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Abstract 

Accurate and automated segmentation of brain tumours from Magnetic Resonance Imaging (MRI) is crucial for 

clinical diagnosis and treatment planning, yet it remains a significant challenge due to tumour heterogeneity and data 

imbalance. This research investigation examines the effectiveness of a 3D UNet architecture for the segmentation of 

brain tumours utilizing MRI imaging modalities. The research employs the BRATS 2021 dataset, which consists of 

675 MRI datasets across four distinct imaging modalities (FLAIR, T1-Weighted, T1-Contrast, and T2-Weighted) 

and encompasses four distinct segmentation label classes. The employed model integrated soft dice loss and dice 

coefficient as its loss functions, with the objective of achieving convergence despite the presence of imbalanced data. 

While constraints related to resources limited the training process, the model yielded promising outcomes, exhibiting 

high accuracy (99.43%) and specificity (99.5%), The model aids medical professionals in understanding tumor 

growth and enhances treatment planning via segmentation predictions in surgery. Nevertheless, the sensitivity, 

particularly concerning non-enhancing tumour classes, persists as a significant challenge, underscoring the necessity 

for future research to concentrate on data-centric methodologies and enhanced pre-processing techniques to improve 

model efficacy in critical medical applications such as the segmentation of brain tumours. 
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1. INTRODUCTION 

The development of information technology, particularly in the field of machine learning, has begun 

to be implemented in a number of other industries, including the health sector [1].  Machine learning is a 

subfield of artificial intelligence that employs algorithms to identify patterns in data and predict future 

outcomes [2], [3]. These predictions are based on the assumption that patterns in data can be used to inform 

solutions to specific problems. Machine learning algorithms employ a variety of pattern recognition and 

prediction techniques, with one prominent example being the deep neural network (DNN). The DNN has 

the advantage of being able to recognise patterns in complex and large data sets with greater accuracy by 

learning the representation of data in each layer of the model [4], [5], [6]. 

The application of deep neural network technology for the detection of brain tumours in humans 

represents one of the most prominent instances of machine learning in the health sector, having witnessed 

significant advancement in recent years [7], [8], [9], [10]. The integration of technology in the health sector, 

particularly in the context of tumour detection, necessitates a comprehensive understanding of the disease, 

encompassing its distinctive features and characteristics [11].  
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Brain tumours can be categorised into primary and secondary brain tumours based on their source of 

spread. Primary brain tumours are defined as brain cell abnormalities that originate from the brain cells 

themselves, while secondary brain tumours originate from other body cells [12]. The detection of brain 

tumours typically necessitates the utilisation of techniques such as sampling or biopsy, coupled with the 

imaging of the interior of the brain through the utilisation of magnetic resonance imaging (MRI) [13]. The 

biopsy approach exhibits a superior accuracy rate, albeit with a longer processing time than that of MRI 

imaging. Nevertheless, MRI imaging is indispensable for the delineation of the tumour’s location and its 

dissemination in intricate detail, enabling the differentiation between the soft and hard tissues of the brain 

[14]. 

The magnetic resonance imaging (MRI) technique allows for the production of three-dimensional 

images, which can be classified according to their contrast and luminance characteristics. These include 

T1-weighted, T1-weighted contrast, T2-weighted and FLAIR imaging. The contrast and luminance of these 

images can be used to identify specific features of the tumour, such as necrosis, oedema, non-enhancing 

tumours and enhancing tumours [15].  

The semi-automatic or automatic segmentation of brain tumours is currently regarded as a valuable 

aid to the efficient diagnosis of such lesions. However, the rapid growth of tumour cells represents a 

significant challenge to the accurate segmentation of these structures. Consequently, there is a clear need 

for the development of a method or technique capable of accurately segmenting tumours, thus facilitating 

the distinction between necrosis, oedema, non-enhancing tumours and enhancing tumours [16].   

A Convolutional Neural Network (CNN) is a type of deep neural network layer that allows for pattern 

recognition in the context of image recognition [17]. It is one of the techniques that may be employed in 

the process of segmenting brain tumours. There are CNN architectures that have the ability to segment both 

two-dimensional (2D) and three-dimensional (3D) images. Two notable examples are the 2D UNet and the 

3D Unet [18].  

The 3D UNet architecture effectively utilises spatial information in volumetric data, enhancing 

segmentation precision by integrating comprehensive spatial context [19]. The objective of this research is 

to evaluate the efficacy of the 3D UNet architecture in the segmentation of brain tumours, utilising 3D MRI 

images as the input data, which are instrumental in the diagnosis of brain tumours by medical professionals.  

The existing body of research in this field has concentrated on the detection and segmentation of 

brain tumours, with a variety of methods and algorithms employed in the process. The field of research on 

brain tumour segmentation and detection using machine learning techniques is expanding, with a growing 

body of conducted studies. The majority of research in this field is focused on two key areas: data pre-

processing to extract meaningful features and the combination of model architectures to achieve high 

performance in brain tumour segmentation. In this research, the dataset used is BRATS 2021, which 

consists of 675 datasets with four MRI imaging modes (FLAIR, T1-Weighted, T1-Contrast, and T2-

Weighted) and four classes of segmentation labels, namely background, edema, non-enhancing tumour, 

and enhancing tumour. BRATS 2021 denotes the brain tumour segmentation challenge of 2021, offering 

datasets for researchers to enhance segmentation algorithms using authentic data [20]. The following recent 

research studies are of particular note: 

This research employs a deep learning method utilising a pre-trained Xception model as its 

architectural foundation for the classification of brain tumours, namely pituitary, glioma and meningioma.  

The dataset comprises 4,480 images, of which 2,760 depict diagnosed brain tumours and 1,720 are of 

healthy tissue.  Upon testing the model using the F1-Score metric, the resulting accuracy value was 98.75% 

[21].  

This research employs three stages, namely a high-pass filter, a median filter and a DWAE model, 

for the detection of brain tumours in magnetic resonance images (MRIs) using five datasets of MRIs of the 
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brain containing images of the five types of brain tumour. The results of the model testing reached an 

average accuracy value of 99.3% across the BRATS 2012, BRATS 2013, BRATS 2014, 2015 challenge 

and BRATS 2015 and ISLES datasets. The method developed in this study demonstrates the capacity to 

analyse a substantial number of images with remarkable efficacy, thereby ensuring the model’s remarkable 

generalisation capabilities [22].  

In this study, the self-organising mapping (SOM), K-mean and fuzzy C-mean (FCM) methods were 

employed to segment regions within the brain tumours. The dataset employed comprises 285 datasets, with 

the primary focus of this research being region extraction, feature selection, and hybrid segmentation. This 

approach yields a Dice overlap index value of 0.99 and a Jaccard index of 0.94. The pre-processing with 

SOFM has a significant impact on the segmentation results produced by the model [23].  

This study employed an edge detection algorithm to obtain images of brain tumours from multimodal 

MRI inputs, resulting in robust edge mapping for tumour identification. The results achieved utilising the 

proposed method demonstrate high accuracy (0.99) and have the potential to be further developed when 

combined with other image analysis methods [24].  The application of the YOLOv3 Deep Network to the 

detection of brain tumours on a portable electromagnetic imaging system yielded enhanced model 

performance outcomes, utilising the Deep Neural Network (DNN) on extensive training data sets 

comprising 800 MRI images. The model demonstrated the capacity to process images of dimensions 416 x 

416 pixels, attaining an accuracy of 0.95 and a loss of 0.092 [25]. 

The application of image segmentation in the field of medical imaging is of paramount importance 

and is experiencing a period of significant growth. Image segmentation is a methodical approach to 

extracting pertinent information in medical imaging, facilitating the diagnosis of diseases such as tumours 

and the localisation of tumours [16], [26], [27], [28]. Conversely, the advancement of tumour segmentation 

is a significant challenge due to the necessity for the development of appropriate algorithms and 

methodologies to ensure accurate segmentation. Furthermore, the input images, in the form of MRI, 

encompass a multitude of modalities that are inherently complex and diverse, thereby increasing the 

complexity of the segmentation process itself. The utilisation of data pre-processing and sophisticated 

modelling algorithms necessitates a substantial allocation of resources, while the demand for transparency 

in the processing pipeline to guarantee the acceptability of the output presents an additional challenge. 

2. METHOD 

2.1. Research Flow 

The research stages comprise four principal phases as shown in Figure 1: data acquisition, 

exploratory data analysis, data pre-processing, model training and model evaluation.  The objective of these 

stages is to ensure the effectiveness of the research process [29]. 

 

 
Figure 1. Research flow 
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2.2. Data Acquisition 

The dataset was derived from the BRATS (Brain Tumour Segmentation) challenge 2021, which was 

organised by the Radiological Society of North America (RSNA), the American Society of Neuroradiology 

(ASNR), and the Medical Image Computing and Computer Assisted Interventions (MICCAI) Society. A 

total of 675 MRI data sets in neuro-imaging format (Nibabel) were collected, each comprising four files: 

flair, t1, t1-ce, and t2, as well as seg. The latter is a segmentation class that has been mapped by the data 

source provider and will serve as the label in the model training process. The remaining files represent the 

imaging modalities of the magnetic resonance imaging (MRI) machine scans [30].   

 

Table 1. Class segmentation label 

Class Label 

0 background 

1 edema 

2 non-enhancing tumour / necrotic tumor core 

3 enhancing tumour 

 

The dataset comprises four MRI modalities: native (T1), T2-weighted (T2), post-contrast T1-

weighted (T1ce), and fluid-attenuated inversion recovery (FLAIR). Each modality contains 155 cuts per 

volume. The data includes labels for three types of brain tumours: enhancing tumour, necrotic, edematous 

and non-enhancing tumour. Class labels for each brain tumour type are represented in Table 1.  

FLAIR is an MRI technique that suppresses cerebrospinal fluid (CSF) signals, thereby facilitating 

enhanced visualisation of lesions in proximity to the brain ventricles. T1 imaging provides optimal contrast 

between brain tissue and highlights fat, whereas T1-ce, utilising gadolinium contrast, enhances areas 

exhibiting increased vascularity or blood-brain barrier breakdown, thereby facilitating the detection of 

tumours and inflammation. T2 imaging exhibits high contrast between brain tissue and fluid, thus aiding in 

the detection of oedema and lesions [31]. The Label Segmentation file, containing the results of radiology 

segmentation and labelling, serves as a reference for brain segmentation prediction. As illustrated in Figure 

2, each label in the dataset is presented in a different slice orientation. 

 

 
Figure 2. Annotated Brain Magnetic Resonance Imaging Scan, BRATS 2021 

 

https://jutif.if.unsoed.ac.id/
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2.3. Exploratory Data Analysis 

The exploratory data analysis stage comprises the process of extracting data features and visualising 

segmentation images and labels. The objective of this phase is to prepare the pre-processed data in a manner 

that facilitates efficient, rapid and accurate training of the model, thereby ensuring effective generalisation 

(good fit) [32]. 

The visualisation of the four modal image layers with the tumour demonstrated that the FLAIR and T1-

Ce imaging had superior visual clarity, with the tumour and other tissue being distinctly delineated 

(evidencing a clear abnormality) as shown in Figure 3. 

 

 

Figure 3. Four-modality MRI imaging of tumours 

 

 

Additionally, it can be seen in Figure 4 that oedema is the swelling of brain tissue in proximity to a 

brain tumour, which is caused by the tumour itself rather than by the surrounding non-enhancing tissue. 

 

 

Figure 4. Class label segmentation 

 

 
Figure 5. MRI Scan with annotated segmentation label 

https://jutif.if.unsoed.ac.id/
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Moreover, when three-dimensional imaging of the MRI scan is conducted in conjunction with the 

segmentation label, as shown in Figures 5 and 6, a distinct visual representation of the tumour and its precise 

location is generated. The pixel resolution of the MRI image is (240, 240, 155), with each value representing 

height, width, and depth, respectively. 

 

 
Figure 6. Three-dimensional visualisation MRI Scan with label 

 

 

The exploratory results of the overall visualisation indicate that the use of diverse MRI imaging 

modalities can assist the model in differentiating between tumour and general tissue in the brain. 

Furthermore, the model’s processing speed can be enhanced by performing a sub-volume that encompasses 

solely the tumour area. This approach effectively reduces the input dimension and optimises the training 

process. 

2.4. Data Pre-processing 

The input images need to be pre-processed so that they can be efficiently and effectively computed 

by the model algorithm [33]. The pre-processing steps performed can be seen in  Figure 7, which include 

extracting the image sub-volume containing only the brain tumour area, normalising the pixel value of the 

image, converting the file to HDF5 format and finally dividing the dataset into several parts, namely the 

training set and the validation set. 

 

 
Figure 7. Preprocessing phase 

 

 

The sub-volume extract changes the dimension from (240, 240, 155) to (160, 160, 16), where the 

sub-volume obtained is the part of the brain that is the tumour area. The sample of sub-volume and label 

image is represented in Figure 8. 

https://jutif.if.unsoed.ac.id/
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Figure 8. Sub Volume Image and Label 

 

 

In addition, the sub-volume of the MRI scan is normalised from its pixel value, which previously 

had a range of 0-255, to 0-1 (1). The normalisation will help to speed up the training process, allowing the 

model to achieve convergence. The volume is then converted to HDF5 format for storage efficiency and 

data portability so that it can be processed by the model.   

   

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (1) 

 

The MRI scan dataset is then divided into two sets, training and validation, with an 8:2 ratio, to 

evaluate the model’s performance against new or unseen data. 

2.5. Modeling  

The model used in this research is a deep neural network with a convolutional layer, which 

automatically extracts features before inserting them into the hidden layer to calculate the weighting of the 

neural network. The convolutional neural network architecture used is a 3D UNet as shown in Figure 9.  

 

 
Figure 9. 3D UNet Architecture 

https://jutif.if.unsoed.ac.id/
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The 3D UNet architecture has advantages in the task of segmenting large amounts of data. 3D UNet 

is able to capture the spatial relationship of pixels to the overall volume of the image, making the results 

more accurate and capable of processing complex images [34]. 

The layer that plays a role in the feature extraction process is the convolution layer, which functions 

to multiply the input image with a volume filter to produce a meaningful output or information for the 

model, and then passes it on to the pooling layer to reduce the image resolution without reducing the 

information. The process, which can be seen in Figure 10, is repeated continuously. 

 

 
Figure 10. CNN Mechanism 

 

 

The quality of a Convolutional Neural Network (CNN) is significantly determined by the convolution 

layer, which serves to extract pixel values from an image by performing multiplication of each m x j pixel 

with a filter or kernel, which is systematically shifted across the image matrix by n for each i x j pixel (2). 

The resulting output of the convolution operation is then transmitted to the pooling layer, which serves to 

reduce the pixel dimension of each image through the application of a max pooling function that identifies 

and retains the highest pixel value of each i x j pixel.  

   

𝑧1 = ℎ1−1 × 𝑊1         (2)   

𝑅𝑒𝐿𝑈(𝑧𝑖) = max (0, 𝑧𝑖)       (3)  

ℎ𝑥𝑦
1 = 𝑚𝑎𝑥𝑖=0,   𝑗=0(0, 𝑥)   (4) 

 

The output of the convolution process is first transformed into the ReLU (Rectified Linear Unit) 

activation function (3) before proceeding to the pooling layer (4). The activation function allows CNNs to 

learn more complex and abstract representations of image data, in addition to ReLU, which helps to prevent 

vanishing gradients in the model so that the model can be trained more deeply [35].  

The convolution layer within the 3D UNet framework incorporates both up-sampling and down-

sampling techniques, as illustrated in Figure 11. Up-sampling is employed to rescale pixels to the original 

dimensions of the input image, while down-sampling is utilized to extract features of reduced 

dimensionality that retain significant informational content. 

https://jutif.if.unsoed.ac.id/
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Figure 11. Details layer architecture 3D Unet 

 

 

The hyperparameters implemented during the training phase include batch size, which denotes the 

quantity of data processed in a single iteration; epoch, representing the total number of training cycles; 

learning rate, which indicates the velocity of the machine learning process; and batch normalization, an 

additional normalization layer applied within UNet to ensure that the values are subsequently appropriate 

for each layer. The value designated for the hyperparameter represents the upper limit of the computational 

resource specifications accessible, constrained by the limitations inherent within the research budget, while 

simultaneously taking into account the ramifications of the research endeavour. The specific values 

assigned to each hyperparameter are detailed in Table 2. 

 

Table 2. Hyperparameter 

No Hyperparameter Value 

1 Batch Size 2 

2 Epoch 50 

3 Learning Rate 0.0009 

4 Batch Normalization True 

https://jutif.if.unsoed.ac.id/
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The loss functions used in this model are the soft dice loss (5) and the dice coefficient (6). The cost 

function is commonly used in segmentation cases with unbalanced data in the training process. 

 

ℒ𝐷𝑖𝑐𝑒(𝑝, 𝑞) = 1 −
2 × ∑  𝑝𝑖,𝑗 𝑞𝑖,𝑗𝑖,𝑗 + 𝜖

( ∑ 𝑝𝑖,𝑗
2

𝑖,𝑗  ) + ( ∑ 𝑞𝑖,𝑗
2

𝑖,𝑗  )+𝜖
     (5) 

Where,  

• p  : predictions 

• q  : the ground truth  

• In practice each qi will either be 0 or 1.  

• 𝝐 : small number that is added to avoid division by zero 

               

𝐷𝐶(𝑓, 𝑥, 𝑦) =
1

𝐶
∑ (𝐷𝐶𝐶(𝑓, 𝑥, 𝑦))𝐶

𝑐=1   (6) 

Where,  

• x : the input image 

• f(x)  : the model output (prediction) 

• y : the label (actual ground truth) 

• C  : number of class category 

 

2.6   Model Evaluation 

Model performance assessment is necessary to determine whether the resulting model can effectively 

and correctly predict the segmentation of brain tumours and has an error value within reasonable limits 

[36]. The model performance evaluation is based on the confusion matrix provided by the model, which 

computes the value of accuracy, sensitivity, specificity, false negative rate, false positive rate, precision, 

and F-1 score metrics for each tumour segmentation class.    

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝐹𝑁
   (7)    

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (8)     

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
   (9)     

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
     (10)     

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
    (11)     

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (12)   

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑖𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (13) 

Where,  

• TP : True Positive 

• TN  : True Negative 

• FP : False Positive 

• FN : False Negative 
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The term accuracy indicates the ratio of all genuine and non-tumour examples that are accurately 

categorized, whereas Sensitivity (True Positive Rate) signifies the part of true tumour pixels correctly 

identified as tumour pixels by the model. The term specificity represents the fraction of true non-tumour 

pixels that the model successfully categorizes as non-tumour pixels. The FPR (False Positive Rate) and 

FNR (False Negative Rate) signify the fraction of genuine or non-tumour pixels that are incorrectly 

categorized as tumour or non-tumour. Precision means the fraction of true tumour pixels that are 

successfully recognized as tumours and those erroneously designated as tumours. Metrics focusing on 

precision underscore how well the model performs in pinpointing solely precise tumours among all the 

predicted tumour pixels [35]. 

3. RESULT 

The model training process was performed on an Intel Core i5 computer platform with 16 GB of 

RAM and an NVIDIA GTX 1650 accelerator GPU. However, the three-dimensional image training process 

should require more time and resources to achieve more optimal results.   

From Figure 11, it is known that the dimensions of the input and output images are the same size  

(4, 160, 160, 16) to (3, 160, 160, 16), and the training process is performed up to 50 epochs with the number 

batch size of 2. The number of batch sizes determines how many images are entered at once in each 

iteration. Due to platform and resource limitations, the maximum number of batch sizes that can be set is 

two images.  

 

 
Figure 12. Training and validation each epoch 

 

The graph in Figure 12 shows that the model successfully detects the brain tumour pattern, although 

the training graph is highly variable. The final training results for the dice coefficient and soft dice loss 

metrics in the validation are 0.47 (47%) and 0.52 (52%).  

 

 

Figure 13. Model evaluation 

https://jutif.if.unsoed.ac.id/
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Based on the evaluation metrics in Figure 13 and Table 3, the model achieved > 99% for the accuracy 

and specificity metrics. On the contrary, the sensitivity value in this class is only achived at 84.1%.  

 

Table 3. Model performance result 

Metric \ 

Class 

Edema Non-Enhancing 

Tumor 

Enhancing 

Tumor 

Non-Enhancing 

Tumor 
Mean 

Accuracy 99.0 % 99.5 % 99.8 % 99.43 % 

Sensitivity 22.3 % 84.1 % 23.2 % 43.20 % 

Specificity 99.1 % 99.5 % 99.9 % 99.50 % 

FPR 0.9 % 0.5 % 0.1 % 0.51 % 

FNR 77.7 % 15.9 % 76.8 % 56.80 % 

Precision 3.6 % 39.6 % 29.9 % 24.37 % 

F1-Score 6.1 % 53.9 % 26.2 % 28.73 % 

 

In Figure 14, the model can segment the tumour quite well despite having a low sensitivity metric. This 

proves that the 3DUNet architecture is able to produce fairly accurate results even with less complex slices. 

 

 

Figure 14. Model segmentation prediction 

 

4. DISCUSSION 

This study introduces a Deep Neural Network framework that integrates a soft dice loss function and 

coefficient as a cost function to improve the segmentation prediction efficacy of the model, particularly in 

the context of training with imbalanced datasets. This framework employs the 3D UNet architecture, which 

incorporates a synthesis of convolutional layers and pooling layers typically prevalent in convolutional 

neural network architectures. The salient distinction of the 3D UNet lies in its dual capability to not only 
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extract relevant information but also to reconstruct the dimensions of critical features to their original scale 

as a predicted output, specifically the outcome of tumor segmentation.  

The implementation of cost function dice coefficients and soft dice loss functions as regulators within 

the model training paradigm seeks to attain convergence or effective segmentation, particularly in scenarios 

involving unbalanced label classes, frequently referred to as imbalanced data. Undoubtedly, the situation 

of imbalanced classes is noticeable in MRI segmentation datasets due to the disproportionate distribution 

of tumor sections; it is often detected that the edema zone occupies a larger space than the non-enhancing 

tumor or the opposite. 

The performance evaluation metrics encompass accuracy, sensitivity, and specificity. However, in 

the context of medical applications, the emphasis on model performance predominantly centers on the 

sensitivity metric, as it is imperative for the model to accurately identify the positive class (tumour) while 

minimizing the misclassification of other classes. This focus is critical to mitigate the risk associated with 

misdiagnosing an individual with a tumour as negative. The values attained during the training phase may 

be regarded as relatively low; nevertheless, when performance is assessed using metrics such as accuracy, 

sensitivity, specificity, false negative rate, false positive rate, precision, and F-1 score, the model 

demonstrates commendable performance in certain metrics, particularly accuracy and specificity. 

The raised specificity figure highlights the model's superior ability to identify regions free of tumors. 

In contrast, the sensitivity level is remarkably low, pointing to the model's struggles in effectively 

delineating tumour zones, aside from the tumour-enhancing sections, which have a sensitivity figure that 

stands at a relatively high 84.1%. The sensitivity of the model may be significantly improved by integrating 

supplementary data specifically pertaining to the tumor region or by employing data augmentation 

strategies such as filtering. Conversely, enhancing the dataset is often more productive than merely using 

augmentation methods, as it strengthens model generalisation in practical contexts and generates more 

noticeable progress. This viewpoint is congruent with the overarching transition in machine learning 

research from a model-centric framework towards a data-centric paradigm. 

 

Table 4. Comparative analysis with previous studies 

Research 

Work 
Method Accuracy Sensitivity Specificity 

Proposed 3DUNet - CNN 99.43 % 43.2% 99.5 % 

Ahmed H [24] Optimized Edge 

Detection 

99.10% 93.26% 99.98 % 

Amran H [25] YOLOv3 DNN 98.84% - - 

Isselmou A 

[22] 

DWAE 99.3% 95.6% 96.9% 

 

Table 4 presents a comparative analysis of the performance outcomes associated with the 3DUNet 

model in conjunction with alternative methodological approaches. The proposed model attains a superior 

accuracy rate of 99.43% compared to previous studies, alongside a remarkably elevated specificity rate of 

99.5%; however, it does not exceed the efficacy levels exhibited by the Optimised Edge Detection 

technique. 

Future research endeavors might focus on the development of more robust model architectures, 

alongside the integration of the dice loss function and improved preprocessing techniques for the dataset, 

which could significantly augment model performance in scenarios involving imbalanced datasets.  
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5. CONCLUSION 

Brain tumour segmentation is crucial in the process of disease diagnosis and prognosis by doctors. 

Knowing the spread of the tumour and the areas of the brain affected will help in the pre-surgical process. 

Through experiments in this research, it is evident that the model with a 3D UNet architecture performs 

well on complex images, even with limited resources and simple slices. The model achieved high overall 

accuracy and specificity, with performance levels of 99.43% and 99.5%, respectively, as well as a high 

sensitivity value in the tumour-enhancing class of 84.1%. By attaining this level of performance, the model 

can assist medical practitioners in obtaining enhanced insights into the proliferation of tumours and can 

facilitate more precise treatment planning through segmentation predictions within the surgical 

environment subsequently. However, limitations in this study, such as the use of limited resources, can be 

improved in future research. In addition, the performance of the model, especially the sensitivity level, can 

be further improved by better pre-processing of the dataset or adding more non-enchancing class datasets, 

so future research is recommended to be data-oriented or data-centric rather than model-centric. 
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