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Abstract 

Java Island has numerous active faults, making earthquake magnitude prediction a crucial component of disaster 

mitigation efforts. This study conducted a rigorous comparative analysis of four machine learning algorithms—

Random Forest, Neural Network, Linear Regression, and Support Vector Machine—to determine their effectiveness 

in this specific task. The methodology employed involved systematic hyperparameter optimization for each model to 

ensure a fair and robust evaluation, with performance measured by Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and training time. The results showed that all three nonlinear models significantly 

outperformed Linear Regression. Random Forest achieved the highest accuracy (RMSE 0.5445), but Support Vector 

Machine and Neural Network demonstrated very competitive and nearly equal performance. The study concluded 

that while Random Forest has a slight advantage, several state-of-the-art models are highly capable of addressing this 

problem after appropriate optimization. This underscores the critical role of methodical tuning and implies that model 

selection in practical applications depends on a trade-off between modest improvements in accuracy and 

computational efficiency. 
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1. INTRODUCTION 

1.1. Background 

Indonesia, a country situated at the intersection of several major tectonic plates, is inherently 

vulnerable to seismic activity. In particular, the island of Java, which is the center of the country’s 

population, economy, and government, is under constant threat from potential earthquakes. This threat 

is not a hypothesis, but a well-documented geological reality. Based on data from the Geological Survey 

Center, several active faults on the island of Java can trigger earthquakes of significant strength, thereby 

drastically increasing the risk of natural disasters in the region [1]. These faults, as visually shown in 

Figure 1, are cracks in the Earth’s crust where movement has occurred. The red lines on the map are not 

just geographic markers, but representations of latent sources of seismic energy that can be released at 

any time, causing severe shaking. 

Earthquakes are one of the most destructive natural disasters, given the force of the shock that 

can flatten buildings and infrastructure, and cause significant loss of life [2]. The impact of earthquakes 

is not limited only to physical damage, but also extends to social and economic aspects, causing long-

term psychological trauma, paralyzing local economic activities, and requiring enormous recovery costs. 

https://jutif.if.unsoed.ac.id/
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Figure 1. Map of Active Faults in Java Island 

 

History records a series of tragic events on the island of Java that serve as a tangible reminder of 

the destructive power of earthquakes. Some examples of major earthquakes that have occurred on the 

island of Java include the 2006 earthquake in Yogyakarta, with a magnitude of 5.9 SR, which shook the 

Bantul, Sleman, and surrounding areas, resulting in 5,782 deaths and approximately 66,359 houses being 

severely damaged [3], [4]. This event highlights the vulnerability of densely populated communities 

when confronted with unexpected natural forces. 

More recently, the 2022 Cianjur earthquake with a magnitude of 5.6 SR also recorded up to 600 

fatalities and caused significant infrastructure damage in the area [5], [6]. Although the magnitude was 

moderate, the impact was catastrophic because it occurred on land with a shallow depth and in an area 

with a building density that did not meet earthquake-resistant standards. In addition, there was the 

Batang earthquake in 2024. The earthquake had a magnitude of 4.4 SR and shook the Batang, 

Pekalongan, and surrounding areas. Although it did not cause significant casualties, this earthquake 

damaged many homes and infrastructure in the area [7], [8], showing that even earthquakes with smaller 

magnitudes still have the potential for damage that cannot be ignored. These incidents highlight the 

importance of disaster preparedness, particularly in regions with a high earthquake potential, such as 

Java. 

Given the significant potential of these active faults, predicting earthquake magnitude is crucial 

for practical mitigation efforts. Although predicting the exact time and location of an earthquake remains 

the biggest challenge in seismology, efforts to predict potential magnitudes based on historical data and 

geophysical parameters represent a crucial step forward. This magnitude prediction can provide valuable 

information for planning and preparation, particularly in early warning systems and disaster loss 

reduction. With an estimate of the earthquake strength, the government and related institutions can 

design safer spatial planning, strengthen building standards, and develop more effective and targeted 

evacuation plans. 

This is where the role of modern computing technology becomes very relevant. One approach 

that can be used to predict earthquake magnitude is to apply machine learning methods, which enable 

the analysis of complex patterns and relationships in earthquake data [9]. Machine learning, with its 

ability to “learn” from large volumes of data, offers the hope of identifying hidden correlations between 

various precursor variables (such as location, depth, and time of previous earthquakes) and future 

earthquake magnitudes. This approach goes beyond conventional statistical analysis by addressing the 

non-linear relationships that are often characteristic of complex and chaotic geophysical systems. 

Several previous studies have applied various machine learning algorithms to predict earthquake 

magnitude. For example, Ade Fauzan and Defri Ahmad have predicted the magnitude of an earthquake 

https://jutif.if.unsoed.ac.id/
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in Padang City using the Random Forest technique, yielding an RMSE value of 0.31758 and an MSE 

value of 0.10085 [10]. Then, Oman Somantri has predicted the strength of an earthquake in Indonesia 

using the Neural Network method optimized by a genetic algorithm, and the prediction results obtained 

an RMSE value of 0.708 [11]. Furthermore, Annisa Alifa et al. have predicted the strength of an 

earthquake using the Linear Regression algorithm, yielding prediction results with an RMSE value of 

48.8352, a MAPE value of 1.2564, and a MAE value of 24.065 [12]. Then, Oman Somantri et al. 

predicted the strength of earthquakes using a Support Vector Machine model based on window 

parameters, obtaining a prediction result with an RMSE value of 0.712 [13]. 

However, although these studies have been conducted and demonstrate the potential of each 

algorithm, there has been no study that directly compares the four algorithms in terms of accuracy and 

computation time for predicting earthquake magnitude in the same geospatial context, namely Java 

Island. Each of these studies stands alone with possibly different datasets and scopes, making it difficult 

to draw valid conclusions about which algorithm is inherently superior for this task. Therefore, this 

study aims to fill this gap by comparing the Random Forest, Neural Network, Linear Regression, and 

Support Vector Machine algorithms in terms of two main aspects, namely prediction accuracy and 

computation time. Thus, the formulation of the problem addressed in this study is: Which algorithm has 

the best accuracy in predicting earthquake magnitude, and which algorithm has the best computational 

time for such predictions? This question has two equally important sides. High accuracy is the main goal 

to ensure the reliability of predictions. Still, fast computation time is also crucial if this model is to be 

implemented in an early warning system that requires the quickest possible response. 

This research contributes to the understanding of the most effective machine learning algorithm 

for predicting earthquake magnitude, considering both accuracy and computation time factors 

simultaneously. The results of this study can provide significant contributions to the development of 

more efficient earthquake prediction models that can be implemented to improve disaster mitigation in 

Java Island. Understanding the trade-off between accuracy and speed will be a valuable guide for data 

scientists, engineers, and policymakers in selecting and developing effective decision-making tools for 

addressing seismic threats. 

1.2. Earthquake Magnitude Prediction Algorithm 

To answer the problem formulation, this study will implement and compare four popular machine 

learning algorithms that have different fundamental approaches to data modeling. 

Random Forest 

Random Forest (RF) is an ensemble learning algorithm for classification and regression tasks. 

Illustrated in Figure 2, this algorithm operates by constructing multiple decision trees on a randomly 

selected subset of the training data. This approach, known as bagging, aims to produce more stable 

predictions and prevent overfitting, where the final prediction for regression is determined by averaging 

the results from all trees [14]. 

A significant advantage of Random Forest (RF) is its ability to handle both categorical and 

continuous variables, as well as its tolerance for missing data [15]. In addition, its ability to process 

complex, non-linear, and high-dimensional data makes RF very suitable for various modelling needs, 

including in the context of earthquake prediction, which is non-linear [16], [17]. 

As an ensemble model, Random Forest does not have a single mathematical formulation like 

Linear Regression. Instead, it builds several K different decision trees during the training process. 

https://jutif.if.unsoed.ac.id/
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Figure 2. Random Forest 

 

For regression tasks, the final prediction is the average of the predictions of all individual decision 

trees. The prediction formulation is as follows: 

𝒚̂𝒓𝒇 =
𝟏

𝑲
∑ 𝑻𝒌(𝒙)
𝑲
𝒌=𝟏      (1) 

Information: 

yrf = final prediction results from RF 

K = total number of Decision trees 

Tk(x) = prediction from the k-th Decision tree input x 

 

Neural Network 

A Neural Network is an algorithm for identifying data patterns through a process inspired by the 

workings of the human brain [18]. Like the brain, this network consists of interconnected processing 

units (neurons) [19]. Each neuron functions to receive input, process it mathematically, and produce 

output in response. 

 

Figure 3. Neural Network 

 

Illustrated in Figure 3, a Neural Network architecture generally consists of three types of layers: 

an input layer for receiving data, one or more hidden layers for computation, and an output layer for the 

final prediction [20]. Its ability to model highly complex and abstract relationships makes it a strong 

candidate for earthquake prediction problems where patterns are challenging to detect. 

Artificial Neural Networks consist of processing units called neurons. Each neuron receives one 

or more inputs, processes them, and forwards the results to other neurons. The computational process in 

a neuron can be formulated as follows: 

https://jutif.if.unsoed.ac.id/
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𝒚 = 𝒇(∑ (𝒘𝒊𝒙𝒊)
𝒏
𝒊=𝟏 + 𝒃)    (2) 

Information: 

y = output of neurons 

xi = i-th input signal 

wi = weight of each input 

b = bias to shift the activation function 

f = activation function 

Linear Regression 

Linear regression is a fundamental forecasting method that models a linear relationship between 

variables for prediction [21]. This method assumes a linear relationship, as in Figure 4, to illustrate the 

relationship between these variables [22]. Simple, this model serves as a baseline for evaluating more 

complex models. 

 

 
Figure 4. Linear Regression 

 

The formula for obtaining the equation of a line in linear regression can be written as follows 

[23]. 

𝒀 = 𝒂 + 𝒃𝒙     (3) 

Information: 

Y = dependent variable 

α = intercept 

b = regression coefficient 

x = independent variable 

Although its linearity assumption may be a limitation in modelling complex natural phenomena 

such as earthquakes, its computational speed and ease of interpretation make Linear Regression still 

relevant to be tested in this comparative study. 

The linear regression model aims to model the relationship between a dependent variable (Y) and 

one or more independent variables (X) by fitting a linear equation. For cases with multiple features 

(multivariate) such as latitude, longitude, and depth, the equation can be written as follows: 

𝒀̂ = 𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 +⋯+ 𝜷𝒑𝑿𝒑   (4) 

Information: 

Y = predicted magnitude value 

β0 = intercept 

β1,β2,βp = regression coefficient 

https://jutif.if.unsoed.ac.id/
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Support Vector Machine 

The Support Vector Machine (SVM) is a machine learning algorithm used for classification and 

prediction [24], with a variant, Support Vector Regression (SVR), used for regression tasks. The primary 

concept is to identify the optimal hyperplane that maximises the margin or separation distance between 

two data classes [25]. The working concept of SVM for classification is illustrated in Figure 5. 

 

Figure 5. Support Vector Machine 

 

SVM can handle both linear and non-linear data cases. For non-linear data, SVM employs the 

kernel trick concept, which maps the data to a higher-dimensional space to find a separating hyperplane. 

The goal of this approach is to maximise the margin between classes [26], so SVM is very powerful for 

data that cannot be separated linearly, such as seismic data. 

In the context of regression, SVM operates under a principle known as Support Vector Regression 

(SVR). Unlike regular regression, which attempts to minimise error, SVR attempts to fit a regression 

function to the data while ensuring that the deviation (error) of most data points falls within a specified 

tolerance margin, called ϵ (epsilon). The optimisation goal is: 

Minimize       
𝟏

𝟐
‖𝒘‖𝟐      (5) 

 

With constrain     |𝒚𝒊 − (𝒘. 𝒙𝒊 + 𝒃)| ≤ 𝝐    (6) 

 

Information: 

w = weight vector 

b = bias 

ϵ = tolerance margin 

xi = feature vector of the i-th data 

yi = actual value 

2. METHOD 

2.1. Research Design 

This research is a quantitative comparative study comparing four machine learning algorithms: 

Random Forest, Neural Network, Linear Regression, and Support Vector Machine. Four algorithms 

were chosen because they represent diverse fundamental approaches. The algorithms were evaluated 

based on their accuracy and computational time for the task of predicting earthquake magnitudes in 

https://jutif.if.unsoed.ac.id/
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Java. The evaluation was conducted objectively by testing all algorithms on the same dataset and using 

the same computing environment. 

The entire experimental process, from data preprocessing to model evaluation, was implemented 

using the Python programming language within the Google Colaboratory environment. The scientific 

libraries that served as the foundation for this research included Pandas for data manipulation, Scikit-

learn for machine learning model implementation and evaluation, and Matplotlib and Seaborn for data 

visualisation. The use of these open-source tools ensures transparency and ease of replication of the 

research. 

2.2. Research Procedures 

To ensure valid and replicable results, this study followed a series of structured and logical steps. 

This study went through several research stages. These stages must be carried out sequentially to achieve 

optimal results, as the output from one stage becomes the input for the next. These stages are shown in 

Figure 6 below. 

 

START
EARTHQUAKE 

DATASET
PREPROCESSING DATASET SPLIT

MODELINGMODEL EVALUATIONFINISH
HYPERPARAMETER 

TUNING
 

Figure 6. Research Flowchart 

 

Based on Figure 6, the research flow begins with preprocessing the earthquake dataset. Next, the 

dataset is divided into training and test data. The training data is used to create predictive models for the 

four tested algorithms, followed by a hyperparameter tuning process to find the best model 

configuration. Finally, the optimized models are evaluated using the test data to measure and compare 

performance based on accuracy and computation time. 

2.3. Dataset 

The data source used in this study is the Indonesian earthquake catalogue dataset obtained from 

Kaggle, a leading public data repository platform. This dataset was selected due to its 

comprehensiveness and long temporal span (2008–2023), encompassing 92,887 earthquake event 

records. This large data volume and long period provide a rich and sufficient historical basis for training 

robust machine learning models. Parameters such as event time, location (latitude and longitude), depth, 

and magnitude are fundamental in seismological analysis, ensuring the data's relevance for this study. 

2.4. Preprocessing 

Raw data is rarely directly usable for modelling. Preprocessing is crucial for cleaning, filtering, 

and selecting the most relevant data to ensure the quality of model input. 

• Data Filtering Based on Location 

The first step was to filter the data to include only earthquake events located around Java Island. 

The justification for this step was the research objective of building a regionally specific prediction 

model. Seismotectonic characteristics, such as the type and behaviour of active faults, can vary 

significantly across regions in Indonesia. By focusing the dataset on a single, homogeneous 

geographic region, the model was expected to learn more relevant local patterns and produce more 

accurate predictions for that region. After this process, the dataset used for modelling consisted of 

9,395 data points. 

https://jutif.if.unsoed.ac.id/
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• Attribute Selection 

The next step was attribute selection. Of the 13 available attributes, only lat (latitude), lon 

(longitude), depth (depth), and mag (magnitude) were retained. Latitude, longitude, and depth were 

selected as predictor variables (features) because they are fundamental geospatial coordinates that 

define the earthquake hypocenter, which is theoretically the most influential factor in determining 

the energy released (magnitude). The mag attribute was designated as the target variable (label) to 

be predicted. Other attributes were excluded because initial exploratory data analysis indicated a 

very high percentage of missing values. Including these attributes would require complex 

imputation techniques that could potentially introduce bias into the model or drastically reduce the 

sample size if rows with missing values were removed. Therefore, to maintain data integrity and 

volume, it was decided to focus on the primary predictor attributes for which the data were most 

complete and relevant. 

2.5. Split Dataset 

Separating a dataset into training and test data is a fundamental procedure for obtaining an 

objective and unbiased evaluation of model performance. This practice is crucial for preventing 

overfitting, a condition in which a model memorises too much of the training data and is unable to 

generalise to new data. An overfitting model will perform very well on the training data but poorly on 

the test data, making it useless in real-world applications [27]. 

2.6. Algorithm Model Selection 

After data preparation and establishing a validation strategy, the next step is to select a model. 

This study strategically selected four models Random Forest, Neural Network, Linear Regression, and 

Support Vector Machine to cover a broad spectrum of complexity and modelling approaches. 

• Linear Regression was chosen as the base model. Due to its simplicity, this model serves as a 

fundamental benchmark for comparison. Its performance will indicate the extent to which a simple 

linear relationship can explain variations in earthquake magnitude. If more complex models fail to 

significantly outperform Linear Regression, it may indicate that the data lacks strong nonlinear 

patterns or that the features used are insufficiently informative. 

• Neural networks were chosen because of their capacity as universal approximators. Theoretically, 

with exemplary architecture, neural networks can model highly complex, nonlinear functions. This 

makes them an up-and-coming candidate for geophysical phenomena, such as earthquakes, where 

the interactions between variables can be complex and non-intuitive. 

• Random Forest was chosen because of its reputation as one of the best off-the-shelf algorithms 

and its robustness. Its ensemble nature makes it less susceptible to overfitting than a single decision 

tree. Its ability to implicitly handle feature interactions and its solid performance across a wide 

range of problem domains make it a prime contender for this comparative study. 

• Support Vector Machines were chosen for their unique geometric approach to finding optimal 

decision boundaries. Using the kernel trick, SVMs can efficiently model nonlinear boundaries, 

making them a powerful alternative to Neural Networks and Random Forests in handling data 

complexity. 

2.7. Model Performance Evaluation 

To quantitatively compare the performance of the four models, clear and relevant evaluation 

metrics are needed. This study uses two main criteria: predictive accuracy and computational efficiency. 

 

• Root Mean Squared Error (RMSE) 

https://jutif.if.unsoed.ac.id/
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In regression problems, accuracy is measured by how close the predicted values are to the actual 

values, and the Root Mean Squared Error (RMSE) is a commonly used metric to measure it. RMSE 

is popular because it provides a significant penalty for large errors, and the results are easy to 

interpret because they have the same units as the target variable. The smaller the RMSE value, the 

better the forecasting accuracy [28]. The RMSE equation used is as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖−𝑦̿𝑙)2
𝑙
𝑖=1     (7) 

Information: 

n = amount of data 

i = whole of data 

yi = actual value 

yl = predicted value 

• Mean Absolute Error (MAE) 

MAE measures the average of the absolute values of the errors. Unlike RMSE, MAE provides a 

more intuitive picture of the average magnitude of the prediction error because it does not square 

the error. This metric is less sensitive to outliers than RMSE. A lower MAE value also indicates 

better performance. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|
𝑛
𝑖=1    (8) 

Information: 

n = jumlah total dataamount of data 

yi = magnitude actual value 

ŷi = magnitude predicted value 

• Training Time 

In addition to accuracy, model efficiency is a crucial practical factor. Time to Train measures the 

total duration (in seconds) required for an algorithm to process training data and build a predictive 

model until it is ready for use. This metric represents the computational burden of a model, with 

shorter times indicating higher efficiency. In this study, time was measured by recording the 

difference in system time before and after the model training (model fitting) execution in a Python 

environment. 

2.8. Hyperparameter Optimization 

To find the optimal hyperparameter combination (except for Linear Regression), this study uses 

the Grid Search with Cross-Validation (Grid Search CV) method. This process works as follows: 

• Defines a “grid” containing all possible hyperparameter values. 

• Systematically test each combination of hyperparameters in the grid. 

• Evaluate each combination using Cross Validation to ensure stable performance. 

• Select the combination with the best average cross-validation score as the final model 

configuration. 

3. RESULT 

3.1. Best parameters 

To ensure optimal performance for each model, a hyperparameter optimization process was 

performed. This process is crucial because the correct parameters can significantly improve the model's 

https://jutif.if.unsoed.ac.id/
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ability to learn data patterns. Table 1 presents the optimal parameters identified for each algorithm 

following the tuning process. 

 

Table 1. Best Model Parameters 

No Algorithm Best Parameters 
Best Score 

(CV_neg_MSE) 

1 Random Forest 
max_depth: 10, min_samples_leaf: 2, 

n_estimators: 200 
-0.3253 

2 Support Vector Machine 
activation: relu, alpha: 0.001, 

hidden_layer_sizes: (50, 50) 
-0.3517 

3 Neural Network C: 50, gamma: scale, kernel: rbf -0.3525 

4 Linear Regression - - 

 

In Random Forest, using n_estimators of 200 means the model builds 200 decision trees, creating 

a robust and stable ensemble. Setting max_depth to 10 and min_samples_leaf to 2 helps prevent 

overfitting by limiting the complexity of each tree. 

For Support Vector Machines, the RBF (Radial Basis Function) kernel is very effective for 

handling non-linear data relationships, mapping the data to a higher-dimensional space to find the 

optimal separating hyperplane. A C value of 50 balances classification error and margin width, while a 

gamma scale adjusts for the influence of each training sample. 

In Neural Networks, an architecture with two hidden layers, each containing 50 neurons 

(hidden_layer_sizes=(50, 50)), provides sufficient capacity to learn complex patterns. The ReLU 

activation function and alpha regularization parameter of 0.001 help improve learning efficiency and 

prevent overfitting. This tuning process is crucial to finding an architecture that balances complexity 

and generalization ability. 

3.2. Predictive Model Performance Analysis 

After each model was optimised, a performance evaluation was conducted using the test data. 

Comparative results are presented in Table 2, which summarises the main evaluation metrics: Root 

Mean Squared Error (RMSE) and Mean Absolute Error (MAE) as indicators of accuracy, and Training 

Time as an indicator of efficiency. 

In terms of accuracy, Random Forest emerged as the best-performing model, as indicated by the 

lowest RMSE and MAE values. However, it is worth noting that its superiority is not absolute; Support 

Vector Machine and Neural Network demonstrated very competitive performance with a tiny margin of 

error. This indicates that the three nonlinear models have nearly equal capabilities in modeling this data. 

Linear Regression lagged significantly in terms of accuracy, highlighting its limitations in nonlinear 

problems. 

 

Table 2. Predictive Model Performance 

No Algorithm RMSE MAE Training Time (s) 

1 Random Forest 0.5445 0.4218 2,80 

2 Support Vector Machine 0.5621 0.4283 4,58 

3 Neural Network 0.5633 0.4438 2,90 

4 Linear Regression 0.6295 0.4855 0,002 
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In terms of efficiency, linear regression is the fastest due to its computational simplicity. Among 

the top three models, Random Forest and Neural Network show efficient and nearly identical training 

times (around 2.8-2.9 seconds), while Support Vector Machine takes slightly longer. 

Overall, these quantitative metrics provide a clear performance ranking, but they do not explain 

the error behavior of each model. Therefore, further visual analysis is required. 

3.3. Prediction Error Analysis 

To gain deeper insights beyond aggregate metrics, a visual analysis of the prediction results was 

performed. Figure 7 presents a scatterplot comparing the actual magnitude values (x-axis) with the 

model-predicted magnitude values (y-axis) for the test data. 

 

Figure 7. Comparison of Actual vs Predicted Data 

 

 Several visual interpretations can be drawn from Figure 9. In the Random Forest plot, the data 

points appear to be clustered much more closely around the diagonal line (the perfect prediction line). 

This visually confirms that the model's predictions have a high level of accuracy with low error variance. 

In contrast, in plot of the linear regression, the data points are much more sparsely spaced and are 

spread further from the diagonal line. This indicates a greater degree of error in each prediction and 

visually explains why the RMSE and MAE values for this model are higher. 

This visual analysis reinforces the findings from Table 2, showing that Random Forest's 

superiority is reflected not only in its lower average error value but also in the consistency of its 

predictions across a wide range of magnitudes. 

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 4, August 2025, Page. 2811-2824 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.5044 

 

 

2822 

4. DISCUSSIONS 

4.1. Model Performance Implications 

The most significant finding is the substantial performance gap between the three non-linear 

models (Random Forest, SVM, and Neural Network) and the linear regression model. The significantly 

higher RMSE value of Linear Regression strongly indicates that the relationship between geospatial 

features (latitude, longitude, depth) and earthquake magnitude is highly non-linear. Seismic phenomena 

are inherently complex and chaotic geophysical processes; therefore, they cannot be accurately modelled 

simply by assuming a linear relationship. The ability of Random Forest, SVM with RBF kernel, and 

Neural Network to capture these complex interactions between features is key to their success. 

4.2. Comparative Analysis of High-Performing Models 

Although Random Forest achieved the highest accuracy score, its advantage over SVM and 

Neural Network was very slight. The RMSE difference of only about 0.02 points suggests that there is 

no single "magic model" for this problem. Instead, it demonstrates that several different nonlinear 

approaches are capable of achieving very competitive levels of performance after careful 

hyperparameter optimization. This means that selecting the best model in real-world applications will 

likely depend on trade-offs beyond pure accuracy, such as training time efficiency or ease of 

implementation, with Neural Network and Random Forest showing slightly better efficiency than SVM. 

4.3. Comparison with Related Research 

In this study, Random Forest produced an RMSE value of 0.5445. This result is slightly higher 

than the study by Fauzan and Ahmad [10], who obtained an RMSE of 0.31758 in Padang City. This 

difference is likely caused by several factors, including the distinct geospatial characteristics of the wider 

Java Island and the more specific city of Padang, as well as potential differences in the size and features 

of the datasets used. This indicates that earthquake prediction models can be susceptible to geographic 

location. 

For Neural Network and Support Vector Machine, this study obtained significantly superior 

results (RMSE 0.5633 for NN and 0.5621 for SVM) compared to the study by Somantri et al. [11], [13] 

who reported RMSE 0.708 for NN and 0.712 for SVM in Indonesia. This significant performance 

improvement is likely due to the systematic and comprehensive implementation of a hyperparameter 

optimization strategy (Grid Search CV) in this study, which ensures each model is optimally configured 

for the dataset used. 

The linear regression results in this study (RMSE = 0.6295) confirm the general finding that linear 

models are less suitable for this task. Although the RMSE value cannot be directly compared with the 

results of the study by Alifa et al. [12] (RMSE 48.8352) due to possible differences in data scale, the 

qualitative conclusion remains the same: linear models fail to capture the complexity of seismic data. 

Overall, this comparison positions the performance of the models in this study in a highly 

competitive manner and underscores the importance of meticulous hyperparameter optimization to 

achieve high prediction accuracy. 

4.4. Research Contribution 

The primary contribution of this research is to provide a regionally specific performance 

benchmark for earthquake magnitude prediction in Java. An emphasis on systematic hyperparameter 

optimization methodologically strengthens this contribution. This research demonstrates that fair and 

valid model comparisons can only be achieved through careful tuning, ensuring the full potential of 

complex algorithms such as SVMs and Neural Networks can be accurately revealed in the geophysical 

domain. 
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Furthermore, this study provides a new perspective on model selection. The discovery of 

performance convergence among leading nonlinear models shifts the discussion from searching for a 

single best model to a more diverse decision landscape. This suggests that practitioners can select the 

most appropriate model based not only on the highest accuracy but also on other trade-offs, such as 

training time efficiency, tailored to specific operational needs. 

5. CONCLUSION 

5.1. Conclusion 

This study concludes that nonlinear models (Random Forest, SVM, and Neural Network) are 

significantly more accurate than Linear Regression for earthquake magnitude prediction in Java. 

Random Forest demonstrates the highest accuracy, but with a slight advantage over SVM and Neural 

Network, which perform very competitively. The main contribution of this study is the provision of a 

valid regional benchmark through a systematic hyperparameter optimization methodology, as well as a 

shift in model selection perspective towards considering the trade-off between accuracy and 

computational efficiency. 

5.2. Recommendation 

This study's limitations lie in its reliance on basic geospatial features. Therefore, further research 

is recommended to conduct feature engineering with more complex variables, such as distance to active 

faults, and to explore more modern ensemble algorithms such as XGBoost or LightGBM for potential 

accuracy improvements. 
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