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Abstract

The conversion of farmland into non-agricultural purposes has emerged as a pressing concern in many urban regions,
including Koto Tangah District, Padang City. In this area, agricultural land experienced a 4% shift in land use between
2022 and 2024. If this trend continues, it could lead to a notable decline in rice production and ultimately threaten
food security. This research focuses on examining spatial transformations of rice fields from 2022 to 2024 by utilizing
Sentinel-2 satellite imagery along with advanced classification techniques. Vegetation and moisture features were
extracted using NDVI, NDWI, texture analysis through GLCM, and Principal Component Analysis (PCA). To
classify land cover changes and assess model accuracy, two machine learning approaches were applied: Multilayer
Perceptron (MLP) and Support Vector Machine (SVM). The findings reveal a considerable reduction in dense
vegetation, indicated by the downward shift of NDVI values in 2024. MLP achieved an accuracy of 82%,
outperforming SVM, which reached 71%. Furthermore, MLP obtained a higher F1-score for non-rice field detection
(0.75 vs. 0.74) and produced more realistic delineations of rice field boundaries during spatial validation. These
outcomes highlight the potential of MLP in monitoring land use conversion, supporting agricultural land
conservation, and guiding sustainable urban planning. Moreover, the study contributes to computer science by
advancing the use of machine learning for spatio-temporal analysis and reinforcing the role of non-linear models in
satellite image classification.

Keywords : Land Use Change, Machine Learning, Multilayer Perceptron (MLP), Multispectral Remote Sensing,
Rice Field Conversion, Support Vector Machine (SVM)

This work is an open access article and licensed under a Creative Commons Attribution-Non Commercial
4.0 International License

1. INTRODUCTION

Koto Tangah District in Padang City encompasses a relatively large agricultural area and serves
as one of the region’s key agricultural sectors [1]. However, in recent years, the district has experienced
a notable reduction in rice paddy land due to land conversion. Based on statistical records, the area of
rice paddies declined from 36.219,80 hectares in 2019 to 26.196,06 hectares in 2023 [2]. This downward
trend indicates a land-use shift that warrants serious concern, as it directly affects food security. The
reduction of paddy fields inevitably impacts rice production. With an average yield of 5.2 tons per
hectare per season [2], the loss of approximately 60 hectares conversion into a reduction of several
hundred tons of rice annually [3]. This situation is increasingly alarming given the rising population and
growing national demand for staple food [4].

The primary factor driving this decline is land conversion for development purposes, including
residential housing, infrastructure, and commercial areas [5]. This phenomenon is consistent with
international findings for instance, Oakleaf reported that agrarian ecosystems are particularly vulnerable
to conversion pressures [3]. In China, for example, the proportion of cultivated land decreased from
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59.75% in 1990 to 50.21% in 2020 [6]. Other studies also reveal that land with high ecological value is
being converted at an accelerating rate for construction activities [7] [8] [9].

The Indonesian government has taken steps to address this challenge through various legal
frameworks. Law Number 41 of 2009 concerning the Protection of Sustainable Food Agricultural Land
(PLP2B) serves as the primary legal foundation to safeguard paddy fields from conversion pressures
[10]. At the local level, the Padang City Government established a Regional Spatial Plan (RTRW) and
issued Mayoral Regulation Number 20 of 2015 on the Optimization of Vacant Land Utilization. These
policies aim to ensure sustainable land management and strengthen regional food security.

Within this context, a method capable of providing real-time and spatially explicit monitoring of
land-use change is essential. Remote sensing technology offers an effective solution for periodically and
comprehensively tracking land-use dynamics. Satellite imagery, such as Sentinel-2, which delivers
multispectral data at a 10-meter spatial resolution, enables detailed analysis of vegetation conditions and
land-cover changes. Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI)
and the Normalized Difference Water Index (NDWI) derived from combinations of red (B4), near-
infrared (B8), green (B3), and blue (B2) bands [11], have been extensively applied to detect paddy field
changes and soil moisture variations [12].

Nevertheless, while remote sensing provides rich quantitative data, its interpretation requires
advanced classification methods [13]. Major challenges arise from spatial complexity and the non-linear
relationships between variables, which conventional algorithms often fail to capture effectively [14]. To
address this gap, the present study developed an artificial intelligence—based approach using the
Multilayer Perceptron (MLP) algorithm as the primary tool for classifying paddy field changes based
on Sentinel-2 imagery during the 20222024 period.

MLP is a type of artificial neural network that operates through interconnected neurons arranged
in multiple hidden layers [15]. It has proven effective in identifying hidden patterns within data
characterized by complex and non-linear structures [16]. One of MLP’s main advantages lies in its
capacity for optimization through hyperparameter tuning techniques, such as GridSearchCV, which
allow systematic improvement of model performance [17].

As part of model evaluation, this study also compared the classification outcomes of MLP with
those generated by the Support Vector Machine (SVM) algorithm. SVM, a margin-based machine
learning method, is widely used in image classification tasks [ 18] because of'its effectiveness in handling
high-dimensional data [19]. Guido [20] noted that SVM can deliver relatively stable classification
accuracy even when training data are limited, provided that the classes are well-separated. However, its
main limitations are reduced flexibility in modeling complex spatial structures [21] and the inability to
account for spatial relationships between pixels an important consideration in remote sensing
applications [22].

While many prior studies have employed vegetation indices and conventional classifiers such as
SVM for land-use change detection, these methods still struggle to effectively capture spatial complexity
and non-linear relationships among features [23]. This often leads to reduced classification accuracy,
particularly in transitional zones between active and inactive rice fields. Similarly, Ricardo highlighted
that several studies rely exclusively on basic spectral features, overlooking the integration of texture
information or dimensionality reduction techniques that could enhance data representation [24]. To
overcome these limitations, the present study integrates Sentinel-2 multispectral data with NDVI,
NDWI, GLCM-based texture features, and PCA, before applying MLP as a more adaptive, non-linear
model capable of capturing spatiotemporal variations. By comparing its performance with SVM, this
research aims to advance the application of machine learning in satellite image classification and to
provide a more accurate and practical model for monitoring rice field conversion.
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Through this comparative analysis, the study seeks not only to map and assess rice field changes
in Koto Tangah District but also to identify the most effective classification method for detecting land-
use changes using multispectral satellite imagery. In summary, the objectives of this study are: (1) to
analyze spatial changes in rice fields in Koto Tangah District for the 2022-2024 period using Sentinel-
2 imagery, (2) to apply and evaluate the MLP algorithm in the classification of rice field changes based
on remote sensing features, and (3) to compare the classification performance of MLP and SVM in order
to determine the most suitable approach for spatial analysis.

2. METHOD

2.1. Study Area and Dataset

This study was carried out in Padang City, a major rice-producing region in West Sumatra
Province, as illustrated in Figure 1. The figure presents the study area on a map, highlighting the
designated region with a total coverage of 232.25 km?. The primary data used were Sentinel-2 Level-
1C satellite images with a spatial resolution of 10 meters, downloaded from the Google Earth Engine
(GEE) platform for three time periods 2022, 2023, and 2024, to detect temporal changes in rice fields.
The main dataset consisted of Sentinel-2 multispectral imagery in GeoTIFF format, complemented by
shapefile data representing administrative boundaries and masking areas. Demographic data for the
study area were used solely as supporting information. Land cover was classified into five categories:
Built-up Land, Open Land, Mangrove Vegetation, Non-Mangrove Vegetation, and Water Bodies.

Map of Administrative Boundaries|
of Koto Tangah

Map Orientation and Scale

0 25 65km
-

[ Koto Tangah

Figure 1. Administrative Boundaries of Koto Tangah District

In this study, a series of steps were undertaken to analyze land-use changes and evaluate the
performance of two machine learning algorithms in managing non-linear spatial data, as shown in Figure
2. The rice field classification methodology began with data acquisition, followed by preprocessing tasks
such as atmospheric correction, cloud masking, and image compositing. Subsequently, feature
extraction was carried out using vegetation and water indices, texture analysis, and dimensionality
reduction techniques. These extracted features served as inputs for the classification stage, where the
Multilayer Perceptron (MLP) and Support Vector Machine (SVM) algorithms were implemented
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Finally, performance evaluation and spatial validation were conducted to assess the accuracy and
robustness of the classification outcomes.

MultiLayer Evaluation

Al::ossph;(r:\c Correction Nodnakied Difereiice Perceptron Metrics
Wik seneor Vegetation Index (NDVI)
S . ' Cloud Masking Feat: Normalized Difference Classification
- Data Pre- Band QAGO e (s
" Processing saneiend Extraction  Waterindex (NOW)) Models
i Compiling Median GLCM Texture
Data Collecting Composite Images per Year Features
Google Earth Engine & Study Area Clipping Based Principal Component ;
Copemicus Data on Administrative Analysis (PCA) SHRPOE \.Iector_’ Evalua.tlon
Space Ecosystem Boundaries Machine paetuce

Figure 2. The Methodology for Rice Field Classification

2.2. Data Preprocessing

The data pre-processing stage is a crucial initial step to ensure the quality of remote sensing
imagery prior to classification and analysis [25]. This stage aims to eliminate atmospheric and cloud-
related distortions and to standardize the data spatially and temporally. In this study, several pre-
processing procedures were applied to the Sentinel-2 imagery accessed via Google Earth Engine (GEE),
including Atmospheric Correction with Sen2Cor. Atmospheric correction involves removing
atmospheric effects such as gases, aerosols, and water vapor that can distort surface reflectance values
[26]. Sentinel-2 Level-1C imagery available in GEE contains top-of-atmosphere (TOA) reflectance
values, which do not accurately represent actual surface conditions [27]. Therefore, the imagery was
converted to Level-2A (bottom-of-atmosphere/BOA) using the Sen2Cor algorithm, a physically based
atmospheric correction module developed by the European Space Agency (ESA) [28]. This conversion
results in images with corrected surface reflectance values, making them suitable for quantitative
analysis [29]. In Next step, Cloud Masking using Band QA60, Clouds and their shadows pose a
significant challenge in optical image analysis, as they introduce noise and reduce classification
accuracy [30]. To address this issue, a cloud masking technique was implemented using the QA60 band,
a quality assessment band provided in Sentinel-2 products, which detects pixels affected by clouds and
other atmospheric artifacts [31]. The maskClouds() function was utilized to automatically detect and
exclude pixels affected by clouds and shadows, ensuring that only cloud-free and relevant image regions
were preserved for subsequent analysis [32]. Followed by Compiling Median Composite Images per
Year, to achieve a stable representation of land conditions and mitigate seasonal variability, median
composite images were generated for each observation year: 2022, 2023, and 2024. These composite
images were derived from all available Sentinel-2 scenes in each year after cloud masking. The median
compositing technique reduces temporary fluctuations caused by weather or atmospheric conditions and
provides a statistically consistent representation of surface features [33]. This method also minimizes
bias that can occur from selecting a single scene for analysis [34]. After the composite imagery was
compiled, the next step was to clip the study area to include only the administrative boundaries of Koto
Tangah District. This process was performed using a shapefile representing the district’s administrative
extent. Clipping the study area ensures that the entire classification and spatial analysis processes are
focused solely on areas relevant to the research objectives, while also reducing unnecessary
computational load [35].

2.3. Feature Extraction

The feature extraction stage is a critical process in satellite imagery-based classification systems,
as it directly influences the quality of information used for model training and prediction [36]. In this
study, features were extracted from Sentinel-2 imagery to represent land characteristics such as
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vegetation, moisture, surface texture, and spectral components. These features were designed to capture
spatial and spectral variations relevant to detecting changes in rice fields. The extracted features include
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Gray
Level Co-occurrence Matrix (GLCM) Texture Features.

NDVI is the most widely used vegetation index for monitoring vegetation cover and land
productivity [37]. It is calculated based on the ratio of spectral reflectance values in the Near-Infrared
(B8) and Red (B4) bands [38] as shown in Equation (1).

__ (B8-B4)

NDVI = (o5 (1)

NDVI values range from -1 to +1, with higher values indicating healthier and denser vegetation
[39]. NDVI is particularly relevant in agricultural applications, as it can reflect plant growth phases,
canopy density, and vegetation changes resulting from land use transformations [40]. In this study,
NDVI was used to identify active rice field areas and detect changes in growth intensity [41].

NDWTI is used to detect the presence of water or moisture on the land surface, an important
indicator in rice field analysis [42], particularly in the early stages of planting and irrigation. It is
computed using the spectral ratio between the Green (B3) and Near-Infrared (B8) bands, as shown in
Equation (2).

__ (B3-B8)

NDWI = (B3+B8) )

NDWI is effective in distinguishing wetlands or flooded areas from dry surfaces and is often used
to identify newly plowed, recently planted, or water-saturated rice fields [43]. When combined with
NDVI, NDWI can enhance the accuracy of active rice field classification.

In addition to spectral features, this study also incorporated texture features derived from the Gray
Level Co-occurrence Matrix (GLCM) to capture spatial patterns and structures of the land surface.
Texture images were generated from the NDVI channel by calculating a spatial gray-level correlation
matrix and extracting several key statistical descriptors, (a) Contrast, which measures the intensity of
local variation. High contrast typically appears at the edges of rice fields or in transitional land cover
zones, (b) Homogeneity, which assesses the uniformity of pixel values. High homogeneity indicates a
smooth, consistent texture, such as regularly planted rice fields, (c) Entropy, which quantifies the
complexity or randomness of texture. High entropy reflects a high diversity of pixel values, often found
in mixed or transitional land areas [44]. These GLCM-based texture features complement NDVI and
NDWI by providing additional spatial context, thereby improving classification accuracy in areas with
similar spectral characteristics but differing spatial structures [45].

To reduce redundancy and correlation among features and lower data dimensionality without
losing critical information, Principal Component Analysis (PCA) was applied. PCA is a linear
transformation technique that converts the original correlated variables into a new set of uncorrelated
variables called principal components [46]. In this study, PCA was applied to four Sentinel-2 spectral
bands (B2, B3, B4, B8) along with the NDVI and NDWI indices. The first three components (PC1-
PC3) were used as additional features for classification. PCA helps minimize the risk of model
overfitting and accelerates the training process of both MLP and SVM algorithms, while preserving
essential information about land characteristics.

2.4. Classification Models

The Multilayer Perceptron (MLP) is a type of artificial neural network (ANN) known for its high
capability in capturing non-linear and complex relationships between features, particularly in spatial-
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temporal data-based classification tasks [47]. In this study, the MLP was employed to classify changes

in rice fields using spectral and textural features extracted from Sentinel-2 imagery [48]. The model

architecture was designed to optimally map input characteristics into two target classes: change and no

change. The MLP model was constructed with the following network structure [49]:

a. Input Layer
The input layer receives six primary extracted features: NDVI, NDWI, three GLCM-based texture
features (contrast, homogeneity, entropy), and one principal component derived from PCA. The
number of neurons in the input layer corresponds to the number of input features, resulting in 6
neurons.

b. Hidden Layers
The model comprises two hidden layers containing 64 and 32 neurons, respectively. This
configuration was chosen to balance model complexity and prevent overfitting while enabling the
network to capture non-linear patterns in the data. Each neuron employs the Rectified Linear Unit
(ReLU) activation function, which is effective in deep networks due to its ability to mitigate the
vanishing gradient problem and accelerate convergence.

c. Output Layer
The output layer consists of a single neuron with a sigmoid activation function, converting the
output into a probabilistic value between 0 and 1. The sigmoid function is appropriate for binary
classification problems, as it directly models the likelihood that a pixel or spatial unit belongs to
the "land change" or "no change" class.

For the training process, the Adam (Adaptive Moment Estimation) optimization algorithm was
utilized. Adam combines the strengths of the RMSProp and momentum algorithms and can adapt to
gradient changes efficiently. It was selected for its stability and effectiveness in handling datasets with
uneven distributions and features of varying scales [50].

The model was trained for 200 epochs with a batch size of 32, meaning the training data was
divided into mini-batches of 32 samples per iteration. The number of epochs was determined based on
preliminary testing of loss function convergence and validation performance stability. To prevent
overfitting, an early stopping technique was applied based on the validation loss. If no improvement was
observed over a number of consecutive epochs, the training process was halted early. The model was
trained using 80% of the dataset with stratified k-fold cross-validation to ensure robust generalization.

The Support Vector Machine (SVM) is a widely used machine learning technique in remote
sensing image classification due to its efficiency and accuracy in handling high-dimensional data [51].
Based on the principle of maximum margin, SVM aims to identify a separating hyperplane that
maximizes the margin between classes, thereby reducing the risk of generalization error [52]. In this
study, SVM was used as a comparative model to the MLP in classifying rice field changes based on
features extracted from Sentinel-2 imagery. SVM was selected due to its robustness with limited training
data and stability in datasets with good class separability.

a. Kernel Function
The SVM model was configured with a Radial Basis Function (RBF) kernel, a commonly used
non-linear kernel that implicitly maps data into a higher-dimensional feature space. This enables
the model to classify patterns that are not linearly separable in the original feature space, a frequent
condition in spatial datasets with variable characteristics such as rice fields [53].

b. Parameter Tuning (Hyperparameter Optimization)
The two main SVM parameters, C and gamma, were optimized using a grid search approach, a
systematic method of evaluating parameter combinations based on cross-validation performance.
The regularization parameter C = 10 controls the trade-off between maximizing the margin and
minimizing classification error. Higher C values tend to produce a model that fits the training data
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more tightly. The gamma parameter, set to 0.1, determines the influence of individual data points.
This value was chosen to strike a balance between bias and variance, helping to avoid overfitting
and ensure model generalizability.
c. Model Validation

The performance evaluation of the SVM model was conducted using a cross-validation scheme
with k=5, in which the training data was divided into five subsets (folds). The model was iteratively
trained on four subsets and tested on the fifth. This technique was employed to measure model
stability and prevent evaluation bias resulting from unrepresentative data partitioning. Model
performance was then quantitatively compared with that of the MLP model using the same
evaluation metrics: accuracy, precision, recall, Fl-score, and the Kappa coefficient. This
comparison enabled a comprehensive analysis of the advantages and limitations of each algorithm
in classifying rice field changes within the study area.

2.5. Evaluation Metrics

The effectiveness of the classification models in detecting paddy field conversion was evaluated
through two complementary approaches: quantitative assessment and spatial validation. Both Multilayer
Perceptron (MLP) and Support Vector Machine (SVM) were examined to ensure a comprehensive
evaluation of classification accuracy and robustness.

For the quantitative part, the evaluation relied on a confusion matrix framework, which consists
of four fundamental components: True Positive (TP), representing correctly classified instances of
paddy field conversion; False Positive (FP), denoting non-converted areas that were incorrectly labeled
as converted; True Negative (TN), referring to correctly identified non-converted areas; and False
Negative (FN), which captures actual conversions that the model failed to detect. Based on these values,
several well-established metrics were employed. Accuracy represents the ratio of correctly classified
samples to the total number of observations, though it may provide misleading results when class
distributions are imbalanced. Precision measures the proportion of TP predictions among all positive
predictions, which is essential to minimize FP occurrences. Recall evaluates the ability of the model to
identify actual positive cases, making it particularly important in change detection where undetected
conversions (FN) should be avoided. F1-score combines precision and recall into a single value using
their harmonic mean, offering a balanced assessment when both metrics are equally critical.

In addition, the Receiver Operating Characteristic (ROC) curve was used to illustrate the trade-
off between sensitivity (TP rate) and 1-specificity (FP rate), while the Area Under the Curve (AUC)
served as a global indicator of the model’s discriminatory capability, with larger values indicating
stronger performance.

To complement statistical evaluation, spatial validation was carried out by comparing
classification outputs with a reference dataset (ground truth) generated from visual interpretation, field
surveys, or trusted secondary sources. This procedure assessed how well the classification maps
corresponded to actual conditions. By overlaying predicted maps with the reference, pixel-by-pixel
agreement could be measured, enabling the detection of systematic errors such as overestimation or
underestimation of converted areas. This step is particularly crucial in spatial planning and agricultural
land monitoring, where positional accuracy is as important as statistical measures.

Evaluation metrics such as Accuracy, Precision, Recall, and F1 score were calculated using their
standard formulas, as shown in Table 1. For ROC-AUC analysis, ROC curves were plotted across
varying thresholds, and the AUC was obtained as a scalar summary of overall separability. Spatial
validation was conducted through pixel-level overlay between classified maps and the reference dataset.
All numerical metrics were calculated using Python’s scikit-learn library, while spatial analysis and
overlay operations were performed in QGIS 3.40.
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Table 1. Evaluation Metrics

Measure Formula
Precision TP
~ TP+ FP
Recall TP
“TP+FN
F-measure Recall * Precision

*
Recall + Precision

Accuracy _ TP+ TN
" TP+ FP++FN+TN
Specificity TN
" TN + FP

3. RESULT

3.1. Data Collecting

The main dataset employed in this research comprises Sentinel-2 multispectral imagery from
2022, 2023, and 2024, covering the administrative area of Koto Tangah District (Figure 1) and
summarized in Table 2. The imagery was obtained from two sources: Google Earth Engine (GEE) and
the Copernicus Data Space Ecosystem, with the purpose of ensuring data availability within the required
temporal range.

Table 2. Data Collecting

Source Sensor Bands Used - Spatial Cloud Format
Year Resolution Coverage (%)
B2, B3, B4, B8 =10 m
2022 UEEdan MSI <30% GeoTIFF
Copernicus B11,B12=20m
B2, B3, B4, B8 =10 m
2023 CFEdan MSI <30% GeoTIFF
Copernicus B11,B12=20m
B2, B3, B4, B8 =10 m
2024 CFEdan MSI <30% GeoTIFF
Copernicus B11,B12=20m

3.2. Data Preprocessing

Preprocessing was carried out by filtering the imagery within the defined Area of Interest (AOI)
using the Google Collaboratory platform. The procedure included filtering by location and acquisition
date, applying cloud-percentage thresholds, generating a median composite, and clipping to the study
area. These steps ensured that the resulting datasets captured meaningful differences in imagery.

The process began with selecting images based on their spatial coverage and acquisition
timeframe to guarantee relevance to the study period. Subsequently, filtering by cloud cover percentage
was applied to minimize atmospheric disturbances and reduce cloud contamination, which can
negatively impact classification accuracy. The retained images were then composited using the median
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method to suppress noise and provide more stable reflectance values across acquisition dates. This
approach produced clearer satellite imagery for analysis, as illustrated in Figure 3 dan Figure 4.

. .
o (=]
- [—
(a) (b)
Figure 3. (a) Raw Satellite Imagery (Before Filtering) 2022, (b) Satellite Image (After Filtering)
2022
[ 5] =]

(a) (b)

Figure 4. Raw Satellite Imagery (Before Filtering) 2024, (b) Satellite Image (After Filtering) 2024

Figures 3.a and 4.a illustrate satellite imagery that is still influenced by atmospheric disturbances
and relatively high cloud coverage, especially in the central to northern regions of the study area. These
conditions reduce the visual clarity of the imagery, making land cover interpretation more challenging.
As a result, the contrast between vegetated and non-vegetated areas becomes less distinguishable,
indicating the need for further image correction.

Meanwhile, Figures 3.b and 4.b present imagery that has undergone median compositing and the
selection of scenes with lower cloud percentages. This preprocessing step produces a clearer
representation of the study area, allowing better differentiation between vegetation (displayed in dark
green), built-up areas and open land (displayed in reddish-brown), as well as the remaining cloud cover.
The contrast between these two sets of imagery highlights the critical role of preprocessing techniques
particularly cloud filtering and image compositing in obtaining more reliable spatial information and
supporting subsequent analytical processes.
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3.3. Spectral and Textural Feature Extraction Results

Figure 5 presents the histograms of Sentinel-2 bands (B2, B3, B4, and BS), illustrating the
differences in digital number (DN) value distributions between raw and preprocessed imagery. In the
raw image, DN values are more broadly spread, with the highest frequency appearing around the mid-
range. In contrast, the preprocessed image shows a more concentrated distribution, predominantly within
the lower DN range. These changes indicate that the radiometric and atmospheric correction processes
have successfully adjusted the surface reflectance values to better represent actual conditions in the field.
For example, in Band 8 (NIR), a shift in the distribution toward higher values is observed, indicating
improved vegetation information. Meanwhile, in the visible bands (B2, B3, and B4), the shift in the
distribution toward lower DN values indicates a reduction in atmospheric effects and improved contrast
between objects.

Histogram Band B2 Histogram Band B3

—— Raw —— Raw
—— Processed 250000 —— Processed

500000 A
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200000 -

300000 4 150000 4

200000 1 100000

100000 | w 50000 |
0 J 04

T T T T T T T T T T T T T T
2000 4000 6000 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000
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Figure 5. Preprocessed Image

Figure 6 presents a histogram of NDVI (Normalized Difference Vegetation Index) values in
Padang City for 2022, derived from post-processed Sentinel-2 imagery. The histogram illustrates the
distribution of vegetation values in terms of pixel frequency across NDVI value ranges. The horizontal
axis (X-axis) represents NDVI values, which theoretically range from -1 to +1; however, the values in
this histogram fall between -0.2 and +0.8. NDVI values below zero generally correspond to non-
vegetated features such as water bodies, built-up areas (e.g., buildings and roads), or bare land. In
contrast, values above zero indicate vegetated areas, with higher values signifying healthier and denser
vegetation.

The vertical axis (Y-axis) shows the number of pixels within each NDVI range, reflecting the
relative spatial extent of various land cover types based on vegetation density. Principal Component
Analysis (PCA) was successfully used to reduce feature dimensionality without significantly
compromising important information.
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Figure 6. Feature Extraction Results
(a) NDVI 2022, (b) NDVI 2024, (c) Composite Band PCA

Based on the histogram of Figure 6, the majority of NDVI values are concentrated between 0.5
and 0.6, with the mode around 0.55. This suggests that, during the observation year, most areas in
Padang City exhibited moderate to high vegetation density, indicative of active rice fields, shrublands,
or other well-established vegetation. Conversely, NDVI values below 0.2 account for only a small
number of pixels, indicating that areas with very little or no vegetation (e.g., dense settlements, open
fields, or water bodies) occupy a relatively smaller area compared to vegetated regions. Furthermore,
the number of pixels with NDVI values above 0.6 decreases drastically, suggesting that only a limited
area contains very dense vegetation, such as primary forests or rice fields at their peak growing season.
Overall, this distribution pattern indicates that Padang City in 2022 remained dominated by medium to
high vegetation density, highlighting the significance of sustainable green spaces and productive
agriculture amid increasing urbanization pressures.

The NDVI distribution histogram for 2024 provides a comprehensive overview of vegetation
conditions in Padang City based on Sentinel-2 remote sensing imagery. NDVI values are shown on the
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horizontal (X) axis, ranging from -0.35 to +0.75, while the vertical (Y) axis represents the number of
pixels in each NDVI class, reflecting the relative extent of each land cover category. An NDVI value
below 0 generally corresponds to non-vegetative areas such as water bodies, bare soil, or artificial
surfaces like buildings. Values between 0.1 and 0.4 indicate sparse vegetation or early-stage plant
growth, whereas values above 0.5 to 0.75 correspond to dense vegetation, such as actively growing rice
fields.

The 2024 histogram displays an interesting bimodal pattern, with two prominent distribution
peaks. The first peak appears around NDVI values of 0.0-0.1, while the second lies in the range of 0.55—
0.6. The emergence of the first peak, more prominent than in 2022 indicates an increase in areas with
very low or no vegetation. This change may be attributed to land use conversion, fallow rice fields
between planting seasons, or expansion of water bodies. Meanwhile, the second, relatively stable peak
at NDVI > 0.5 suggests that areas with dense vegetation such as active rice fields, home gardens, or
unconverted natural vegetation remain present.

This distribution pattern indicates that, while pockets of healthy vegetation persist in Padang City,
there was a significant expansion of non-vegetative areas in 2024. This finding underscores the urgency
of protecting productive agricultural land and promoting data-driven spatial planning policies to prevent
further degradation of vegetation cover.

A comparison of the NDVI distributions between 2022 and 2024 reveals notable changes in
vegetative land cover characteristics in Padang City. In 2022, the NDVI distribution was dominated by
a single peak in the 0.55-0.6 range, reflecting the dominance of areas with dense vegetation, such as
active and healthy rice fields. However, by 2024, the distribution had shifted to a bimodal pattern, with
a new peak emerging around NDVI values of 0.0-0.1, indicating increased areas with little or no
vegetation. This shift suggests land cover degradation or conversion of rice fields to non-agricultural
uses. Although the high NDVI peak (>0.5) remains, the sharp increase in low NDVI values signals
growing pressure on productive agricultural land and highlights the need for continuous spatial
monitoring to support sustainable land use and conservation policies.

3.4. Results of Rice Field Change Classification Using the MLP Method

The Multilayer Perceptron (MLP) model implemented in this study achieved an overall accuracy
of 71% in classifying paddy and non-paddy fields across a total of 7,961 sample pixels. Further
evaluation metrics revealed a precision of 0.92 and a recall of 0.53 for the paddy field class (label 0),
resulting in an Fl-score of 0.68. These values indicate that the model is highly effective at correctly
identifying true paddy field pixels (high precision), but less effective at detecting all relevant paddy field
areas (low recall).

In contrast, for the non-paddy field class (label 1), the MLP yielded a very high recall of 0.94,
demonstrating the model’s strong ability to identify most non-paddy field pixels. Although its precision
was lower at 0.62, the resulting F1-score of 0.75 indicates a more balanced performance for the non-
paddy class compared to the paddy class.

The confusion matrix supports these findings with 2.3740 paddy field pixels were correctly
classified, however 2.0670 paddy field pixels were misclassified as non-paddy. Meanwhile, 3.3170 non-
paddy pixels were correctly classified. Only 203 non-paddy pixels were incorrectly classified as paddy
fields.

Overall, the model tends to be more sensitive to the non-rice field class and less capable of
comprehensively detecting the rice field class, as indicated by the imbalanced recall values between the
two classes. This condition may be attributed to an unbalanced distribution of training data, high spectral
variability within rice fields, or spatial complexity that is not fully captured by the MLP architecture
used.
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For agricultural land monitoring applications and rice field protection policymaking, low recall
in the rice field class is a significant concern. This can result in underestimating the actual extent of
existing rice fields, leading to misinterpretations in spatial planning. Therefore, efforts to enhance model
performance, such as incorporating more diverse training data, integrating additional spatial features, or
employing a hybrid classification approach, should be considered in future work.

3.5. Results of Rice Field Change Classification Using the SVM Method

Table 3 presents the results of applying the Support Vector Machine (SVM) algorithm to classify
rice fields and non-rice fields using NDVI, NDWI, and two principal components derived from Principal
Component Analysis (PCA). Based on the evaluation results, the SVM model achieved an overall
accuracy of 71% across 7,961 test pixels.

For the rice field class (label 0), the model achieved a precision of 0.91, indicating that most
predicted rice field pixels were correctly classified. However, the recall was only 0.54, meaning the
SVM failed to detect nearly half of the actual rice paddy areas. The resulting F1-score of 0.68 reflects
the imbalance between precision and recall for this class.

In contrast, for the non-rice paddy class (label 1), the SVM demonstrated stronger recall
performance at 0.94, indicating excellent detection of non-rice paddy areas. However, its precision was
lower at 0.62, suggesting a notable number of misclassifications where rice paddy pixels were
incorrectly labeled as non-rice paddy. The F1-score for this class was 0.74, indicating relatively more
stable performance than that observed for the rice paddy class.

These results suggest that the SVM model is more sensitive to the non-rice paddy class and tends
to overpredict this label. While SVM is capable of handling high-dimensional data and defining clear
class boundaries, its limitations in modeling complex and non-linear patterns likely contribute to the
low recall observed for the rice paddy class. In the context of rice field classification, this low recall
poses a significant challenge, as it can lead to underrepresentation of rice fields in spatial data, thereby
affecting the accuracy of information used in policymaking for sustainable agricultural land protection.

Table 3. Comparison of SVM and MLP Performance

Metrik SVM MLP

Accuracy 0.71 0.82
Precision (paddy field) 0.91 (label 0) 0.92 (label 0)
Recall (paddy field) 0.54 (label 0) 0.53 (label 0)

F1-score (paddy field) 0.68 0.68
Precision (Non- paddy field) 0.62 (label 1) 0.62 (label 1)

Recall (Non- paddy field) 0.94 0.94

F1-score (Non- paddy field) 0.74 0.75

Overall, although the SVM’s overall accuracy is comparable to that of the MLP model, class-
wise performance reveals that MLP offers a more balanced classification, particularly in identifying
complex, non-linear characteristics within the rice field class. These findings underscore the potential
advantages of neural network-based approaches like MLP for future agricultural land monitoring
systems.

3.6. Quantitative Evaluation of Model Performance

This study compares the performance of two machine learning algorithms, Multilayer Perceptron
(MLP) and Support Vector Machine (SVM) in classifying rice field and non-rice field changes based
on NDVI and NDWI features, along with two principal components derived from Principal Component
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Analysis (PCA). The evaluation employed common metrics for binary classification tasks: accuracy,
precision, recall, and F1-score.

The classification results using the MLP algorithm demonstrated relatively balanced
performance, with an overall accuracy of 71%. For the rice field class (label 0), the MLP achieved a
precision of 0.92 and a recall of 0.53, indicating that the model was highly precise in identifying rice
fields but exhibited limitations in comprehensively capturing all rice field areas. For the non-rice field
class (label 1), the model recorded a precision of 0.62 and a recall of 0.94, resulting in F1-scores of 0.68
and 0.75, respectively. The macro-average Fl-score of 0.71 suggests that the MLP model effectively
balances accuracy and completeness across both classes.

Similarly, the SVM algorithm exhibited a comparable overall accuracy of 71%, but with a more
imbalanced performance. For the non-rice field class, the SVM achieved a high recall of 0.94 but only
a 0.62 precision, resulting in an F1-score of 0.74. For the rice field class, the precision was 0.91 while
the recall was 0.54, yielding an Fl-score of 0.68. Although the overall accuracy and F1-scores were
similar to those of the MLP, the SVM tended to favor the non-rice field class and was less capable of
identifying the more complex spatial and non-linear variations within the rice field class.

Visually, confusion matrix analysis showed that the MLP resulted in slightly fewer
misclassifications in the non-rice field class compared to the SVM, although both models struggled to
detect the full extent of rice fields (recall < 0.6). The MLP's ability to model non-linear patterns and
spatial dependencies between pixels contributed to its superior performance in capturing the dynamics
of rice field vegetation, particularly when using a combination of vegetation indices and PCA-derived
features.

Based on the evaluation results, it can be concluded that the MLP is more effective in maintaining
balanced classification performance across classes, whereas the SVM performs better in identifying the
majority class (non-rice fields), albeit at the expense of recall in the minority class (rice fields). These
findings suggest that for satellite imagery-based agricultural monitoring in areas with high spatial
complexity, deep learning approaches such as MLP may offer greater adaptability and accuracy than
conventional margin-based methods like SVM.

3.7. Spatial Analysis and Validation of Results

The classification outcomes generated by the Multilayer Perceptron (MLP) and Support Vector
Machine (SVM) algorithms were visualized as spatial maps illustrating the distribution of rice and non-
rice field classes across the study area. Spatially, the MLP model produced smoother delineations of
rice field boundaries and better conformed to natural spatial contours, while the SVM yielded sharper
segmentations but introduced noise in heterogeneous regions.

Spatial validation was conducted by comparing the classification outputs with reference data
derived from polygon labels of rice and non-rice field areas. MLP achieved an accuracy of 82%,
outperforming SVM, which reached 71%. However, the MLP recorded a precision of 0.92 and a recall
of 0.53 for the rice field class, and 0.62 and 0.94 for the non-rice field class, resulting in an F1-score of
0.75 for the non-rice class. In contrast, the SVM produced a slightly lower F1-score of 0.74 and lower
precision for the non-rice field class compared to the MLP. This indicates that the MLP model was more
effective at detecting non-rice field areas while minimizing false positives in rice field classification.

4. DISCUSSIONS

4.1. Algorithm Performance Analysis in Spatial and Statistical Contexts

The Multilayer Perceptron (MLP) algorithm achieved a classification accuracy of 82%, whereas
the Support Vector Machine (SVM) obtained 71% overall accuracy. Notable differences emerged in
class-specific performance metrics. The MLP consistently detected non-rice field pixels with a recall of
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0.94. For the rice field class, it reached a precision of 0.92 but only a recall of 0.53, comparable to the
SVM outcomes. This trend suggests that the MLP model is more effective at recognizing the majority
class (non-rice fields) than SVM, a common issue when dealing with imbalanced datasets.

The superior performance of MLP can be attributed to its ability to model non-linear relationships
among features such as NDVI, NDWI, and PCA components, thereby improving classification accuracy
in areas with complex vegetation structures. This demonstrates the strength of neural network—based
approaches in capturing subtle spatial variations, positioning MLP as a promising technique for high-
resolution agricultural land classification. Conversely, although SVM is generally robust to overfitting
and performs well with limited datasets, it often produces noisier spatial results. This is evident in its
classification maps, which contain numerous random patches within homogeneous areas, reflecting its
limitations in capturing the spatial context between pixels.

Previous studies provide additional perspective. Huo found that SVM outperformed MLP in
classifying Near-Infrared (NIR) data, which involved linear data with a single band[54] . Similarly,
Marji’s work on linear datasets also confirmed SVM’s advantage [55]. However, in this study, MLP
surpassed SVM in handling non-linear data. Consistent with Jamali’s findings, MLP achieved higher
accuracy in land change classification, which was attributed to the complexity of composite bands [56].
Fattah also reported that MLP outperformed SVM in land change classification, emphasizing its strength
in integrating multiple spectral bands for land-cover analysis [57].

4.2. Spatial Validation and Relevance to Field Conditions

Spatial validation further supports these results, showing that the MLP model generates more
detailed and realistic classifications that align with natural patterns in agricultural landscapes. The model
delineates rice field boundaries more precisely, matching reference maps derived from visual
interpretation and field surveys. By contrast, SVM produces less spatially accurate segmentations, often
oversimplifying complex structures into unrealistic, linear boundaries.

This finding is particularly significant in land mapping and spatial planning, where accuracy is
critical for determining land status. Misclassification of active rice fields may lead to substantial policy
implications, especially when designating agricultural protection zones.

4.3. Implications for Land Monitoring and Policy

The findings of this study provide practical implications for policymakers, particularly regarding
land conversion monitoring and spatially optimized land-use planning. Integrating the MLP
classification model into spatial platforms such as WebGIS could substantially enhance automated and
interactive land monitoring systems, especially in regions under high development pressure. A validated
MLP model can also function as an early warning tool to detect initial signs of rice field conversion.
Moreover, by incorporating temporal analysis, the system could reveal annual patterns of land change
and inform the development of evidence-based spatial policies.

4.4. Limitations and Directions for Further Research

Several limitations should be acknowledged. First, the class imbalance between paddy and non-
paddy fields reduces recall performance for the paddy class. Second, relying solely on NDVI, NDWI,
and PCA-based features cannot fully capture spatial complexity. Although MLP outperformed SVM
overall, significant misclassification was still observed in transitional zones. Future studies should
consider expanding the amount and spatial diversity of training data, as well as integrating contextual
features, such as proximity to roads or digital elevation model (DEM) data to improve model
performance in distinguishing paddy from non-paddy areas.

Beyond its spatial and agricultural relevance, this research advances the field of computer science
by demonstrating the capability of Multilayer Perceptron (MLP) to support scalable and automated land
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monitoring systems. The superior performance of MLP in handling non-linear spectral and textural
features highlights its potential for real-time integration into WebGIS platforms. Such integration would
enable continuous monitoring of rice field dynamics, facilitating automated alerts on land conversion
and providing decision-makers with up-to-date spatial intelligence. From an informatics perspective,
this study strengthens the role of neural network—based models in spatio-temporal data analysis,
bridging the gap between remote sensing applications and intelligent information systems. Ultimately,
the findings contribute to the development of machine learning pipelines that can be generalized for
broader environmental monitoring tasks, including urban expansion, deforestation, and crop yield
prediction.

5. CONCLUSION

This study examined rice field changes in Koto Tangah District, Padang City, using Sentinel-2
satellite imagery from 2022-2024. Image processing involved the use of NDVI and NDWI vegetation
indices, along with texture analysis and Principal Component Analysis (PCA). The results indicate a
decline in dense vegetation areas, particularly in active rice fields, as shown by a reduction in the number
of pixels with NDVI values greater than 0.5 in 2024. Furthermore, the 2024 NDVI histogram revealed
a new peak in the lower value range (around 0.0-0.1), suggesting an increase in non-vegetated areas
such as idle land, converted land, or waterlogged zones.

To identify spatial changes, two classification methods were employed: Multilayer Perceptron
(MLP) and Support Vector Machine (SVM). For the non-rice field class, MLP achieved a precision of
0.62, a recall of 0.94, and an Fl-score of 0.75. SVM produced comparable outcomes, though with
slightly lower precision. In terms of overall performance, MLP attained an accuracy of 82%, surpassing
SVM, which achieved 71%. These results highlight the strength of MLP in capturing complex spatial
patterns, as its architecture effectively models non-linear relationships among features.

In conclusion, the MLP-based classification approach is more effective for mapping rice field
changes in complex spatial environments. The findings not only support agricultural land protection and
sustainable urban development but also advance computer science by reinforcing the role of machine
learning in spatio-temporal data analysis and demonstrating the strength of non-linear models in satellite
image classification.

For future research, several improvements can be pursued. First, the integration of additional
features such as digital elevation models (DEM), proximity to infrastructure, or socio-economic data
could enhance classification robustness. Second, expanding the diversity and volume of training data
would help mitigate class imbalance and improve generalization. Finally, exploring deep learning
architectures—such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), or
hybrid models—may further increase accuracy and scalability, paving the way toward fully automated,
real-time land monitoring systems.
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