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Abstract 

Accurate river water level prediction is essential for flood management, especially in tropical areas like Palembang. 

This study systematically analyzes the performance of two deep learning models, Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU), for real-time water level forecasting using hourly rainfall and water level data 

collected from automatic sensors. A series of experiments were conducted by varying window sizes (10, 20, 30) and 

the number of layers (1, 2, 3) for both models, with model performance assessed using RMSE, MAE, MAPE, and 

NSE. The results demonstrate that both window size and network depth significantly influence prediction accuracy 

and computational efficiency. The LSTM model achieved its highest accuracy with a window size of 30 and a single 

layer, while the GRU model performed best with a window size of 20 and two layers. This work contributes by 

systematically analyzing hyperparameter configurations of LSTM and GRU models on hourly rainfall and water 

level time series for flood-prone regions, offering empirical insight into parameter tuning in recurrent neural 

architectures for hydrological forecasting. These findings highlight the importance of careful parameter selection in 

developing reliable early warning systems for flood risk management. 
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1. INTRODUCTION 

Accurate river water level prediction remains a critical concern for hydrology and water resource 

management, as it supports various applications ranging from infrastructure planning and hydropower 

operations to navigation and ecological protection [1], [2], [3], [4], [5], [6]. Uncertainty in water level 

variation affects not only ecosystem stability but also decision-making processes in environmental and 

regional planning [7]. In recent decades, global climate change and the rising occurrence of extreme 

weather events have increased the complexity of river flow prediction, highlighting the need for more 

precise and adaptive forecasting approaches. Nevertheless, water level prediction remains challenging 

due to the complexity of contributing factors, which range from meteorological variables to hydrological 

data processes within river basins [7], [8]. These challenges have encouraged researchers to seek new 

approaches that are more adaptive and effective. 

The evolution of water level forecasting has paralleled advances in computational intelligence, 

moving beyond traditional hydrological simulation to embrace data-centric approaches. Machine 

learning and deep learning, in particular, have enabled the discovery of complex nonlinear relationships 

in river systems without dependence on detailed physical parameterization [9]. Numerous investigations 

have confirmed that these data-driven methods can outperform classical models, especially for short-
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term prediction and in operational settings with limited physical data [10]. Despite this progress, 

comparative analysis of deep learning architectures and their parameter sensitivity in hydrological 

applications remains an ongoing area of research. 

Numerous machine learning algorithms, including M5P, Random Forest, Regression Tree, and 

REPTree, have been successfully utilized for river water level prediction in various geographic settings, 

frequently achieving better performance than traditional hydrological models [8], [11]. However, the 

application of deep learning for water level prediction remains relatively unexplored, despite its proven 

success in many other fields. Among deep learning architectures, the Recurrent Neural Network (RNN) 

stands out in time series modeling because its network structure is specifically designed to process 

sequential data, such as periodically recorded river water levels [12]. Among the various types of 

recurrent neural networks, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models 

are extensively utilized because of their effectiveness in capturing long-term dependencies within time 

series data [10].  

Several studies have evaluated the performance of LSTM and GRU models in the context of water 

level prediction. For instance, the application of LSTM at four stations along the Nam Ngum River in 

Laos PDR demonstrated NSE values ranging from 0.5 to 0.7 during most of the testing periods [13]. 

Meanwhile, GRU-based approaches have also been shown to improve the accuracy of water level 

predictions under extreme flood conditions when compared to conventional univariate methods[14]. 

These findings indicate that both LSTM and GRU, as RNN-based models, are highly effective for time 

series data processing and river water level prediction. 

Although LSTM and GRU models have proven effective for water level prediction, most previous 

studies have only examined one model at a time, often using limited types of data and specific parameter 

settings. In many cases, researchers did not investigate how combining multiple input features, such as 

rainfall and water level together could improve prediction results. There is also a lack of studies that 

systematically test how different model parameters impact the accuracy of predictions [15], [16], [17]. 

As a result, direct comparisons between LSTM and GRU models for hourly water level forecasting, 

especially using real-time data and various input combinations, remain very limited. 

To address these gaps, this study directly compares the performance of LSTM and GRU models 

by testing a range of parameter settings and input scenarios using real-time sensor data from Palembang. 

We investigate not only which model works best, but also how different configurations affect prediction 

accuracy in a tropical river environment. The findings from this research are expected to help improve 

the practical use of deep learning models for flood prediction and water resource management. 

In this research, two deep learning models, Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU), were implemented to predict river water levels using historical rainfall and water 

level data collected from automatic sensors, with an hourly recording interval during the period from 

March 1, 2025, to May 1, 2025. Experiments were conducted by comparing variations in the number of 

layers and window sizes for both models to identify the most optimal parameter configuration. Model 

performance was assessed based on four key indicators: root mean squared error (RMSE), mean absolute 

error (MAE), mean absolute percentage error (MAPE), and the Nash–Sutcliffe efficiency (NSE). The 

evaluation results showed that the LSTM model achieved its best performance with a window size of 

30 and a single layer (RMSE = 0.0348 m; MAE = 0.0223 m; MAPE = 1.43%; NSE = 0.9090), while the 

GRU model demonstrated optimal performance with a window size of 20 and two layers (RMSE = 

0.0277 m; MAE = 0.0180 m; MAPE = 1.15%; NSE = 0.9422). These findings confirm that model 

parameter tuning plays a crucial role in improving the real-time prediction accuracy of river water levels 

using deep learning approaches. 
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2. METHOD 

In this study, river water level prediction was carried out using two deep learning models, namely 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The overall research 

methodology is illustrated in Figure 1. In general, the research steps include input data collection, 

preprocessing, experimentation and model training, as well as accuracy evaluation to ensure optimal 

performance. 

 

 
Figure 1. Workflow Diagram 

2.1. Data Collection 

The dataset utilized in this analysis comprises hourly rainfall and water level measurements, 

which were automatically recorded at the Radial Pump House, Palembang, between March and May 

2025, resulting in a total of 1,488 paired observations. Each timestamp contains synchronized values for 

both rainfall intensity and river stage height, providing a comprehensive time series for model training 

and evaluation. 

 

Table 1. History Data of Rainfall and Water Level 

Timestamp Rainfall (mm/h) Water Level (m) 

3/1/2025 00:00 0.1 1626 

3/1/2025 01:00 0 1626 

3/1/2025 02:00 0 1625 

3/1/2025 03:00 0 1624 

3/1/2025 04:00 0 1623 

3/1/2025 05:00 0 1622 

3/1/2025 06:00 0 1621 

3/1/2025 07:00 0 1620 

3/1/2025 08:00 0 1619 

… … … 

5/1/2025 22:00 0 1484 

5/1/2025 23:00 0 1485 

 

The implementation of automatic recording at fixed intervals ensured the collection of continuous 

and representative data that accurately captured river flow dynamics throughout the study period. 
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Subsequently, the complete dataset served as the foundation for testing and evaluating the performance 

of the river water level prediction models. 

2.2. Data Preprocessing 

Data preprocessing in this study commenced with the conversion of water level measurements 

from millimeters to meters to ensure all variables were standardized to a consistent scale, thereby 

facilitating more straightforward analysis  [18]. To simulate real-world forecasting conditions and 

preserve temporal integrity, the time series was divided chronologically, with 80% assigned to the 

training set and the final 20% reserved exclusively for out-of-sample model evaluation. 

All features and target variables underwent Min-Max normalization, with scaling parameters 

derived solely from the training subset, in order to prevent data leakage and promote faster convergence 

during the training phase. The normalization was performed using the following formula: 

𝑋𝑆𝑐𝑎𝑙𝑒𝑑 =
𝑋− 𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
 (1) 

This process scaled all variables to the [0, 1] range, ensuring that each feature contributed 

proportionally during model training, which helped prevent certain features from dominating and 

facilitated faster convergence [18], [19] Consistent and systematic preprocessing steps are essential for 

building robust predictive models and for maintaining data quality and integrity throughout the 

experiments. 

2.3. Model Development 

All experiments were performed in Python 3.9 using TensorFlow 2.8 and the Keras API. Both 

LSTM and GRU models had a single recurrent layer (50 units), dropout (0.2), and a dense output. Input 

sequences used sliding windows of 10, 20, and 30 time steps and various layer depth 1, 2, and 3 layers. 

Models were trained with the Adam optimizer (learning rate 0.0001), batch size 16, and early stopping. 

Evaluation on the test set employed RMSE, MAE, MAPE, and NSE. The specific architecture and 

computational mechanism of each model are described in the following subsections. 

2.3.1. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a variant of recurrent neural networks (RNNs) specifically 

introduced to overcome the inherent difficulties of traditional RNNs, such as vanishing or exploding 

gradients, which often hinder effective learning over long temporal sequences [20]. This architecture 

relies on memory cells that use three principal gates, input, forget, and output to modulate information 

flow at each time step. Two internal states are managed within each cell: the cell state, retaining long-

term patterns, and the hidden state, holding short-term representations [21]. These gates dynamically 

control which signals are updated, preserved, or output, thus allowing the network to maintain relevant 

sequence information over extended periods [22]. The mathematical operations for the LSTM cell are 

outlined as follows, where each gate operation is governed by dedicated weights and activation functions 

[23]: 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4) 

𝑐̃𝑡 = tanh (𝑤𝑐̃[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (5) 
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𝐶𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑇 ∗ 𝑐̃𝑡 (6) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡)  (7) 

The symbol 𝜎 represents the sigmoid activation function, W and b stands for the weight matrix 

the bias term for each respective gate. 𝑥𝑡 and ℎ𝑡−1 represent the current input and previous hidden state, 

respectively. The input (𝑖𝑡) forget (𝑓𝑡), and output (𝑜𝑡) gates, defined in Eq. (2), (3), and (4), control how 

information is added, retained, or passed on at each step. The candidate cell state (𝑐̃𝑡) given in Eq. (5), 

proposes new content for the memory cell. The actual cell state update combines the previous cell state 

and candidate state weighted by their respective gates, as described in Eq. (6). Finally, the hidden state 

(ℎ𝑡) is produced by modulating the cell state with the output gate, as shown in Eq. (7). This gating 

mechanism enables LSTM to adaptively filter and propagate relevant temporal information. 

This LSTM architecture enables the model to effectively retain essential information over long 

sequences of data and mitigates information loss caused by gradient issues. A schematic illustration of 

the LSTM architecture, depicting the relationships between the cell state, hidden state, and main gates, 

is presented in Figure 2: 

 

 
Figure 2. LSTM Architecture 

2.3.2. Gated Recurrent Unit (GRU) 

The Gated Recurrent Unit (GRU) is a model developed based on the LSTM architecture, aiming 

to optimize its network structure while maintaining comparable performance [24]. In LSTM networks, 

overfitting can occur when available data are insufficient, as the model requires a larger number of 

parameters than conventional RNNs to address long-term dependency issues. GRU addresses these 

shortcomings by modifying the LSTM structure. Unlike LSTM, the GRU architecture consists of only 

two gates namely the update gate and the reset gate which effectively handle time series prediction 

problems with long intervals and significant delays. The update gate regulates the amount of information 

from previous time steps that is retained and transferred to the current time step, whereas the reset gate 

determines the degree to which information from the preceding time step is disregarded [10], [24].   

The architecture of the GRU is depicted in Figure 3 illustrated the GRU employs two primary 

gates, the update gate and the reset gate, to regulate information flow within the network. To further 

clarify the GRU's computational process, the definitions of the key variables and the mathematical 

formulations are presented with eq (8) - (12). 

 

 
Figure 3. GRU Architecture 
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𝑟𝑡 is the output of the reset gate at time step - t, 𝑧𝑡 is the output of the update gate at time step- t, 

ℎ𝑡 and ℎ𝑡−1 represent the outputs at time steps - t and t-1, respectively 𝑥𝑡 denotes the input at time step 

– t. The symbol 𝜎 refers to the sigmoid activation function. The computation process for the memory 

unit is expressed in Equations (8) - (12): 

𝑟𝑡 = 𝜎(𝑊𝑟 .  [ℎ𝑡−1, 𝑥𝑡]) (8) 

𝑧𝑡 = 𝜎(𝑊𝑧 .  [ℎ𝑡−1, 𝑥𝑡]) (9) 

ℎ̂𝑡 = tanh (𝑤ℎ̂  . [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) (10) 

ℎ𝑡 = (1 −  𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̂𝑡 (11) 

𝑦̂𝑡 = 𝜎(𝑊𝑜 .  ℎ𝑡) (12) 

Under comparable parameter settings, the GRU has demonstrated notable strengths in comparison 

to the LSTM. On various datasets, GRU models often converge faster during training on CPUs, which 

leads to a significant reduction in computational time. The GRU’s simpler parameter update mechanism 

also results in a more stable training process [24]. As a result, GRU is considered an efficient and 

competitive option, particularly for applications with limited computational resources or moderate data 

complexity. 

2.4. Performance Indicators 

2.4.1. MAE 

Mean Absolute Error (MAE) quantifies the average magnitude of the absolute differences 

between observed and predicted values. As it is measured in the same units as the original data, MAE 

offers an intuitive measure of model accuracy. Lower MAE values reflect superior predictive 

performance in capturing the true data patterns. [25]. The calculation of MAE is presented in Equation 

(13). 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑦𝑖 − 𝑦̂𝑖 |  

𝑛

𝑖=1

                                  (13) 

2.4.2. MAPE 

Mean facilitating interpretation and enabling model performance comparisons across different 

datasets with varying scales. By calculating the average absolute percentage difference between actual 

and predicted values, MAPE serves as one of the most popular indicators for evaluating model 

performance, particularly in cases where percentage values are more relevant for analysis [26]. The 

calculation of MAPE is presented in Equation (14). 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑦𝑖 − 𝑦̂𝑖 

𝑦𝑖 
| × 100%

𝑛

𝑖=1

               (14) 

2.4.3. RMSE 

Root Mean Squared Error (RMSE) measures the square root of the mean of the squared 

differences between observed and predicted values. Due to its sensitivity to large errors, a high RMSE 

value signifies substantial discrepancies between the model's predictions and the actual observations 

[27]. The calculation of RMSE is presented in Equation (15). 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑦𝑖 − 𝑦̂𝑖 )

2

𝑛

𝑖=1

                           (15) 

2.4.4. NSE 

Nash Sutcliffe Efficiency (NSE) is a commonly employed statistical metric for assessing the 

performance of hydrological models. An NSE value near 1 signifies that the model effectively represents 

the observed data, while values near zero or negative indicate inadequate predictive capability [28]. The 

calculation of NSE is presented in Equation (16). 

𝑁𝑆𝐸 = 1 −  
∑ (𝑦𝑖 − 𝑦̂𝑖 )

2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦 )
2

𝑁
𝑖=1

                           (16) 

3. RESULT 

3.1. Analysis of Window Size Selection on Model Accuracy 

Window size is a critical parameter in LSTM and GRU models, as it determines the amount of 

historical data used as input to predict the next value. Selecting an appropriate window size is essential 

for enabling the model to capture temporal patterns and long-term dependencies in time series data. A 

window size that is too small may lead to the omission of relevant historical information, whereas an 

excessively large window size can introduce noise and increase computational burden [29], [30]. 

In this study, experiments were conducted using window sizes of 10, 20, and 30 for both models. 

The evaluation results for the LSTM model indicate that increasing the window size generally improves 

prediction accuracy. A window size of 10 resulted in an RMSE of 0.0396 m, MAE of 0.0254 m, MAPE 

of 1.64%, and NSE of 0.8870. When the window size was increased to 20, the error values decreased, 

with an RMSE of 0.0356 m, MAE of 0.0236 m, MAPE of 1.50%, and NSE of 0.9038. The window size 

of 30 produced the best results, with an RMSE of 0.0349 m, MAE of 0.0224 m, MAPE of 1.43%, and 

NSE of 0.9090, although it required a longer training time. 

A similar trend was also observed in the GRU model. With a window size of 10, the GRU 

achieved an RMSE of 0.0328 m, MAE of 0.0206 m, MAPE of 1.33%, and NSE of 0.9225. The model’s 

performance further improved at a window size of 20, yielding an RMSE of 0.0295 m, MAE of 0.0188 

m, MAPE of 1.20%, and NSE of 0.9340, which represents the optimal results. However, at a window 

size of 30, model performance tended to decline, with RMSE increasing to 0.0336 m, MAE to 0.0207 

m, MAPE to 1.33%, and NSE decreasing to 0.9153. In addition, training time increased with larger 

window sizes for both models. 

 

 
Figure 4. Comparison of Window Size Effects on LSTM vs GRU Performance 
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A comprehensive illustration of model performance is provided in Figure 4, which presents a 

comparison of RMSE, MAE, MAPE, and NSE values for the LSTM and GRU models. In addition, 

Table 2 summarizes the key evaluation results for each model and window size combination. 

 

Table 2. Summary of LSTM and GRU model performance across different window sizes. 

Model Window Size RMSE (m) MAE (m) MAPE (%) NSE 

LSTM 10 0.0395 0.0254 1.64 0.8870 

LSTM 20 0.0356 0.0235 1.50 0.9038 

LSTM 30 0.0348 0.0223 1.43 0.9090 

GRU 10 0.0327 0.0205 1.32 0.9225 

GRU 20 0.0294 0.0187 1.19 0.9339 

GRU 30 0.0336 0.0206 1.33 0.9153 

 

Overall, the experimental results indicate that selecting an optimal window size can significantly 

enhance model accuracy. For the LSTM model, a window size of 30 yielded the best results, while for 

the GRU model, a window size of 20 was the most optimal configuration. These findings underscore 

the importance of tuning the window size parameter in the development of time series prediction models, 

while also considering the balance between accuracy and computational efficiency. 

3.2. Analysis of Layer Number Selection on Model Accuracy 

The number of layers (depth) is a key architectural parameter in LSTM and GRU models that 

plays a crucial role in determining the model’s capacity and ability to learn complex patterns in time 

series data. Models with a greater number of layers generally have an enhanced capability to capture 

deeper features and nonlinear relationships; however, they also carry a higher risk of overfitting and 

increased computational burden [31], [32].  

The experimental results demonstrate that variations in the number of layers in the LSTM and 

GRU models have a significant impact on the accuracy of water level predictions. For the LSTM model, 

using a single layer yielded the best performance, with an RMSE of 0.0363 m, MAE of 0.0220 m, MAPE 

of 1.41%, and NSE of 0.9012. When the number of layers was increased to two, model performance 

declined, with the RMSE rising to 0.0397 m, MAE to 0.0264 m, MAPE to 1.69%, and NSE dropping to 

0.8820. Adding a third layer further deteriorated performance, with the RMSE increasing to 0.0540 m, 

MAE to 0.0357 m, MAPE to 2.31%, and NSE decreasing to 0.7816. This decline in accuracy and the 

rise in error metrics observed when using three layers in the LSTM model indicate possible overfitting. 

As the network depth increases, the model becomes more complex and may begin to memorize the 

training data, which impairs its ability to generalize to new, unseen data. 

A slightly different trend was observed in the GRU model. A single GRU layer yielded an RMSE 

of 0.0300 m, MAE of 0.0191 m, MAPE of 1.22%, and NSE of 0.9328. When the number of layers was 

increased to two, model performance improved, achieving the lowest RMSE of 0.0278 m, MAE of 

0.0181 m, MAPE of 1.15%, and the highest NSE of 0.9422. However, adding a third layer did not 

provide further improvements; in fact, there was a slight decline in some metrics, with an RMSE of 

0.0280 m, MAE of 0.0171 m, MAPE of 1.10%, and NSE of 0.9412, along with an increase in training 

time. Although the GRU model maintained high accuracy with two layers, further increases in depth 

(three layers) did not result in significant improvement and, in some cases, led to marginally worse 

performance. This suggests a diminishing return and the onset of overfitting or excess model capacity. 

Table 3 offers a detailed comparison of RMSE, MAE, MAPE, and NSE metrics for each layer 

configuration in the LSTM and GRU models, providing insight into the impact of layer number on 

overall performance. 
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Table 3. Summary of LSTM and GRU model performance across different layers 

Model Layers RMSE (m) MAE (m) MAPE (%) NSE 

LSTM 1 0.0363 0.0219 1.40 0.9011 

LSTM 2 0.0397 0.0264 1.68 0.8819 

LSTM 3 0.0540 0.0357 2.30 0.7815 

GRU 1 0.0299 0.0190 1.21 0.9328 

GRU 2 0.0277 0.0180 1.15 0.9422 

GRU 3 0.0280 0.0170 1.09 0.9411 

 

A comprehensive illustration of the training process dynamics and prediction accuracy for 

different layer configurations is provided in Figure 5, which presents the changes in training and 

validation loss. Figure 6 offers a comparative overview of the RMSE, MAE, MAPE, and NSE metrics 

for both models. In this figure, each color represents a different model-layer configuration as detailed in 

the legend, facilitating direct performance comparison across settings. 

 

 

 
Figure 5. Comparison Training and Validation loss of Depth Layer Effects on LSTM vs GRU 

 

Figure 5 presents the training and validation loss curves for each LSTM and GRU configuration 

with varying depths, as indicated in the legend. Solid and dashed lines distinguish LSTM and GRU 

models, respectively. These plots allow readers to compare convergence speed and final loss values 

across model architectures, as well as to observe signs of overfitting, such as a widening gap between 

training and validation loss in deeper networks. 

 

 
Figure 6. Metrics Performance of LSTM vs GRU 
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In Figure 6, each color in the bar chart corresponds to a specific number of layers for the LSTM 

and GRU models, as detailed in the legend. This color coding enables an easy visual comparison of 

predictive accuracy across all model configurations, helping to highlight which setup delivers the lowest 

error and the highest NSE for water level prediction. 

Overall, the experimental results confirm that increasing the number of layers does not always 

correspond to improved model accuracy. In this case, the LSTM model achieved its best performance 

with a single layer, while the GRU model reached optimal results with two layers. Excessive addition 

of layers can, in fact, lead to reduced accuracy, increased risk of overfitting, and greater computational 

burden, as demonstrated in the evaluation graphs and tables. These findings highlight the importance of 

selecting an appropriate architectural configuration in developing time series prediction models to 

achieve a balance between accuracy, computational efficiency, and model complexity. The best 

configuration for each model, as determined from the sequential hyperparameter optimization 

experiments, is summarized in Table 4 and Table 5. This table highlights the optimal window size and 

number of layers, along with the corresponding evaluation metrics, for both LSTM and GRU models  

 

Table 4. Summary of optimal window size for both LSTM and GRU models 

Model Window Size RMSE (m) MAE (m) MAPE (%) NSE 

LSTM 30 0.0348 0.0223 1.43 0.9090 

GRU 20 0.0294 0.0187 1.19 0.9339 

 

Table 5. Summary of optimal layer depth for both LSTM and GRU models 

Model Layer RMSE (m) MAE (m) MAPE (%) NSE 

LSTM 1 0.0363 0.0219 1.40 0.9011 

GRU 2 0.0277 0.0180 1.15 0.9422 

 

In this study, hyperparameter optimization was performed in a sequential manner. The window 

size parameter was first optimized by varying its value (10, 20, 30, etc.) while keeping the number of 

layers fixed at one. Once the optimal window size was identified, the effect of increasing model depth 

was investigated by varying the number of layers (1, 2, 3) using the previously determined optimal 

window size. As a result, the best configurations for each model are reported based on the optimal 

settings found in these independent experiments, rather than from an exhaustive grid search of all 

possible parameter combinations. 

4. DISCUSSIONS 

In this study, a comprehensive analysis was conducted to examine the effects of window size and 

number of layers on the performance of LSTM and GRU models for river water level prediction based 

on historical data in Palembang. The experimental results demonstrate that both the selection of window 

size and the number of layers have a significant impact on model prediction accuracy and computational 

efficiency. 

4.1. Evaluation of Window Size and Its Effect on Accuracy 

The experimental results indicate that window size is a key parameter in the development of time 

series prediction models. For the LSTM model, a gradual increase in window size (10, 20, 30) resulted 

in improved accuracy, with the best performance achieved at a window size of 30 (RMSE 0.0349 m; 

MAE 0.0224 m; MAPE 1.43%; NSE 0.9090). In contrast, the GRU model attained optimal accuracy at 
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a window size of 20 (RMSE 0.0294 m; MAE 0.0187 m; MAPE 1.19%; NSE 0.9339), while further 

increasing the window size to 30 actually led to decreased performance. 

The visualization of the relationship between observed and predicted values for the best 

configurations of both models is presented in Figure 7. The scatter plot shows that the GRU model 

(window size 20) exhibits predictions that are more closely distributed along the identity line (y = x) 

compared to the LSTM model (window size 30), indicating higher prediction accuracy for the GRU. 

This finding is further supported by the evaluation metrics, with the GRU consistently demonstrating 

lower RMSE and MAE values as well as higher NSE values compared to the LSTM. 

 

 
Figure 7. Scatter Plot of  Best Window Size 

 

Overall, these results confirm that selecting an appropriate window size is crucial for optimizing 

model accuracy. This finding is consistent with previous studies that have highlighted the importance 

of tuning the window size parameter in deep learning models for time series prediction  [29], [33]. 

Furthermore, the trade-off between accuracy and computational efficiency must also be considered, as 

excessively large window sizes can increase training time without yielding significant performance 

gains. 

4.2. Evaluation of Model Layer Depth and Its Effect on Accuracy 

The number of layers (depth) is also an important architectural parameter that affects the capacity 

and generalization ability of both LSTM and GRU models. The experimental results show that 

increasing the number of layers does not always correspond to improved model accuracy. For the LSTM 

model, the single-layer configuration delivered the best performance, while adding two or three layers 

led to decreased accuracy, higher error values, and an increased risk of overfitting. In the GRU model, 

optimal performance was achieved with two layers, whereas using three layers did not yield further 

improvements and even tended to decrease some evaluation metrics. 

 

 
Figure 8. Scatter Plot of Best Layer Depth 
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A visual representation of the models’ generalization ability for each layer configuration is 

provided in Figure 8, which displays scatter plots of observed versus predicted values for the LSTM 

model (1 layer) and the GRU model (2 layers), the best-performing combinations based on the 

evaluation results. These scatter plots illustrate the proximity of the predicted values to the actual data; 

the closer the points are to the identity line (y = x), the better the model's ability to represent the data. 

The data distribution in these scatter plots confirms that the single-layer LSTM and two-layer 

GRU models accurately captured the relationship between input and target variables in the river water 

level dataset. Nevertheless, some deviations are still present in the predictions of the LSTM (with two 

and three layers) and GRU (with three layers), indicating the potential for overfitting or model 

complexity that exceeds the available data volume. This finding is consistent with previous studies, 

which recommend using relatively simple architectures for time series prediction models especially 

those based on LSTM and GRU to maintain a balance between accuracy, computational efficiency, and 

generalization capability [31], [32]. Therefore, the selection of the number of layers should take into 

account data complexity and the risk of overfitting, rather than simply increasing architectural depth. 

This study provides empirical guidance for selecting LSTM and GRU model architectures in 

hydrological forecasting applications, particularly for near real-time river water level prediction in 

tropical regions. The findings emphasize the necessity of hyperparameter tuning that considers both 

model accuracy and computational resources, ensuring that the developed models are not only effective 

but also practical for operational use. 

5. CONCLUSION 

This study successfully demonstrates that both window size and the number of layers are critical 

factors in constructing effective deep learning models for river water level prediction. The experimental 

findings reveal that the optimal parameter configurations vary between the two architectures: the LSTM 

model achieves its highest accuracy with a window size of 30 and a single-layer structure, whereas the 

GRU model performs best with a window size of 20 and two layers. These hyperparameter choices not 

only enhance prediction accuracy but also significantly affect computational efficiency and the risk of 

overfitting, emphasizing the need for careful tuning during model development. 

This comparative evaluation offers practical guidelines for selecting deep learning configurations 

in hydrological contexts, enabling researchers and practitioners to balance model complexity, accuracy, 

and computational resources more effectively. The results strengthen the existing body of literature 

underscoring the importance of hyperparameter optimization in hydrological time series forecasting. 

Furthermore, this study provides empirical guidance for selecting model architectures in hydrological 

applications, particularly for near real-time forecasting scenarios in tropical regions.  

To further advance this research, future work is recommended to explore additional 

hyperparameter settings, incorporate external datasets to improve generalizability, and implement real-

time prediction scenarios to validate model adaptability and operational feasibility. 
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