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Abstract

Accurate river water level prediction is essential for flood management, especially in tropical areas like Palembang.
This study systematically analyzes the performance of two deep learning models, Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), for real-time water level forecasting using hourly rainfall and water level data
collected from automatic sensors. A series of experiments were conducted by varying window sizes (10, 20, 30) and
the number of layers (1, 2, 3) for both models, with model performance assessed using RMSE, MAE, MAPE, and
NSE. The results demonstrate that both window size and network depth significantly influence prediction accuracy
and computational efficiency. The LSTM model achieved its highest accuracy with a window size of 30 and a single
layer, while the GRU model performed best with a window size of 20 and two layers. This work contributes by
systematically analyzing hyperparameter configurations of LSTM and GRU models on hourly rainfall and water
level time series for flood-prone regions, offering empirical insight into parameter tuning in recurrent neural
architectures for hydrological forecasting. These findings highlight the importance of careful parameter selection in
developing reliable early warning systems for flood risk management.
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1. INTRODUCTION

Accurate river water level prediction remains a critical concern for hydrology and water resource
management, as it supports various applications ranging from infrastructure planning and hydropower
operations to navigation and ecological protection [1], [2], [3], [4], [5], [6]. Uncertainty in water level
variation affects not only ecosystem stability but also decision-making processes in environmental and
regional planning [7]. In recent decades, global climate change and the rising occurrence of extreme
weather events have increased the complexity of river flow prediction, highlighting the need for more
precise and adaptive forecasting approaches. Nevertheless, water level prediction remains challenging
due to the complexity of contributing factors, which range from meteorological variables to hydrological
data processes within river basins [7], [8]. These challenges have encouraged researchers to seek new
approaches that are more adaptive and effective.

The evolution of water level forecasting has paralleled advances in computational intelligence,
moving beyond traditional hydrological simulation to embrace data-centric approaches. Machine
learning and deep learning, in particular, have enabled the discovery of complex nonlinear relationships
in river systems without dependence on detailed physical parameterization [9]. Numerous investigations
have confirmed that these data-driven methods can outperform classical models, especially for short-
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term prediction and in operational settings with limited physical data [10]. Despite this progress,
comparative analysis of deep learning architectures and their parameter sensitivity in hydrological
applications remains an ongoing area of research.

Numerous machine learning algorithms, including M5P, Random Forest, Regression Tree, and
REPTree, have been successfully utilized for river water level prediction in various geographic settings,
frequently achieving better performance than traditional hydrological models [8], [11]. However, the
application of deep learning for water level prediction remains relatively unexplored, despite its proven
success in many other fields. Among deep learning architectures, the Recurrent Neural Network (RNN)
stands out in time series modeling because its network structure is specifically designed to process
sequential data, such as periodically recorded river water levels [12]. Among the various types of
recurrent neural networks, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models
are extensively utilized because of their effectiveness in capturing long-term dependencies within time
series data [10].

Several studies have evaluated the performance of LSTM and GRU models in the context of water
level prediction. For instance, the application of LSTM at four stations along the Nam Ngum River in
Laos PDR demonstrated NSE values ranging from 0.5 to 0.7 during most of the testing periods [13].
Meanwhile, GRU-based approaches have also been shown to improve the accuracy of water level
predictions under extreme flood conditions when compared to conventional univariate methods[14].
These findings indicate that both LSTM and GRU, as RNN-based models, are highly effective for time
series data processing and river water level prediction.

Although LSTM and GRU models have proven effective for water level prediction, most previous
studies have only examined one model at a time, often using limited types of data and specific parameter
settings. In many cases, researchers did not investigate how combining multiple input features, such as
rainfall and water level together could improve prediction results. There is also a lack of studies that
systematically test how different model parameters impact the accuracy of predictions [15], [16], [17].
As a result, direct comparisons between LSTM and GRU models for hourly water level forecasting,
especially using real-time data and various input combinations, remain very limited.

To address these gaps, this study directly compares the performance of LSTM and GRU models
by testing a range of parameter settings and input scenarios using real-time sensor data from Palembang.
We investigate not only which model works best, but also how different configurations affect prediction
accuracy in a tropical river environment. The findings from this research are expected to help improve
the practical use of deep learning models for flood prediction and water resource management.

In this research, two deep learning models, Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU), were implemented to predict river water levels using historical rainfall and water
level data collected from automatic sensors, with an hourly recording interval during the period from
March 1, 2025, to May 1, 2025. Experiments were conducted by comparing variations in the number of
layers and window sizes for both models to identify the most optimal parameter configuration. Model
performance was assessed based on four key indicators: root mean squared error (RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and the Nash—Sutcliffe efficiency (NSE). The
evaluation results showed that the LSTM model achieved its best performance with a window size of
30 and a single layer (RMSE = 0.0348 m; MAE = 0.0223 m; MAPE = 1.43%; NSE = 0.9090), while the
GRU model demonstrated optimal performance with a window size of 20 and two layers (RMSE =
0.0277 m; MAE = 0.0180 m; MAPE = 1.15%; NSE = 0.9422). These findings confirm that model
parameter tuning plays a crucial role in improving the real-time prediction accuracy of river water levels
using deep learning approaches.
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2. METHOD

In this study, river water level prediction was carried out using two deep learning models, namely
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The overall research
methodology is illustrated in Figure 1. In general, the research steps include input data collection,
preprocessing, experimentation and model training, as well as accuracy evaluation to ensure optimal
performance.
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Figure 1. Workflow Diagram

2.1. Data Collection

The dataset utilized in this analysis comprises hourly rainfall and water level measurements,
which were automatically recorded at the Radial Pump House, Palembang, between March and May
2025, resulting in a total of 1,488 paired observations. Each timestamp contains synchronized values for
both rainfall intensity and river stage height, providing a comprehensive time series for model training
and evaluation.

Table 1. History Data of Rainfall and Water Level
Timestamp Rainfall (mm/h) Water Level (m)
3/1/2025 00:00 0.1 1626

3/1/2025 01:00 0 1626
3/1/2025 02:00 0 1625
3/1/2025 03:00 0 1624
3/1/2025 04:00 0 1623
3/1/2025 05:00 0 1622
3/1/2025 06:00 0 1621
3/1/2025 07:00 0 1620
3/1/2025 08:00 0 1619
5/1/2025 22:00 0 1484
5/1/2025 23:00 0 1485

The implementation of automatic recording at fixed intervals ensured the collection of continuous
and representative data that accurately captured river flow dynamics throughout the study period.
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Subsequently, the complete dataset served as the foundation for testing and evaluating the performance
of the river water level prediction models.

2.2. Data Preprocessing

Data preprocessing in this study commenced with the conversion of water level measurements
from millimeters to meters to ensure all variables were standardized to a consistent scale, thereby
facilitating more straightforward analysis [18]. To simulate real-world forecasting conditions and
preserve temporal integrity, the time series was divided chronologically, with 80% assigned to the
training set and the final 20% reserved exclusively for out-of-sample model evaluation.

All features and target variables underwent Min-Max normalization, with scaling parameters
derived solely from the training subset, in order to prevent data leakage and promote faster convergence
during the training phase. The normalization was performed using the following formula:

X— Xmin

(M

Xscated =

Xmax— Xmin

This process scaled all variables to the [0, 1] range, ensuring that each feature contributed
proportionally during model training, which helped prevent certain features from dominating and
facilitated faster convergence [18], [19] Consistent and systematic preprocessing steps are essential for
building robust predictive models and for maintaining data quality and integrity throughout the
experiments.

2.3. Model Development

All experiments were performed in Python 3.9 using TensorFlow 2.8 and the Keras API. Both
LSTM and GRU models had a single recurrent layer (50 units), dropout (0.2), and a dense output. Input
sequences used sliding windows of 10, 20, and 30 time steps and various layer depth 1, 2, and 3 layers.
Models were trained with the Adam optimizer (learning rate 0.0001), batch size 16, and early stopping.
Evaluation on the test set employed RMSE, MAE, MAPE, and NSE. The specific architecture and
computational mechanism of each model are described in the following subsections.

2.3.1. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a variant of recurrent neural networks (RNNs) specifically
introduced to overcome the inherent difficulties of traditional RNNs, such as vanishing or exploding
gradients, which often hinder effective learning over long temporal sequences [20]. This architecture
relies on memory cells that use three principal gates, input, forget, and output to modulate information
flow at each time step. Two internal states are managed within each cell: the cell state, retaining long-
term patterns, and the hidden state, holding short-term representations [21]. These gates dynamically
control which signals are updated, preserved, or output, thus allowing the network to maintain relevant
sequence information over extended periods [22]. The mathematical operations for the LSTM cell are
outlined as follows, where each gate operation is governed by dedicated weights and activation functions
[23]:

ie = o(W;[he1, %] + by) Q)
fo = o(Wslh_1, %] + by) 3)
0p = oWy lhe—1,xc] + bo) 4)
& = tanh (Wg[he_1, %] + b) (5)
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Ce=frxcroqrtip*C, (6)

h; = o, * tanh(c?) (7)

The symbol ¢ represents the sigmoid activation function, W and b stands for the weight matrix
the bias term for each respective gate. x; and h;_; represent the current input and previous hidden state,
respectively. The input (i;) forget (f;), and output (o, ) gates, defined in Eq. (2), (3), and (4), control how
information is added, retained, or passed on at each step. The candidate cell state (¢;) given in Eq. (5),
proposes new content for the memory cell. The actual cell state update combines the previous cell state
and candidate state weighted by their respective gates, as described in Eq. (6). Finally, the hidden state
(h¢) is produced by modulating the cell state with the output gate, as shown in Eq. (7). This gating
mechanism enables LSTM to adaptively filter and propagate relevant temporal information.

This LSTM architecture enables the model to effectively retain essential information over long
sequences of data and mitigates information loss caused by gradient issues. A schematic illustration of
the LSTM architecture, depicting the relationships between the cell state, hidden state, and main gates,
is presented in Figure 2:

o A Ce
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Y

Figure 2. LSTM Architecture

2.3.2. Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is a model developed based on the LSTM architecture, aiming
to optimize its network structure while maintaining comparable performance [24]. In LSTM networks,
overfitting can occur when available data are insufficient, as the model requires a larger number of
parameters than conventional RNNs to address long-term dependency issues. GRU addresses these
shortcomings by modifying the LSTM structure. Unlike LSTM, the GRU architecture consists of only
two gates namely the update gate and the reset gate which effectively handle time series prediction
problems with long intervals and significant delays. The update gate regulates the amount of information
from previous time steps that is retained and transferred to the current time step, whereas the reset gate
determines the degree to which information from the preceding time step is disregarded [10], [24].

The architecture of the GRU is depicted in Figure 3 illustrated the GRU employs two primary
gates, the update gate and the reset gate, to regulate information flow within the network. To further
clarify the GRU's computational process, the definitions of the key variables and the mathematical
formulations are presented with eq (8) - (12).
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Figure 3. GRU Architecture
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17 1s the output of the reset gate at time step - t, z; is the output of the update gate at time step- t,
h; and h;_; represent the outputs at time steps - t and t-1, respectively x; denotes the input at time step
— t. The symbol ¢ refers to the sigmoid activation function. The computation process for the memory
unit is expressed in Equations (8) - (12):

re =0 . [he-q, %)) (8)
ze = oWy . [he—y,x.]) ©)
hy = tanh (w5 . [1; * he_q, x¢]) (10)
hy=(1— 2)*h_y+ 7 *h; (11)
e =0, . he) (12)

Under comparable parameter settings, the GRU has demonstrated notable strengths in comparison
to the LSTM. On various datasets, GRU models often converge faster during training on CPUs, which
leads to a significant reduction in computational time. The GRU’s simpler parameter update mechanism
also results in a more stable training process [24]. As a result, GRU is considered an efficient and
competitive option, particularly for applications with limited computational resources or moderate data
complexity.

2.4. Performance Indicators

2.4.1. MAE

Mean Absolute Error (MAE) quantifies the average magnitude of the absolute differences
between observed and predicted values. As it is measured in the same units as the original data, MAE
offers an intuitive measure of model accuracy. Lower MAE values reflect superior predictive
performance in capturing the true data patterns. [25]. The calculation of MAE is presented in Equation

(13).

n
1
MAE = = 3'ly; - 5;] (13)
i=1

2.4.2. MAPE

Mean facilitating interpretation and enabling model performance comparisons across different
datasets with varying scales. By calculating the average absolute percentage difference between actual
and predicted values, MAPE serves as one of the most popular indicators for evaluating model
performance, particularly in cases where percentage values are more relevant for analysis [26]. The
calculation of MAPE is presented in Equation (14).

n

1 R
MAPEz—Z Yi — Vi
n Vi

| x 100% (14)

i=1
2.4.3. RMSE

Root Mean Squared Error (RMSE) measures the square root of the mean of the squared
differences between observed and predicted values. Due to its sensitivity to large errors, a high RMSE
value signifies substantial discrepancies between the model's predictions and the actual observations
[27]. The calculation of RMSE is presented in Equation (15).
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1 n
RMSE = |- (i = ;) (15)
i=1
2.4.4. NSE

Nash Sutcliffe Efficiency (NSE) is a commonly employed statistical metric for assessing the
performance of hydrological models. An NSE value near 1 signifies that the model effectively represents
the observed data, while values near zero or negative indicate inadequate predictive capability [28]. The
calculation of NSE is presented in Equation (16).

N (v, —%.)2
NSE:l_M (16)

= (v —z)z
3.  RESULT

3.1. Analysis of Window Size Selection on Model Accuracy

Window size is a critical parameter in LSTM and GRU models, as it determines the amount of
historical data used as input to predict the next value. Selecting an appropriate window size is essential
for enabling the model to capture temporal patterns and long-term dependencies in time series data. A
window size that is too small may lead to the omission of relevant historical information, whereas an
excessively large window size can introduce noise and increase computational burden [29], [30].

In this study, experiments were conducted using window sizes of 10, 20, and 30 for both models.
The evaluation results for the LSTM model indicate that increasing the window size generally improves
prediction accuracy. A window size of 10 resulted in an RMSE of 0.0396 m, MAE of 0.0254 m, MAPE
of 1.64%, and NSE of 0.8870. When the window size was increased to 20, the error values decreased,
with an RMSE of 0.0356 m, MAE of 0.0236 m, MAPE of 1.50%, and NSE of 0.9038. The window size
of 30 produced the best results, with an RMSE of 0.0349 m, MAE of 0.0224 m, MAPE of 1.43%, and
NSE of 0.9090, although it required a longer training time.

A similar trend was also observed in the GRU model. With a window size of 10, the GRU
achieved an RMSE of 0.0328 m, MAE of 0.0206 m, MAPE of 1.33%, and NSE of 0.9225. The model’s
performance further improved at a window size of 20, yielding an RMSE of 0.0295 m, MAE of 0.0188
m, MAPE of 1.20%, and NSE of 0.9340, which represents the optimal results. However, at a window
size of 30, model performance tended to decline, with RMSE increasing to 0.0336 m, MAE to 0.0207
m, MAPE to 1.33%, and NSE decreasing to 0.9153. In addition, training time increased with larger
window sizes for both models.

Comparison of Window Size Effects on LSTM vs GRU Performance

RMSF (m) MAF (m)

Figure 4. Comparison of Window Size Effects on LSTM vs GRU Performance
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A comprehensive illustration of model performance is provided in Figure 4, which presents a
comparison of RMSE, MAE, MAPE, and NSE values for the LSTM and GRU models. In addition,
Table 2 summarizes the key evaluation results for each model and window size combination.

Table 2. Summary of LSTM and GRU model performance across different window sizes.
Model Window Size RMSE (m) MAE (m) MAPE (%) NSE

LSTM 10 0.0395 0.0254 1.64 0.8870
LSTM 20 0.0356 0.0235 1.50 0.9038
LSTM 30 0.0348 0.0223 1.43 0.9090
GRU 10 0.0327 0.0205 1.32 0.9225
GRU 20 0.0294 0.0187 1.19 0.9339
GRU 30 0.0336 0.0206 1.33 0.9153

Overall, the experimental results indicate that selecting an optimal window size can significantly
enhance model accuracy. For the LSTM model, a window size of 30 yielded the best results, while for
the GRU model, a window size of 20 was the most optimal configuration. These findings underscore
the importance of tuning the window size parameter in the development of time series prediction models,
while also considering the balance between accuracy and computational efficiency.

3.2. Analysis of Layer Number Selection on Model Accuracy

The number of layers (depth) is a key architectural parameter in LSTM and GRU models that
plays a crucial role in determining the model’s capacity and ability to learn complex patterns in time
series data. Models with a greater number of layers generally have an enhanced capability to capture
deeper features and nonlinear relationships; however, they also carry a higher risk of overfitting and
increased computational burden [31], [32].

The experimental results demonstrate that variations in the number of layers in the LSTM and
GRU models have a significant impact on the accuracy of water level predictions. For the LSTM model,
using a single layer yielded the best performance, with an RMSE 0f 0.0363 m, MAE 0f 0.0220 m, MAPE
of 1.41%, and NSE of 0.9012. When the number of layers was increased to two, model performance
declined, with the RMSE rising to 0.0397 m, MAE to 0.0264 m, MAPE to 1.69%, and NSE dropping to
0.8820. Adding a third layer further deteriorated performance, with the RMSE increasing to 0.0540 m,
MAE to 0.0357 m, MAPE to 2.31%, and NSE decreasing to 0.7816. This decline in accuracy and the
rise in error metrics observed when using three layers in the LSTM model indicate possible overfitting.
As the network depth increases, the model becomes more complex and may begin to memorize the
training data, which impairs its ability to generalize to new, unseen data.

A slightly different trend was observed in the GRU model. A single GRU layer yielded an RMSE
0f 0.0300 m, MAE of 0.0191 m, MAPE of 1.22%, and NSE of 0.9328. When the number of layers was
increased to two, model performance improved, achieving the lowest RMSE of 0.0278 m, MAE of
0.0181 m, MAPE of 1.15%, and the highest NSE of 0.9422. However, adding a third layer did not
provide further improvements; in fact, there was a slight decline in some metrics, with an RMSE of
0.0280 m, MAE of 0.0171 m, MAPE of 1.10%, and NSE of 0.9412, along with an increase in training
time. Although the GRU model maintained high accuracy with two layers, further increases in depth
(three layers) did not result in significant improvement and, in some cases, led to marginally worse
performance. This suggests a diminishing return and the onset of overfitting or excess model capacity.

Table 3 offers a detailed comparison of RMSE, MAE, MAPE, and NSE metrics for each layer
configuration in the LSTM and GRU models, providing insight into the impact of layer number on
overall performance.
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Table 3. Summary of LSTM and GRU model performance across different layers

Model Layers RMSE (m) MAE(@m) MAPE (%) NSE
LSTM 1 0.0363 0.0219 1.40 0.9011
LST™M 2 0.0397 0.0264 1.68 0.8819
LSTM 3 0.0540 0.0357 2.30 0.7815
GRU 1 0.0299 0.0190 1.21 0.9328
GRU 2 0.0277 0.0180 1.15 0.9422
GRU 3 0.0280 0.0170 1.09 0.9411

A comprehensive illustration of the training process dynamics and prediction accuracy for

different layer configurations is provided in Figure 5, which presents the changes in training and
validation loss. Figure 6 offers a comparative overview of the RMSE, MAE, MAPE, and NSE metrics
for both models. In this figure, each color represents a different model-layer configuration as detailed in

the legend, facilitating direct performance comparison across settings.
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Figure 5. Comparison Training and Validation loss of Depth Layer Effects on LSTM vs GRU

Figure 5 presents the training and validation loss curves for each LSTM and GRU configuration
with varying depths, as indicated in the legend. Solid and dashed lines distinguish LSTM and GRU
models, respectively. These plots allow readers to compare convergence speed and final loss values

across model architectures, as well as to observe signs of overfitting, such as a widening gap between

training and validation loss in deeper networks.
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In Figure 6, each color in the bar chart corresponds to a specific number of layers for the LSTM
and GRU models, as detailed in the legend. This color coding enables an easy visual comparison of
predictive accuracy across all model configurations, helping to highlight which setup delivers the lowest
error and the highest NSE for water level prediction.

Overall, the experimental results confirm that increasing the number of layers does not always
correspond to improved model accuracy. In this case, the LSTM model achieved its best performance
with a single layer, while the GRU model reached optimal results with two layers. Excessive addition
of layers can, in fact, lead to reduced accuracy, increased risk of overfitting, and greater computational
burden, as demonstrated in the evaluation graphs and tables. These findings highlight the importance of
selecting an appropriate architectural configuration in developing time series prediction models to
achieve a balance between accuracy, computational efficiency, and model complexity. The best
configuration for each model, as determined from the sequential hyperparameter optimization
experiments, is summarized in Table 4 and Table 5. This table highlights the optimal window size and
number of layers, along with the corresponding evaluation metrics, for both LSTM and GRU models

Table 4. Summary of optimal window size for both LSTM and GRU models
Model Window Size RMSE (m) MAE (m) MAPE (%) NSE
LSTM 30 0.0348 0.0223 1.43 0.9090

GRU 20 0.0294 0.0187 1.19 0.9339

Table 5. Summary of optimal layer depth for both LSTM and GRU models
Model Layer =~ RMSE (m) MAE (m) MAPE (%) NSE
LSTM 1 0.0363 0.0219 1.40 0.9011

GRU 2 0.0277 0.0180 1.15 0.9422

In this study, hyperparameter optimization was performed in a sequential manner. The window
size parameter was first optimized by varying its value (10, 20, 30, etc.) while keeping the number of
layers fixed at one. Once the optimal window size was identified, the effect of increasing model depth
was investigated by varying the number of layers (1, 2, 3) using the previously determined optimal
window size. As a result, the best configurations for each model are reported based on the optimal
settings found in these independent experiments, rather than from an exhaustive grid search of all
possible parameter combinations.

4.  DISCUSSIONS

In this study, a comprehensive analysis was conducted to examine the effects of window size and
number of layers on the performance of LSTM and GRU models for river water level prediction based
on historical data in Palembang. The experimental results demonstrate that both the selection of window
size and the number of layers have a significant impact on model prediction accuracy and computational
efficiency.

4.1. Evaluation of Window Size and Its Effect on Accuracy

The experimental results indicate that window size is a key parameter in the development of time
series prediction models. For the LSTM model, a gradual increase in window size (10, 20, 30) resulted
in improved accuracy, with the best performance achieved at a window size of 30 (RMSE 0.0349 m;
MAE 0.0224 m; MAPE 1.43%; NSE 0.9090). In contrast, the GRU model attained optimal accuracy at
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a window size of 20 (RMSE 0.0294 m; MAE 0.0187 m; MAPE 1.19%; NSE 0.9339), while further
increasing the window size to 30 actually led to decreased performance.

The visualization of the relationship between observed and predicted values for the best
configurations of both models is presented in Figure 7. The scatter plot shows that the GRU model
(window size 20) exhibits predictions that are more closely distributed along the identity line (y = x)
compared to the LSTM model (window size 30), indicating higher prediction accuracy for the GRU.
This finding is further supported by the evaluation metrics, with the GRU consistently demonstrating
lower RMSE and MAE values as well as higher NSE values compared to the LSTM.

Scatter Plot: Observed vs Predicted (Best LSTM & GRU)
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Figure 7. Scatter Plot of Best Window Size

Overall, these results confirm that selecting an appropriate window size is crucial for optimizing
model accuracy. This finding is consistent with previous studies that have highlighted the importance
of tuning the window size parameter in deep learning models for time series prediction [29], [33].
Furthermore, the trade-off between accuracy and computational efficiency must also be considered, as
excessively large window sizes can increase training time without yielding significant performance
gains.

4.2. Evaluation of Model Layer Depth and Its Effect on Accuracy

The number of layers (depth) is also an important architectural parameter that affects the capacity
and generalization ability of both LSTM and GRU models. The experimental results show that
increasing the number of layers does not always correspond to improved model accuracy. For the LSTM
model, the single-layer configuration delivered the best performance, while adding two or three layers
led to decreased accuracy, higher error values, and an increased risk of overfitting. In the GRU model,
optimal performance was achieved with two layers, whereas using three layers did not yield further
improvements and even tended to decrease some evaluation metrics.

Scatter Plot: Observed vs Predicted (Best LSTM & GRU Depth)
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Figure 8. Scatter Plot of Best Layer Depth
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A visual representation of the models’ generalization ability for each layer configuration is
provided in Figure 8, which displays scatter plots of observed versus predicted values for the LSTM
model (1 layer) and the GRU model (2 layers), the best-performing combinations based on the
evaluation results. These scatter plots illustrate the proximity of the predicted values to the actual data;
the closer the points are to the identity line (y = x), the better the model's ability to represent the data.

The data distribution in these scatter plots confirms that the single-layer LSTM and two-layer
GRU models accurately captured the relationship between input and target variables in the river water
level dataset. Nevertheless, some deviations are still present in the predictions of the LSTM (with two
and three layers) and GRU (with three layers), indicating the potential for overfitting or model
complexity that exceeds the available data volume. This finding is consistent with previous studies,
which recommend using relatively simple architectures for time series prediction models especially
those based on LSTM and GRU to maintain a balance between accuracy, computational efficiency, and
generalization capability [31], [32]. Therefore, the selection of the number of layers should take into
account data complexity and the risk of overfitting, rather than simply increasing architectural depth.

This study provides empirical guidance for selecting LSTM and GRU model architectures in
hydrological forecasting applications, particularly for near real-time river water level prediction in
tropical regions. The findings emphasize the necessity of hyperparameter tuning that considers both
model accuracy and computational resources, ensuring that the developed models are not only effective
but also practical for operational use.

5.  CONCLUSION

This study successfully demonstrates that both window size and the number of layers are critical
factors in constructing effective deep learning models for river water level prediction. The experimental
findings reveal that the optimal parameter configurations vary between the two architectures: the LSTM
model achieves its highest accuracy with a window size of 30 and a single-layer structure, whereas the
GRU model performs best with a window size of 20 and two layers. These hyperparameter choices not
only enhance prediction accuracy but also significantly affect computational efficiency and the risk of
overfitting, emphasizing the need for careful tuning during model development.

This comparative evaluation offers practical guidelines for selecting deep learning configurations
in hydrological contexts, enabling researchers and practitioners to balance model complexity, accuracy,
and computational resources more effectively. The results strengthen the existing body of literature
underscoring the importance of hyperparameter optimization in hydrological time series forecasting.
Furthermore, this study provides empirical guidance for selecting model architectures in hydrological
applications, particularly for near real-time forecasting scenarios in tropical regions.

To further advance this research, future work is recommended to explore additional
hyperparameter settings, incorporate external datasets to improve generalizability, and implement real-
time prediction scenarios to validate model adaptability and operational feasibility.
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