial 

monitoring to support sustainable land use and conservation policies. 

3.4. Results of Rice Field Change Classification Using the MLP Method  

The Multilayer Perceptron (MLP) model implemented in this study achieved an overall accuracy 

of 71% in classifying paddy and non-paddy fields across a total of 7,961 sample pixels. Further 

evaluation metrics revealed a precision of 0.92 and a recall of 0.53 for the paddy field class (label 0), 

resulting in an F1-score of 0.68. These values indicate that the model is highly effective at correctly 

identifying true paddy field pixels (high precision), but less effective at detecting all relevant paddy field 

areas (low recall). 

In contrast, for the non-paddy field class (label 1), the MLP yielded a very high recall of 0.94, 

demonstrating the model’s strong ability to identify most non-paddy field pixels. Although its precision 

was lower at 0.62, the resulting F1-score of 0.75 indicates a more balanced performance for the non-

paddy class compared to the paddy class. 

The confusion matrix supports these findings with 2.3740 paddy field pixels were correctly 

classified, however 2.0670 paddy field pixels were misclassified as non-paddy. Meanwhile, 3.3170 non-

paddy pixels were correctly classified. Only 203 non-paddy pixels were incorrectly classified as paddy 

fields. 

Overall, the model tends to be more sensitive to the non-rice field class and less capable of 

comprehensively detecting the rice field class, as indicated by the imbalanced recall values between the 

two classes. This condition may be attributed to an unbalanced distribution of training data, high spectral 

variability within rice fields, or spatial complexity that is not fully captured by the MLP architecture 

used. 
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For agricultural land monitoring applications and rice field protection policymaking, low recall 

in the rice field class is a significant concern. This can result in underestimating the actual extent of 

existing rice fields, leading to misinterpretations in spatial planning. Therefore, efforts to enhance model 

performance, such as incorporating more diverse training data, integrating additional spatial features, or 

employing a hybrid classification approach, should be considered in future work. 

3.5. Results of Rice Field Change Classification Using the SVM Method 

Table 3 presents the results of applying the Support Vector Machine (SVM) algorithm to classify 

rice fields and non-rice fields using NDVI, NDWI, and two principal components derived from Principal 

Component Analysis (PCA). Based on the evaluation results, the SVM model achieved an overall 

accuracy of 71% across 7,961 test pixels. 

For the rice field class (label 0), the model achieved a precision of 0.91, indicating that most 

predicted rice field pixels were correctly classified. However, the recall was only 0.54, meaning the 

SVM failed to detect nearly half of the actual rice paddy areas. The resulting F1-score of 0.68 reflects 

the imbalance between precision and recall for this class. 

In contrast, for the non-rice paddy class (label 1), the SVM demonstrated stronger recall 

performance at 0.94, indicating excellent detection of non-rice paddy areas. However, its precision was 

lower at 0.62, suggesting a notable number of misclassifications where rice paddy pixels were 

incorrectly labeled as non-rice paddy. The F1-score for this class was 0.74, indicating relatively more 

stable performance than that observed for the rice paddy class. 

These results suggest that the SVM model is more sensitive to the non-rice paddy class and tends 

to overpredict this label. While SVM is capable of handling high-dimensional data and defining clear 

class boundaries, its limitations in modeling complex and non-linear patterns likely contribute to the 

low recall observed for the rice paddy class. In the context of rice field classification, this low recall 

poses a significant challenge, as it can lead to underrepresentation of rice fields in spatial data, thereby 

affecting the accuracy of information used in policymaking for sustainable agricultural land protection. 

 

Table 3. Comparison of SVM and MLP Performance   

Metrik SVM MLP 

Accuracy 0.71 0.82 

Precision (paddy field) 0.91 (label 0) 0.92 (label 0) 

Recall (paddy field) 0.54 (label 0) 0.53 (label 0) 

F1-score (paddy field) 0.68 0.68 

Precision (Non- paddy field) 0.62 (label 1) 0.62 (label 1) 

Recall (Non- paddy field) 0.94 0.94 

F1-score (Non- paddy field) 0.74 0.75 

 

Overall, although the SVM’s overall accuracy is comparable to that of the MLP model, class-

wise performance reveals that MLP offers a more balanced classification, particularly in identifying 

complex, non-linear characteristics within the rice field class. These findings underscore the potential 

advantages of neural network-based approaches like MLP for future agricultural land monitoring 

systems. 

3.6. Quantitative Evaluation of Model Performance 

This study compares the performance of two machine learning algorithms, Multilayer Perceptron 

(MLP) and Support Vector Machine (SVM) in classifying rice field and non-rice field changes based 

on NDVI and NDWI features, along with two principal components derived from Principal Component 
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Analysis (PCA). The evaluation employed common metrics for binary classification tasks: accuracy, 

precision, recall, and F1-score. 

The classification results using the MLP algorithm demonstrated relatively balanced 

performance, with an overall accuracy of 71%. For the rice field class (label 0), the MLP achieved a 

precision of 0.92 and a recall of 0.53, indicating that the model was highly precise in identifying rice 

fields but exhibited limitations in comprehensively capturing all rice field areas. For the non-rice field 

class (label 1), the model recorded a precision of 0.62 and a recall of 0.94, resulting in F1-scores of 0.68 

and 0.75, respectively. The macro-average F1-score of 0.71 suggests that the MLP model effectively 

balances accuracy and completeness across both classes. 

Similarly, the SVM algorithm exhibited a comparable overall accuracy of 71%, but with a more 

imbalanced performance. For the non-rice field class, the SVM achieved a high recall of 0.94 but only 

a 0.62 precision, resulting in an F1-score of 0.74. For the rice field class, the precision was 0.91 while 

the recall was 0.54, yielding an F1-score of 0.68. Although the overall accuracy and F1-scores were 

similar to those of the MLP, the SVM tended to favor the non-rice field class and was less capable of 

identifying the more complex spatial and non-linear variations within the rice field class. 

Visually, confusion matrix analysis showed that the MLP resulted in slightly fewer 

misclassifications in the non-rice field class compared to the SVM, although both models struggled to 

detect the full extent of rice fields (recall < 0.6). The MLP's ability to model non-linear patterns and 

spatial dependencies between pixels contributed to its superior performance in capturing the dynamics 

of rice field vegetation, particularly when using a combination of vegetation indices and PCA-derived 

features. 

Based on the evaluation results, it can be concluded that the MLP is more effective in maintaining 

balanced classification performance across classes, whereas the SVM performs better in identifying the 

majority class (non-rice fields), albeit at the expense of recall in the minority class (rice fields). These 

findings suggest that for satellite imagery-based agricultural monitoring in areas with high spatial 

complexity, deep learning approaches such as MLP may offer greater adaptability and accuracy than 

conventional margin-based methods like SVM. 

3.7. Spatial Analysis and Validation of Results 

The classification outcomes generated by the Multilayer Perceptron (MLP) and Support Vector 

Machine (SVM) algorithms were visualized as spatial maps illustrating the distribution of rice and non-

rice field classes across the study area. Spatially, the MLP model produced smoother delineations of 

rice field boundaries and better conformed to natural spatial contours, while the SVM yielded sharper 

segmentations but introduced noise in heterogeneous regions. 

Spatial validation was conducted by comparing the classification outputs with reference data 

derived from polygon labels of rice and non-rice field areas. MLP achieved an accuracy of 82%, 

outperforming SVM, which reached 71%. However, the MLP recorded a precision of 0.92 and a recall 

of 0.53 for the rice field class, and 0.62 and 0.94 for the non-rice field class, resulting in an F1-score of 

0.75 for the non-rice class. In contrast, the SVM produced a slightly lower F1-score of 0.74 and lower 

precision for the non-rice field class compared to the MLP. This indicates that the MLP model was more 

effective at detecting non-rice field areas while minimizing false positives in rice field classification. 

4. DISCUSSIONS 

4.1. Algorithm Performance Analysis in Spatial and Statistical Contexts 

The Multilayer Perceptron (MLP) algorithm achieved a classification accuracy of 82%, whereas 

the Support Vector Machine (SVM) obtained 71% overall accuracy. Notable differences emerged in 

class-specific performance metrics. The MLP consistently detected non-rice field pixels with a recall of 
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0.94. For the rice field class, it reached a precision of 0.92 but only a recall of 0.53, comparable to the 

SVM outcomes. This trend suggests that the MLP model is more effective at recognizing the majority 

class (non-rice fields) than SVM, a common issue when dealing with imbalanced datasets. 

The superior performance of MLP can be attributed to its ability to model non-linear relationships 

among features such as NDVI, NDWI, and PCA components, thereby improving classification accuracy 

in areas with complex vegetation structures. This demonstrates the strength of neural network–based 

approaches in capturing subtle spatial variations, positioning MLP as a promising technique for high-

resolution agricultural land classification. Conversely, although SVM is generally robust to overfitting 

and performs well with limited datasets, it often produces noisier spatial results. This is evident in its 

classification maps, which contain numerous random patches within homogeneous areas, reflecting its 

limitations in capturing the spatial context between pixels. 

Previous studies provide additional perspective. Huo found that SVM outperformed MLP in 

classifying Near-Infrared (NIR) data, which involved linear data with a single band[54] . Similarly, 

Marji’s work on linear datasets also confirmed SVM’s advantage [55]. However, in this study, MLP 

surpassed SVM in handling non-linear data. Consistent with Jamali’s findings, MLP achieved higher 

accuracy in land change classification, which was attributed to the complexity of composite bands [56]. 

Fattah also reported that MLP outperformed SVM in land change classification, emphasizing its strength 

in integrating multiple spectral bands for land-cover analysis [57]. 

4.2.  Spatial Validation and Relevance to Field Conditions 

Spatial validation further supports these results, showing that the MLP model generates more 

detailed and realistic classifications that align with natural patterns in agricultural landscapes. The model 

delineates rice field boundaries more precisely, matching reference maps derived from visual 

interpretation and field surveys. By contrast, SVM produces less spatially accurate segmentations, often 

oversimplifying complex structures into unrealistic, linear boundaries. 

This finding is particularly significant in land mapping and spatial planning, where accuracy is 

critical for determining land status. Misclassification of active rice fields may lead to substantial policy 

implications, especially when designating agricultural protection zones. 

4.3.  Implications for Land Monitoring and Policy 

The findings of this study provide practical implications for policymakers, particularly regarding 

land conversion monitoring and spatially optimized land-use planning. Integrating the MLP 

classification model into spatial platforms such as WebGIS could substantially enhance automated and 

interactive land monitoring systems, especially in regions under high development pressure. A validated 

MLP model can also function as an early warning tool to detect initial signs of rice field conversion. 

Moreover, by incorporating temporal analysis, the system could reveal annual patterns of land change 

and inform the development of evidence-based spatial policies. 

4.4. Limitations and Directions for Further Research 

Several limitations should be acknowledged. First, the class imbalance between paddy and non-

paddy fields reduces recall performance for the paddy class. Second, relying solely on NDVI, NDWI, 

and PCA-based features cannot fully capture spatial complexity. Although MLP outperformed SVM 

overall, significant misclassification was still observed in transitional zones. Future studies should 

consider expanding the amount and spatial diversity of training data, as well as integrating contextual 

features, such as proximity to roads or digital elevation model (DEM) data to improve model 

performance in distinguishing paddy from non-paddy areas. 

Beyond its spatial and agricultural relevance, this research advances the field of computer science 

by demonstrating the capability of Multilayer Perceptron (MLP) to support scalable and automated land 
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monitoring systems. The superior performance of MLP in handling non-linear spectral and textural 

features highlights its potential for real-time integration into WebGIS platforms. Such integration would 

enable continuous monitoring of rice field dynamics, facilitating automated alerts on land conversion 

and providing decision-makers with up-to-date spatial intelligence. From an informatics perspective, 

this study strengthens the role of neural network–based models in spatio-temporal data analysis, 

bridging the gap between remote sensing applications and intelligent information systems. Ultimately, 

the findings contribute to the development of machine learning pipelines that can be generalized for 

broader environmental monitoring tasks, including urban expansion, deforestation, and crop yield 

prediction. 

5. CONCLUSION 

This study examined rice field changes in Koto Tangah District, Padang City, using Sentinel-2 

satellite imagery from 2022–2024. Image processing involved the use of NDVI and NDWI vegetation 

indices, along with texture analysis and Principal Component Analysis (PCA). The results indicate a 

decline in dense vegetation areas, particularly in active rice fields, as shown by a reduction in the number 

of pixels with NDVI values greater than 0.5 in 2024. Furthermore, the 2024 NDVI histogram revealed 

a new peak in the lower value range (around 0.0–0.1), suggesting an increase in non-vegetated areas 

such as idle land, converted land, or waterlogged zones. 

To identify spatial changes, two classification methods were employed: Multilayer Perceptron 

(MLP) and Support Vector Machine (SVM). For the non-rice field class, MLP achieved a precision of 

0.62, a recall of 0.94, and an F1-score of 0.75. SVM produced comparable outcomes, though with 

slightly lower precision. In terms of overall performance, MLP attained an accuracy of 82%, surpassing 

SVM, which achieved 71%. These results highlight the strength of MLP in capturing complex spatial 

patterns, as its architecture effectively models non-linear relationships among features. 

In conclusion, the MLP-based classification approach is more effective for mapping rice field 

changes in complex spatial environments. The findings not only support agricultural land protection and 

sustainable urban development but also advance computer science by reinforcing the role of machine 

learning in spatio-temporal data analysis and demonstrating the strength of non-linear models in satellite 

image classification. 

For future research, several improvements can be pursued. First, the integration of additional 

features such as digital elevation models (DEM), proximity to infrastructure, or socio-economic data 

could enhance classification robustness. Second, expanding the diversity and volume of training data 

would help mitigate class imbalance and improve generalization. Finally, exploring deep learning 

architectures—such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), or 

hybrid models—may further increase accuracy and scalability, paving the way toward fully automated, 

real-time land monitoring systems. 
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