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Abstract 

Global climate change has triggered an increase in the occurrence of significant wave heights (SWH) and sea level 

rise (SLR) in coastal areas, including the northern coast of Central Java, Indonesia (Pantura). These phenomena 

directly impact maritime activities, coastal erosion, and tidal flooding. This study aims to classify and predict 

significant wave height (SWH) and sea level rise (SLR) trends using a machine learning approach based on the 

Random Forest (RF) algorithm. Daily meteorological and oceanographic observation data from 2019 to 2024, 

provided by BMKG, serve as the main dataset. The dataset includes wind speed, ocean current velocity, air pressure, 

and wave direction. SWH is categorized into three classes: Calm, Low, and Moderate. The classification model 

achieved excellent performance with an accuracy of 98.54%, a macro F1-score of 0.942, and maintained strong 

accuracy even for the minority class (Moderate) despite data imbalance. The RF Regressor for SWH prediction 

yielded an R² of 0.864, MAE of 0.067, and RMSE of 0.109 m. Visualizations such as scatter plots, boxplots, and 

heatmaps supported the conclusion that ocean current speed and wave period are key factors influencing SWH. The 

study concludes that Random Forest is effective for classifying and predicting sea conditions in tropical regions like 

Pantura, and it is feasible for implementation in data-driven early warning systems to mitigate coastal risks. This 

contributes to marine safety and coastal risk mitigation planning.   
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1. INTRODUCTION 

In recent decades, global climate change has triggered extreme phenomena in coastal 

environments, including increased significant wave height (SWH) and sea level rise (SLR), particularly 

in Indonesian waters. These two phenomena have broad impacts on the sustainability of coastal areas, 

such as the disruption of shipping activities, damage to port infrastructure, and an increased risk of tidal 

flooding and coastal erosion. According to the Central Java Regional Disaster Management Agency 

(BPBD), tidal flooding has affected several regions along the northern coast of Central Java (Pantura), 

including the cities and regencies of Pekalongan, Semarang, Tegal, Kendal, Brebes, Demak, Batang, 

and Pemalang, with average flood heights ranging between 30–70 cm. Therefore, a vulnerability 

assessment in this region is urgently needed. 

The main factor behind flooding in the northern coast of Java is rising sea levels, which are driven 

by factors such as lunar and solar gravitational forces and high ocean waves, particularly during severe 

weather events[1]. Low-lying island nations like Indonesia are especially vulnerable to Height Extremes 

(HEX) of sea level. When intensified by marine heatwaves, these HEX events can have even more 

severe ecological and social impacts[2].  In Indonesia, variations in SWH are influenced not only by 

local winds but also by regional factors such as air pressure, sea surface temperature, and ocean current 
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circulation [3]. Wave patterns along the northern coast of Java are heavily influenced by the monsoonal 

wind seasons, which also affect tidal patterns and can trigger tidal flooding[4]. 

Long-term sea level rise leads to an increase in ocean volume, thereby intensifying both the 

frequency and magnitude of flooding that can inundate low-lying land[5]. The correlation coefficient 

between wind speed and SWH during tropical cyclone periods in the Java Sea shows that wave heights 

rose from 0.5 meters to an average of 2 meters, with some local waves reaching 3.2 meters [6]. A more 

recent study found that SWH in the Java Sea ranged from 0.2 to 2.69 meters in 2017 [7], and in 

Semarang’s coastal waters, from 0.026 to 1.255 meters, with wave periods ranging between 1.677 to 

5.781 seconds [8]. 

Coastal land can be rapidly lost due to relative sea level rise (RSLR) caused by local land 

subsidence [9]. This phenomenon of sea level rise and land subsidence has been observed on the 

northern coast of Central Java, especially in Semarang, Pekalongan, and Demak [10][11][12].   as well 

as in Tegal [13] and parts of Pemalang [10].In Pekalongan, the rate of sea level rise is relatively high, 

reaching 10.6 mm/year, and is also driven by subsidence [13]. In Semarang City, tidal flooding (locally 

known as pasut) is caused by a combination of sea level rise and land subsidence. Meanwhile, Demak 

Regency, with its flat coastal topography and low elevation, is highly vulnerable to the impacts of sea 

level rise [14]. 

Prediction of significant wave height (SWH) is crucial for maritime safety, offshore operations, 

and coastal disaster mitigation [15]. Variations in SWH are influenced by wind speed, air pressure, and 

atmospheric circulation [15][16][17]. Extremely low sea-level pressure followed by increased wind 

speed has a strong impact on SWH [18]. Both local and global atmospheric circulation significantly 

control the variability of surface wind speeds, which in turn shape wind and wave patterns [19]. Thus, 

accurate SWH prediction is vital for ensuring safe navigation, effective ocean operations, and coastal 

disaster preparedness [15][20][21][22].  Monitoring and classification of SWH conditions play a key 

role in risk mitigation for ports and early warning services [18]. Classification or prediction of SWH has 

become central to marine operations, coastal engineering, and readiness for extreme wave events [23]. 

The use of the Random Forest (RF) model for SWH prediction on the Australian coast highlights 

the importance of SWH in coastal zone management and disaster mitigation [15]. The application of 

Random Forest Regressor for sea level rise (SLR) prediction has yielded R² values above 0.85 and 

MAPE below 5% [24].  Prediction of SWH using RF also demonstrates high accuracy, with reported R² 

= 0.958 and MSE = 0.0074 [15]. RF models have achieved wave prediction accuracy levels of 89.6–

91.8% [22].   Although primarily used for regression, the model’s high performance in short-term 

prediction reflects its potential to indirectly handle wave condition classification [18]. Moreover, the 

integration of RF and XGBoost within ensemble classification algorithms for SWH in coastal zones has 

proven effective, even in the context of Indonesian wave dynamics [25][26]. 

Wave classification models based on categorical levels (low, moderate, high) are particularly 

valuable for early warning systems [20]. However, such models require high-quality input data and 

classification methods capable of identifying minority classes such as moderate or high waves, which 

occur infrequently but pose high risks. These findings support the use of machine learning (ML) as a 

data-driven solution capable of capturing non-linear relationships between variables without relying on 

physical assumptions. ML has proven effective in various oceanographic applications, including wave 

height prediction [27], wave height classification, and sea level trend forecasting [25]. These findings 

suggest that RF is well-suited for modeling dynamic ocean conditions in tropical regions such as 

Indonesia. 

Nonetheless, significant challenges remain, particularly regarding class imbalance in SWH 

classification. In the case of Pantura, calm wave conditions dominate the daily observations, while 

moderate and high waves appear only occasionally. This leads to a bias in the model toward the majority 
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class. Therefore, techniques such as class balancing, careful feature selection, and the use of appropriate 

evaluation metrics (e.g., F1-score, confusion matrix) are crucial in building a fair and reliable 

classification model. 

The contribution of the field of informatics lies in the application of the Random Forest algorithm 

for the classification of Significant Wave Height (SWH), which integrates machine learning techniques 

in modeling multivariate and non-linear data for an oceanographic data-based monitoring and early 

warning system in coastal areas. 

The study is expected to serve as a scientific foundation for decision support systems developed 

by institutions such as the Meteorology, Climatology, and Geophysics Agency (BMKG), the 

Department of Marine Affairs, and port authorities. It also aims to contribute to the applied information 

technology literature in the field of tropical oceanography. 

2. METHOD 

Based on the research background, this study adopts a machine learning (ML) approach using the 

Random Forest (RF) algorithm to obtain optimal performance in the classification and prediction of 

significant wave height (SWH) along the northern coast of Central Java. The research workflow is 

illustrated in Figure 2. 

 

Literature Study and Problem 
Formulation on SHW Classification 

& SWH Prediction with AI

Historical Data 
Collection 2019-2024 

(SWH Variables)

Data Preprocessing (Data 
structuring/Data Frame, Data 

Cleansing, and data formatting)

Scatting Plot of Hsitori 
SWH Data Variables 

(2019-2024)

Calculating SWH 
based on Actual 

data (2019-2024)

SWH Classification with 
Random Forest (Precision, 
Recall, F1-Score, Accuracy)

Calculate RF 
Confusion Matrix 

(SWH)

SWH Class 
Distribution

Correlation 
Heatmap between 

SWH Features

SWH Accuracy 
Metrics with RF

SWH RF Prediction 
Results (actual, 
short, medium)

Dominant 
Features 

Influencing SWH  
Figure 1. Research Workflow for SWH Classification and Prediction 

2.1. Literature Review, Data, and Study Area 

This study focuses on the development of ocean waves in the coastal region of the northern part 

of Central Java (Pantura), particularly covering the areas of Semarang, Demak, Pekalongan, and their 

surroundings. The literature review focused on SWH and SLR, especially within the northern coastal 

region of Java, with emphasis on classification and prediction using machine learning techniques. 

The data used consist of historical daily time-series records from 2019 to 2024, encompassing 

meteorological and oceanographic parameters such as average and maximum wind speed, wind 

direction, current velocity and direction, air pressure, significant wave height (SWH), wave period, and 

temporal data (month and year). The data were collected from observation stations and instruments 

operated by BMKG Maritime Station Class II in Central Java, located at Tanjung Mas Port, Semarang. 

The variables involved in determining SWH include air pressure (mb), ocean current direction and speed 

(cm/s), significant wave height (Hs), wave period (Ts/t01), wave direction (Dir), wind speed (Kt), and 

local wind direction (Dir). This primary dataset is highly valuable as it reflects actual conditions at the 

observation site. 

2.2. Data Preprocessing 

In the preprocessing stage, the SWH data were structured into a dataframe format. This is crucial 

to define the attributes of each feature before further data processing. The data were stored in .xlsx or 

.csv format, and attributes serving as features or labels were added to each record. Normalization was 

conducted to verify whether the data were complete (non-missing) and whether the values were 
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reasonable. After normalization, it was found that out of 2,192 records, only one record contained 

missing data. Therefore, 2,191 valid records were used for prediction analysis. 

The cleaned dataset structure, including features influencing SWH, is illustrated in Figure 1. 

Initial preprocessing involved checking for missing values, outliers, and formatting inconsistencies. The 

cleaning process included deleting or interpolating missing values, transforming time columns to 

datetime format, normalizing numerical values using Min-Max Scaling, and adding derived features 

such as seasonal labels, daily lag features, and a 30-day moving average. 

 

 
Figure 2. SWH Data Preprocessing: a. DataFrame (left), b. Feature Structure Based on SWH 

2.3. Scatter Plot and SWH Classification Labeling 

Scatter plots and time-series curves were generated to visualize the temporal behavior of various 

oceanographic and meteorological parameters from 2019 to 2025. These visualizations aimed to show 

the distribution of raw data (scatter points), highlight short-term trends using a 30-day moving average 

(MA), and depict medium- and long-term trends using linear regression. According to BMKG's 

classification of sea wave height: Calm: 0.1–0.5 m, Low: 0.5–1.25 m, Moderate: 1.25–2.5 m, High: 2.5–

4.0 m, Very High: >4.0 m. The SWH classification in this study was calculated using daily, monthly, 

and annual averages derived from the actual time series data (2019–2024). Regression analysis with 

high R² values supports the suitability of linear models for projecting short- to medium-term trends in 

wave height. 

2.4. SWH Classification Model Using Random Forest 

The classification model was developed using the Random Forest Classifier algorithm, with the 

goal of categorizing wave conditions into three classes: Calm, Low, and Moderate. The dataset 

containing 2,191 records was split into 80% training data (1,752 records) and 20% test data (439 

records). Model performance was evaluated using the confusion matrix, accuracy, precision, recall, F1-

score, 5-fold cross-validation, and feature importance analysis for model interpretation. 

a. The confusion matrix illustrates the number of model predictions compared to actual class 

labels. In this case, the classification includes three categories: Calm, Low, and Moderate. 

b. Accuracy measures the proportion of correct predictions over the total number of predictions, 

as seen in (1): 

Accuracy =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

For multiclass classification as seen in (2): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑖𝑘

𝑖=1

𝑆𝑎𝑚𝑝𝑙𝑒 𝑇𝑜𝑡𝑎𝑙 
      (2) 

c. Precision evaluates the accuracy of positive predictions for each SWH class as seen in (3): 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
      (3) 

d. Recall (sensitivity) assesses the model's ability to correctly detect actual positive instances as 

seen in (4): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
     (4) 

e. F1-Score is the harmonic mean of precision and recall. It is especially important in imbalanced 

datasets, such as when the “Calm” class dominates and the “Moderate” class has relatively few 

instances as seen in (5):: 

𝐹1 = 2 𝑋 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙
      (5) 

f. 5-Fold Cross-Validation (5-Fold) was used to evaluate the model's generalizability and to 

prevent overfitting. 

 

The distribution of SWH classes was visualized using pie charts, while boxplots illustrated the 

statistical distribution of wave height (hs) for each year (2019–2024). Additionally, heatmaps were 

generated to analyze feature correlation, which is crucial for identifying important variables for 

classification or prediction tasks. 

3. RESULT 

3.1 Scatter Plot of Significant Wave Height (SWH) 

Scatter plots were used to show the distribution of original data points, depict short-term trends 

(via 30-day moving averages), and illustrate medium- and long-term trends (via linear regression) of 

significant wave height (SWH). The 30-day moving average (MA) line indicates that each point on the 

line represents the average value of the previous 30 days. This helps visualize short-term trends (daily 

and monthly), observe seasonal up-and-down patterns, and avoid misinterpretations caused by short-

term spikes. The scatter plots are shown in Figures 3, 4, 5, and 6. 

 

 
Figure 3. Scatter Plot of Significant Wave Height (Hs) and Wave Period (Ts/t01) 

 

a. Figure 3 (left): Hs vs. Date — Shows seasonal wave spikes typically occurring at mid- or 

year-end (likely due to the west monsoon). The long-term regression trend shows a slight 

upward trend in Hs, which may indicate increased frequency of high waves. 

Figure 3 (right): Wave Period (t01) vs. Date — Despite seasonal fluctuations, the wave 

period remains relatively stable annually. (Blue dots = daily t01 spread; average period 

between 3.5–4.8 seconds; flat regression line indicates no significant trend.) 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.4.5108


Jurnal Teknik Informatika (JUTIF)                             Vol. 6, No. 4, August 2025, Page. 2263-2280 
P-ISSN: 2723-3863                                                                                                           https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871                                                                  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.5108 

 

 

2268 

 
Figure 4. Scatter Plot of Wind Direction (Dir) and Current Velocity (cm/s) 

 

b. Figure 4 (left): Wave Direction (Dir) vs. Date — Shows a long-term shift in dominant wind 

direction (from west to south/southeast), with clear seasonal cycles each year. 

Figure 4 (right): Current Velocity (cm/s) vs. Date — Indicates that ocean currents are 

strengthening, which may affect sediment transport and wave behavior. (Green dots = daily 

values; visible surges in 2021 and 2023; trend line shows long-term increase in current 

speed). 

 

 
Figure 5. Scatter Plot of Wind Speed Patterns (2019–2025) 

 

c. Figure 5 (left): Average Wind Speed (Kt) vs. Date — Shows a sharp drop in average wind 

speed, especially after 2022, which may reflect climate change effects or sensor instability. 

Figure 5 (right): Maximum Wind Speed (Kec_max) vs. Date — Regression line is relatively 

flat, indicating no long-term increase in extreme winds. However, some significant outliers 

(>100 m/s) suggest potential sensor errors. 

 

 
Figure 6. Scatter Plot of Wave Direction Related to Wind Direction 
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d. Figure 6 (left): Wave Direction (Dir) vs. Date — Reveals consistent seasonal patterns, with 

wave direction fluctuations repeating annually, likely linked to monsoonal wind cycles. 

Figure 6 (right): "Average" vs. Date — This metric shows a clear increasing trend from 

2019 to 2024. Both trend lines and moving averages suggest continuous seasonal and long-

term increases. The “average” variable likely represents daily means of parameters such as 

Hs, current, or wind speed. 

3.2. Calculating the Actual SWH Trend 

Calculating actual values of significant wave height (SWH) aims to understand the average real-

world wave behavior during the 2019–2024 period. From the resulting trends, the coefficient of 

determination (R²) is calculated. The higher the R² value, the more accurate and reliable the regression 

model is for predictive and coastal risk mitigation purposes. R²-score serves as an indicator of how well 

the model explains variations in actual data. 

Based on the dataset (Figure 2), 2,191 records of actual SWH data involving 13 variables were 

used. The average increase in SWH is as follows; Daily: 0.033 m/day (indicating ±3 cm variability per 

day), Monthly: 0.058 m/month (±5.8 cm), Annually: 0.036 m/year (i.e., 3.6 cm/year increase). The 

calculated R²-score is 0.793, meaning 79.3% of the variability in SWH can be explained by the linear 

trend model. The monthly and yearly SWH trends are shown in Figures 7 and 8. 

 

 
Figure 7. Monthly SWH Trend (2019–2024) 

 

Demonstrates a rising trend in wave height over the years. The increase is statistically significant 

(R² = 0.793). The blue line shows annual mean SWH (in meters), while the red dashed line is the linear 

regression line, indicating an increase from 0.16 m in 2019 to 0.37 m in 2024, or a linear trend of +0.036 

m/year. 

 

 
Figure 8. Annual SWH Trend (2019–2024) 

 

Illustrates monthly wave height differences (in meters), with noticeable peaks in certain months 

up to +0.459 m (21st month). These extreme months likely correspond to west monsoon seasons, La 
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Niña/El Niño events, or tropical storms.Monthly variability is important for predictive models and early 

warning systems.Meanwhile, daily SWH trends (smoothed with a 7-day moving average) show sharp 

increases, with the highest point (+0.286 m/day) occurring in early 2023. These spikes may indicate 

extreme events like storms, sudden high winds, or strong currents—requiring special attention in 

maritime operations, aquaculture, and daily coastal activities. 

3.3. Results of SWH Classification Using Random Forest 

The classification results of Significant Wave Height (SWH) using the Random Forest (RF) 

algorithm are based on the dataset illustrated in Figure 2. This dataset contains 2,191 rows of daily data 

representing oceanographic and meteorological conditions in the northern coastal area of Central Java 

during the 2019–2025 period. The dataset was used to build and evaluate the SWH classification model 

using ML with RF. The total number of data rows before and after cleaning (NA handling) remained 

2,191. The data was split into 80% training (1,752 rows) and 20% testing (439 rows). This dataset served 

two primary purposes: to classify SWH based on meteorological and oceanographic parameters 

targeting SWH and to perform predictive analysis and trend visualization for hs, t01, current, pressure, 

and wind direction. The next step is to define the dataset structure, as shown in Table 1. 

 

Table 1. Structure of the SWH Dataset 

Colom Name Description 

Tanggal Date of observation (daily datetime format) 

Kec_rata-rata Daily average wind speed (m/s) 

Kec_Max Daily maximum wind speed (m/s) 

Arah Wind direction (0–360 degrees) 

Kec_Arus Surface ocean current speed (cm/s) 

Tekanan Surface air pressure (hPa) 

hs Significant wave height (m) – regression target 

t01 Average wave period (seconds) 

dir Wave direction (0–360 degrees) 

Rata-rata Combined average value (e.g., speed or energy) 

Max Maximum combined daily parameter value 

Min Minimum combined daily parameter value 

Tahun Year of observation 

Bulan Month of observation 

SWH The sea wave class categories: ('Calm', 'Low', 'Moderate', 'High', 

'Very High', 'Extreme') 

 

The results of the classification modeling with Random Forest (RF) are presented in Table 2. 

 

Table 2. SWH Classification Prediction in the Northern Coast of Central Java 

Class Precision Recall F1-Score Support 

Low 0.9495 0.8952 0.9216 210 

Moderate 0.9688 0.8611 0.9118 36 

Calm 0.9893 0.9974 0.9933 1945 

Accuracy - - 0.9854 2191 

Macro Average 0.9692 0.9179 0.9422 2191 

Weighted Avg 0.9851 0.9854 0.9851 2191 
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Table 2 presents the performance of the classification model for significant wave height (SWH) 

into three categories: Low, Moderate, and Calm, based on observational data from the northern coastal 

region of Central Java. The evaluation uses common classification metrics, namely precision, recall, F1-

score, and support (number of actual data points per class). The explanation for each class category is 

as follows: 

a. “Calm” Class: This class has the highest support value with 1,945 data points (88.8% of the total), 

a precision of 0.9893 indicating highly accurate predictions for "Calm" conditions. The recall is 

0.9974, meaning nearly all "Calm" data were correctly identified. The F1-score of 0.9933 shows 

an excellent balance between precision and recall. This suggests that the model performs 

exceptionally well in identifying calm sea conditions, which indeed represent the majority class. 

b. “Low” Class: With 210 data points, the precision of 0.9495 indicates that about 95% of "Low" 

predictions are accurate. The recall of 0.8952 means nearly 90% of actual "Low" data were 

detected, and the F1-score of 0.9216 reflects a well-balanced performance. This implies that the 

classification of low wave conditions is highly effective. Although recall is slightly lower than 

precision, the model still correctly identifies the majority of data. 

c. “Moderate” Class: This minority class has only 36 data points. With a precision of 0.9688, the 

predictions for "Moderate" are highly accurate when made. The recall is 0.8611, meaning about 

86% of actual "Moderate" data were identified. The F1-score of 0.9118 is quite good for a 

minority class. This indicates that even with limited data, the model can provide high-precision 

predictions for the Moderate class. Although recall is slightly lower due to the small sample size, 

an F1-score above 0.91 demonstrates the model’s robustness to class imbalance. 

d. The classes "High," "Very High," and "Extreme." All results have a value of 0 (no occurrences). 

 

Based on the performance of the “Calm”, “Low”, and “Moderate” classes as described in points 

a, b, and c, the overall accuracy is determined to be 0.9854 (98.54%), which indicates very high 

performance. The macro average (i.e., the unweighted mean across classes) values are: Precision = 

0.9692, Recall = 0.9179, and F1-score = 0.9422. This indicates consistent performance across classes, 

though the model is slightly more accurate in precision than recall. The weighted average metrics, all 

exceeding 0.985, suggest that the model is stable and highly effective, particularly due to the dominance 

of the “Calm” class in the dataset. 

Based on these results, the SWH classification model for the northern coastal region of Central 

Java demonstrates very high and balanced performance, even for the minority “Moderate” class. 

Evaluation metrics such as high F1-score and precision show that the model generalizes well and is 

suitable for integration into machine learning-based sea wave monitoring and prediction systems using 

Random Forest. 

Following the results in Table 2, a confusion matrix was generated to provide a detailed evaluation 

of the model’s performance, not only overall (such as accuracy) but also for each predicted sea wave 

class. The confusion matrix for SWH is illustrated in Figure 9. The matrix in Figure 9 illustrates the 

performance of the Random Forest (RF) model in classifying Significant Wave Height (SWH) into three 

categories: Calm, Low, Moderate, High, Very High, and Extreme. 

The analysis of the confusion matrix is as follows: 

a. Calm Class: Correctly classified: 1,940; misclassified: 5 (all misclassified as “Low”). 

The recall for the “Calm” class is 1940/(1940+5) ≈ 0.997, indicating that the model is 

highly accurate in recognizing calm sea conditions. 

b. Low Class: Correctly classified (True Positives): 188; misclassified as “Calm”: 21; 

misclassified as “Moderate”: 1. The recall for the “Low” class is 188 / (188+1+21) ≈ 

0.895, which is consistent with previous results. The primary misclassification is from 
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“Low” being predicted as “Calm,” likely because the SWH values are close to the lower 

threshold (0.3 m). 

c. Moderate Class: Correctly classified: 31; misclassified as “Low”: 5. The recall for the 

“Moderate” class is 31 / (31+5) ≈ 0.861. While the model performs well, it still has some 

difficulty distinguishing between “Moderate” and “Low” due to the limited number of 

Moderate data points. 

d. The classes "High," "Very High," and "Extreme" have a value of 0 (zero) because there 

were no wave (SWH) occurrences in those classes. 

     

 
Figure 9. Confusion Matrix Results for SWH Classification on the Northern Coast of Central Java 

 

Based on this analysis, the total correct predictions (diagonal values) are: 188 + 31 + 1940 = 2,159 

out of a total of 2,191 records. This results in an overall accuracy of 2159 / 2191 ≈ 0.9854 (98.54%), 

which is consistent with the previous result. This indicates that the model performs exceptionally well 

in identifying “Calm” conditions and is reasonably strong for the “Low” class. While the “Moderate” 

class is more prone to confusion with “Low,” it still shows satisfactory performance given the small 

sample size. These findings reinforce that Random Forest is capable of handling multiclass classification 

for SWH, even with imbalanced data. 

     

 
Figure 10. Daily Significant Wave Height (SWH) Trend from 2019 to 2024 
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Figure 10 presents a consistent seasonal pattern in wave height, with peaks typically occurring at 

the beginning of each year (January–March). The highest spikes were observed around 2021 and 2023 

(>0.8 m), suggesting a strong seasonal cycle in the northern coastal region of Central Java. These 

recurring extreme events support the relevance of seasonal SWH classification, daily SWH prediction 

using machine learning, and early warning system development for high wave events in the area. 

 

 
Figure 11. Monthly Average Significant Wave Height (SWH) from 2019 to 2024 

 

The chart in Figure 11 shows a clear seasonal pattern in monthly average SWH, with peaks in 

January (±0.55 m) and February (±0.52 m), followed by another rise in December. This pattern reflects 

the influence of the westerly monsoon and is critical for seasonal classification, early warning systems, 

and planning of marine activities in the region. March (0.28 m) marks the end of the westerly monsoon 

season, while the lowest SWH values occur in May, June, October, and November, averaging only 

around 0.12–0.17 m. These months indicate relatively calm seas, typically during the easterly season or 

when no active storms are present. 

 

 
Figure 12. Pie Chart of SWH Classification on the Northern Coast of Central Java 

 

The pie chart in Figure 12 illustrates the data distribution based on SWH classification: Calm 

(88.8%), Low (9.6%), and Moderate (1.6%). This class imbalance must be addressed in classification 

modeling to ensure that higher-risk wave conditions are accurately detected and not overlooked. The 

majority of sea conditions in the region fall under “Calm” (SWH ≤ 0.3 m). The “Low” class represents 

a small portion of data when waves start to increase but are not yet extreme (0.3 m < SWH ≤ 1.0 m). 

The “Moderate” class is rare but carries high risk, often associated with coastal disturbances and early 

warnings. To address this imbalance, machine learning models should implement techniques such as 
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resampling, class weighting, or use specialized evaluation metrics (F1-score, class-wise recall) to avoid 

misleading high accuracy due only to class dominance. 

 

 
Figure 13. Boxplot of SWH Distribution (2019–2024) 

 

Figure 13 shows annual boxplots of SWH, indicating that most significant wave heights (hs) fall 

below 0.5 meters, with high wave outliers (>1.0 m) appearing every year. The year 2023 exhibited the 

widest spread and most extreme outliers, suggesting more intense extreme wave events compared to 

other years. In 2024, the highest median supports the trend of increasing wave height. Extreme outliers 

(>1.5 m) occurred nearly every year, reflecting high waves caused by extreme weather. Increasing 

variability (IQR range) from 2019–2023 suggests a more dynamic and fluctuating ocean environment. 

The Pearson correlation heatmap in Figure 14 indicates that the most positively correlated variable 

with SWH is the significant wave height (hs) itself, with a perfect correlation of 1.00, followed by 

surface current velocity (Kec_Arus) at 0.64, and wave period (t01) at 0.25. These findings suggest that 

increasing current speeds and longer wave periods contribute to higher SWH values, making them 

essential oceanographic features for both classification and prediction models. 

 

 
Figure 14. Heatmap of Variables Influencing SWH 
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On the other hand, some variables show negative correlations with SWH, such as minimum wave 

parameters (-0.26) and month (-0.26), indicating lower SWH values during certain months outside the 

westerly season. Meanwhile, variables like wind direction, air pressure, and year exhibit very weak 

correlations, suggesting insignificant linear relationships with SWH. Therefore, a machine learning 

approach capable of capturing non-linear feature interactions is required to accurately model sea wave 

conditions, especially in complex coastal environments like the northern coast of Java. 

3.4. Evaluating SWH Accuracy Metrics 

The Random Forest Regressor model used to predict Significant Wave Height (SWH) 

demonstrated excellent performance based on four key evaluation metrics: 

1. Mean Absolute Error (MAE) = 0.067. MAE represents the average absolute difference 

between predicted and actual values. A value of 0.067 means that, on average, the prediction 

error is only around 6.7 cm, which is considered very small in oceanographic contexts. 

2. Mean Squared Error (MSE) = 0.012. MSE measures the average squared difference between 

predicted and actual values. This low value indicates that extreme errors (outliers) are rare, as 

MSE is sensitive to large deviations. 

3. Root Mean Squared Error (RMSE) = 0.109. RMSE is the square root of MSE and provides 

a standard deviation of prediction error in meters. An RMSE of 0.109 m suggests that the 

model's predictions deviate by about 11 cm on average from the actual values, which remains 

well within acceptable tolerance for maritime applications. 

4. R-squared (R²) = 0.864. R² indicates the proportion of variability in the actual data that can be 

explained by the model. With R² = 0.864, the model can explain 86.4% of the variation in SWH, 

demonstrating a high predictive capability. 

 

Based on these evaluation metrics, the Random Forest Regressor model can be considered 

accurate, stable, and reliable in predicting significant wave height (SWH) in the northern coastal region 

of Central Java. The low prediction error and high R² value confirm the model's suitability for sea 

condition monitoring, early warning systems, and decision-making in maritime and coastal sectors. The 

previous sections have discussed both the actual SWH trends and the SWH classification using the 

Random Forest model. Their connection can be summarized as follows: 

a. SWH prediction serves as the basis for classification: The RF regression model predicts 

continuous SWH values (in meters), which are then used to classify sea conditions into three 

categories: “Calm” (SWH ≤ 0.3 m), “Low” (0.3 m < SWH ≤ 1.0 m), and “Moderate” (SWH > 1.0 

m). Therefore, the accuracy and precision of classification results directly depend on the accuracy 

of the regression model. 

b. The results show consistency between regression and classification: The actual vs. predicted 

SWH plot reveals that most points lie close to the diagonal line, indicating that predictions closely 

match actual values. The high correlation (R² = 0.864) and low error (MAE = 0.067) confirm that 

the SWH predictions are sufficiently accurate. Consequently, as seen in previous classification 

results, the high classification accuracy (98.54%) and excellent classification performance for the 

majority class (“Calm”), as well as good precision and recall for minority classes (“Low”, 

“Moderate”), are well supported. 

 

These points illustrate that the high accuracy of the regression model enhances the success of the 

classification model—particularly in maintaining precision at class boundaries (e.g., distinguishing 

between SWH 0.28 m vs. 0.32 m to separate “Calm” and “Low”). The actual vs. predicted SWH plot 

(Figure 14) shows that the regression model has high accuracy, which directly contributes to the 
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successful classification of SWH into three categories. The model’s stable predictive accuracy ensures 

clear identification of class thresholds, resulting in precise classification—even for minority classes that 

are harder to distinguish. 

The plot in Figure 15 shows that predictions at higher SWH values (>1.0 m) are slightly more 

scattered, which could potentially affect classification accuracy for the “Moderate” class. However, as 

previously reported, the “Moderate” class was still classified with 96.9% precision and 86.1% recall, 

meaning the model remains capable of effectively handling minority classes. 

 

 
Figure 15. Scatter Plot of the Relationship between Actual and Predicted Significant Wave Height 

(SWH) 

3.5. The Relationship Between Classification and Regression of SWH 

The results of the classification and regression models for predicting Significant Wave Height 

(SWH) are deeply interconnected, with the regression model laying the foundation for the classification 

process. The Random Forest Regressor, used for regression, provided highly accurate predictions of 

continuous SWH values, with key performance metrics such as R² = 0.864, MAE = 0.067, and RMSE 

= 0.109, indicating that the model can explain 86.4% of the variability in the actual SWH data and 

maintain a low prediction error. These regression results directly influenced the classification process, 

where the predicted SWH values were categorized into three distinct classes: "Calm," "Low," and 

"Moderate." The accuracy and precision of this classification depend heavily on the accuracy of the 

regression model, as even small discrepancies in predicted values at class boundaries (e.g., SWH values 

between 0.3 m and 1.0 m) can affect the classification outcome. 

The high accuracy of the regression model enhanced the success of the classification, particularly 

in terms of correctly identifying the class thresholds for each category. For example, the classification 

results demonstrated a very high accuracy (98.54%) for the majority class ("Calm"), with good precision 

and recall for the minority classes ("Low" and "Moderate"). Although there was some scattering in the 

predicted values for higher SWH values (>1.0 m), which slightly affected the classification of the 

"Moderate" class, the model still achieved 96.9% precision and 86.1% recall for this category. This 

illustrates that the regression model's stability and high accuracy ensured clear identification of the class 

boundaries, which supported precise classification, even for minority classes that are typically more 

difficult to distinguish. Thus, the seamless integration of both the regression and classification models 

contributes to a robust, reliable, and highly accurate SWH prediction system for maritime applications. 
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4. DISCUSSIONS 

The results of this study demonstrate that the Random Forest algorithm is effective in classifying 

sea wave conditions and predicting significant wave height (SWH) with high accuracy, even under class 

imbalance conditions. The model successfully captures the non-linear relationships between 

oceanographic and meteorological variables and SWH. The strong regression performance (R² = 0.864) 

indicates its high potential for integration in monitoring and early warning systems. Despite the severe 

imbalance in the dataset, the model effectively identifies minority classes such as "Moderate", which 

pose higher risks to maritime activities.  Based on these findings, the following recommendations are 

proposed: 

a. The integration of this model into operational systems of institutions such as BMKG (Indonesian 

Meteorological, Climatological, and Geophysical Agency) for daily sea condition monitoring. 

b. The application of data balancing techniques such as SMOTE to improve the model's performance 

on minority classes. 

c. Expansion of the model to other coastal regions of Indonesia for broader validation. 

d. The inclusion of additional features such as sea surface temperature and the ENSO index to 

enhance prediction capabilities. 

d. Random Forest (RF) is the best choice for SWH in regions like Pantura, which exhibit variations 

and non-linear relationships between oceanographic and meteorological factors. RF is also more 

stable and easier to optimize on complex multivariate data. Although other models such as 

XGBoost and SVM show good performance in SWH prediction, RF has the advantage in terms 

of implementation speed and clear feature interpretation. This contributes to marine safety and 

coastal risk mitigation planning.   

5. CONCLUSION 

This study successfully developed a classification and prediction model for significant wave 

height (SWH) and sea level rise (SLR) in the northern coastal region of Java (Pantura) using the Random 

Forest algorithm. Based on daily data from 2019 to 2024, the classification model achieved an accuracy 

of 98.54% in categorizing wave conditions into Calm, Low, and Moderate classes. Meanwhile, the 

regression model demonstrated strong predictive performance with R² = 0.864, MAE = 0.067, and 

RMSE = 0.109. These results indicate that the RF model is effective in handling multivariate and non-

linear relationships. Despite the dataset being heavily dominated by the "Calm" class, the model 

maintained reliable performance in identifying the minority "Moderate" class. Additionally, long-term 

trends indicate an increase in SWH of approximately 3.6 cm per year, suggesting a growing risk of 

coastal hazards in the future. This study confirms that machine learning approaches, particularly 

Random Forest, offer practical and accurate solutions for maritime monitoring systems, early warning 

systems, and climate adaptation planning in tropical coastal regions such as Pantura. The model can also 

be adapted to similar oceanographic phenomena in other regions. This contributes to marine safety and 

coastal risk mitigation planning.   
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