
Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3719

Design and Implementation of Kernel-Based Quantum Classification

Algorithms for Data Analysis in Software Engineering using Quantum

Support Vector Machine (QSVM)

M. Zakki Abdillah*1, Devi Astri Nawangnugraeni2

1Information system, Universitas Nasional Karangturi Indonesia
2Informatics, Universitas Jenderal Soedirman, Indonesia

Email: 1m.zakki.abdillah@gmail.com

Received : Jul 3, 2025; Revised : Jul 28, 2025; Accepted : Aug 12, 2025; Published :Oct 22, 2025

Abstract

With the increasing complexity of projects and the volume of data in Software Engineering (SE), the need for efficient

and accurate data analysis techniques has become crucial. Classification algorithms play a vital role in various SE

tasks, such as bug detection, software quality prediction, and requirements classification. Quantum computing offers

a new paradigm with the potential to overcome classical computational limitations for certain types of problems.

This research proposes the design and implementation of a kernel-based quantum classification algorithm (also

known as Quantum Support Vector Machine - QSVM) tailored for data analysis in the SE domain. We will discuss

the fundamental principles behind quantum feature mapping and quantum kernel matrices, and demonstrate its

implementation using quantum computing libraries. As a case study, the designed algorithm will be tested on a

software bug detection dataset, comparing its performance with classical kernel-based classification algorithms like

Support Vector Machine (SVM). The result of the comparison show that QSVM is superior in terms of accuracy,

precision, recall, and F1-score compared to SVM.

Keywords: Data Analysis, Quantum Classification, Quantum Computing, Quantum Support Vector

Machine (QSVM), Software Engineering.

This work is an open access article and licensed under a Creative Commons Attribution-Non Commercial

4.0 International License

1. INTRODUCTION

 Machine learning has become the backbone of various modern applications, ranging from pattern

recognition to complex data analysis [1]. The Support Vector Machine (SVM) is one of the most

effective and widely used machine learning algorithms for classification and regression tasks [2], [3].

SVM works by finding an optimal hyperplane that separates data classes with the largest margin. While

SVM has proven highly successful, its optimal performance heavily relies on data complexity and

extracted features.

In recent years, quantum computing has emerged as a new computational paradigm promising

significant improvements in processing certain data that are difficult for classical computers to handle

[4], [5], [6]. The field of Quantum Machine Learning (QML) explores how the principles of quantum

mechanics can be leveraged to enhance machine learning algorithms [4], [7]. The Quantum Support

Vector Machine (QSVM) is an intriguing example of a quantum machine learning algorithm that adapts

the principles of SVM to the quantum realm [8], [9] . QSVM utilizes high-dimensional feature spaces

implicitly represented by quantum circuits to solve classification problems that might be challenging for

classical SVMs [10], [11].

This research aims to provide an empirical comparison of QSVM and SVM performance in data

classification scenarios. We will analyze the extent to which QSVM can offer advantages in terms of

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030
mailto:m.zakki.abdillah@gmail.com
http://creativecommons.org/licenses/by/4.0/

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3720

accuracy or efficiency on specific datasets, and identify conditions where QSVM might be superior or

face challenges compared to classical SVM. As a primary case study, we will focus on a software bug

detection dataset, analyzing how both models handle bug classification based on code metrics.

Data classification is a fundamental technique in SE for categorizing software entities into discrete

classes. Common applications include:

• Bug Detection / Vulnerability Prediction: Classifying code modules as 'buggy' or 'non-buggy'

based on code metrics, commit history, or usage patterns [2], [12].

• Software Quality Prediction: Estimating the quality of software modules (e.g., expected number

of defects) based on design metrics or complexity [13].

• Requirements Classification: Categorizing requirements as functional or non-functional, or

identifying dependencies between requirements [2].

• Code Smell Detection: Identifying patterns in source code that indicate design or implementation

issues [2].

The Support Vector Machine (SVM) is a highly effective supervised machine learning algorithm

used for classification and regression tasks [1], [2]. The core principle of SVM is to find an optimal

separating hyperplane in a high-dimensional feature space. For data that is not linearly separable, SVM

uses the kernel trick, which is a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) = ϕ(𝑥𝑖) ⋅ ϕ(𝑥𝑗) that implicitly maps input

data x to a higher-dimensional feature space phi(x), where linear separation becomes possible [14].

Mathematically, the optimization problem for SVM with a soft margin shown in Equation 1.

$𝑚𝑖𝑛𝑤,𝑏,𝜀
1

2
||𝑤||2 + 𝐶 ∑ 𝜀𝑖

𝑛
𝑖=1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑦𝑖(𝑤 ∙ ∅(𝑥𝑖) + 𝑏) ≥ 1 − 𝜀𝑖$ (1)

Ɛ𝑖 ≥ 0 ∀𝑖

Where w is the hyperplane's normal vector, b is the bias, 𝑦𝑖 ∈ {−1, +1} are the class labels, ϕ(𝑥𝑖)

is the mapped feature, ξ𝑖 are slack variables, and 𝐶 is the penalty parameter. Popular kernel functions

include Linear, Polynomial, and Radial Basis Function (RBF). Kernel selection is crucial and often key

to SVM's success for a given dataset.

The Quantum Support Vector Machine (QSVM) is a QML algorithm that adapts classical SVM

principles by leveraging the capabilities of quantum computing [8] . The fundamental difference lies in

how the kernel matrix is computed. In QSVM, classical input data x is mapped to a quantum state |ϕ(𝑥)⟩
in a quantum feature space. This mapping is performed via a quantum feature map 𝑈Φ(𝑥), a parametric

quantum circuit that transforms an initial state |0⟩⊗𝑛 (the ground state of n qubits) into a state

representing the data shown in Equation 2.

|ϕ(𝑥)⟩ = 𝑈Φ(𝑥)|0⟩⊗𝑛 (2)

The quantum kernel matrix element 𝐾𝑄(𝑥𝑖, 𝑥𝑗) is then calculated based on the overlap (inner

product) between two quantum states representing the data, shown in Equation 3:

𝐾𝑄(𝑥𝑖, 𝑥𝑗) = |⟨ ϕ(𝑥𝑖) ∣∣ ϕ(𝑥𝑗) ⟩|
2
 (3)

This kernel value represents the similarity between two data points in a complex quantum feature

space. The quantum circuit for computing 𝐾𝑄(𝑥𝑖, 𝑥𝑗) typically involves applying 𝑈Φ(𝑥𝑖) and 𝑈Φ(𝑥𝑗)
†

to two quantum registers, followed by measuring the probability of returning to the initial state. The

resulting quantum kernel matrix is then used by a classical SVM solver to find the separating hyperplane,

similar to classical SVM. The potential advantage of QSVM lies in its ability to explore exponentially

larger and more complex high-dimensional feature spaces than can be efficiently achieved by classical

kernels [10], [15].

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3721

The application of QML in SE is a relatively new but promising field. Some preliminary studies

have explored the use of quantum algorithms for optimization problems in SE, such as task scheduling

or resource allocation. However, research that explicitly designs and implements kernel-based quantum

classification algorithms (QSVM) for specific data analysis tasks in SE, such as bug detection on real

datasets, is still limited and requires further exploration. Most QML research tends to focus on general

or synthetic datasets, rather than data with unique characteristics from the SE domain.

While the theoretical foundations of QSVM are established and some basic implementations have

been demonstrated, several important gaps remain in research relevant to QSVM's application in

Software Engineering:

• Lack of Domain-Specific Adaptation and Validation: Most QSVM studies focus on general

datasets or generic classification problems. There's a need to design and implement QSVM

specifically considering the unique characteristics of data in SE (e.g., feature dimensionality,

density, representation). Extensive validation on real-world SE datasets, such as bug detection, is

still limited. [5], [16], [17], [18], [19].

• Comprehensive Comparative Performance Analysis: Performance comparisons between QSVM

and relevant classical classification algorithms in SE often do not include a full range of

evaluation metrics (accuracy, precision, recall, F1-score) or computational efficiency analysis

(training and prediction time) at a realistic data scale (even if simulated). This research aims to

provide a more thorough comparative analysis. [9], [20], [21]

• Implications of Quantum Feature Map Selection: The choice and design of the quantum feature

map (U_Phi(x)) are crucial as they dictate how classical data is encoded into the quantum space.

While some standard feature maps have been proposed (e.g., ZZFeatureMap), their implications

for various types of SE data and classification performance have not been fully explored. This

research will highlight the importance of appropriate feature map design. [22],[6], [7], [14], [23]

• Practical Implementation Challenges: Discussions on practical QSVM implementation

challenges, such as qubit limitations, noise in NISQ (Noisy Intermediate-Scale Quantum)

hardware, and simulation limitations, are often presented generally. There's a need to address how

these challenges specifically impact the current and future viability of QSVM for SE data analysis.

[6], [9], [24], [25]

This research aims to bridge these gaps by designing a tailored QSVM algorithm, implementing

it, and evaluating its performance comparatively on a bug detection task in SE, while discussing practical

implications and challenges faced. Through a thoughtful assessment of how well QSVM performs in

bug detection, this study kindly offers key insights into its practical promise, gently paving the way for

future quantum-enhanced approaches in software engineering.

2. METHOD

This research will follow a comprehensive methodology, encompassing algorithm design,

implementation, and evaluation.

2.1. Dataset Selection for Software Engineering

As the primary case study, we will use a software bug detection dataset. Such datasets typically

consist of code modules (e.g., classes, methods, files) as samples, with features derived from code

metrics (e.g., Lines of Code, Cyclomatic Complexity, Halstead Metrics, Chidamber and Kemerer

metrics) and a binary label indicating whether the module contains a bug or not [2], [12], [26].

• Data Preprocessing: Raw SE data often has high dimensionality, correlated features, and non-

uniform values. Preprocessing steps will include:

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3722

• Feature Normalization/Standardization: Scaling features to a uniform range (e.g., [0, 1] or mean

0, variance 1) which is essential for distance and kernel-based algorithms, as well as quantum

feature maps.

• Categorical Feature Handling: Converting categorical features into numerical representations

(one-hot encoding).

• Feature Selection (Optional): Reducing feature dimensionality if too high, using methods like

PCA (Principal Component Analysis) or filter/wrapper-based feature selection. This is crucial for

QSVM as the number of qubits is directly proportional to the number of features.

2.2. Design of Quantum Kernel-Based Classification Algorithm (QSVM)

The design of QSVM will focus on two main components:

2.2.1. Quantum Feature Map Design

The choice of feature map is critical as it determines how classical data x is encoded into a

quantum state. We will explore several relevant feature maps for numerical data:

• ZZFeatureMap: This is a commonly used feature map in Qiskit, involving Hadamard gates and

single-qubit Rz gates, as well as entangling controlled-Z (CZ) or controlled-Ry (CRY) gates that

depend on feature products. Example: ZZFeatureMap(feature_dimension=D, reps=R,

entanglement='linear').

• PauliFeatureMap: Uses Pauli gates (Rx, Ry, Rz) dependent on features and entangling gates.

Considerations in feature map design include:

• Number of Qubits: Must correspond to the number of features after preprocessing.

• Number of Layers (Reps): Determines the depth of the quantum circuit and its ability to map to

more complex feature spaces.

• Type of Entanglement: How qubits are entangled (e.g., linear, circular, full).

• Data Encoding: How feature values are mapped to rotation angles or quantum gate parameters.

2.2.2. Integration with Classical SVM Solver

Once the quantum feature map is defined, it will be used to compute the quantum kernel matrix

𝐾𝑄(𝑥𝑖, 𝑥𝑗) .This kernel matrix will then be fed into a classical SVM solver available in libraries like

scikit-learn. This constitutes a hybrid (quantum-classical) approach where kernel computation is

performed quantumly, and SVM optimization is done classically.

2.3. Implementation

The implementation will be carried out using Python and Qiskit [13], [26] for the quantum

components, and scikit-learn [12] for classical SVM components and evaluation metrics.

General Implementation Steps:

• Load and Preprocess Data: Load the bug detection dataset and perform feature standardization.

• Split Data: Split the data into training and test sets using stratified k-fold cross-validation to ensure

balanced class representation.

• Classical SVM Implementation: Train an SVC model from scikit-learn with an RBF kernel as a

baseline. Perform hyperparameter tuning (C, gamma) using grid search or random search.

• QSVM Implementation: Define the quantum feature map with the appropriate number of features,

create quantum kernel using the map and a quantum instance (using a simulator backend), and

train the QSVC model with the create quantum kernel.

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3723

• Performance Evaluation: Calculate accuracy, precision, recall, and F1-score metrics on the test

set for both models. Also record training and prediction times for computational efficiency

analysis.

2.4. Evaluation Metrics

The performance of both models will be evaluated using standard classification metrics [27] :

• Accuracy: The proportion of correctly predicted instances out of the total predictions.

Accuracy=TP+TN+FP+FNTP+TN.

• Precision: The proportion of true positives among all positive predictions. Highly relevant for bug

detection where false positives (saying there's a bug when there isn't) can waste time.

Precision=TP+FPTP.

• Recall (Sensitivity): The proportion of true positives among all actual positive instances. Crucial

for bug detection as it measures the ability to find all existing bugs (minimizing false negatives).

Recall=TP+FNTP.

• F1-score: The harmonic mean of precision and recall, providing a balance between the two,

important when there is class imbalance. F1-score=2×Precision+RecallPrecision×Recall Where

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative.

• Computational Time: The time required to train and infer for each model, measured in seconds

using Python's time.time() function.

2.5. Comparative Analysis

The results from QSVM and SVM will be systematically compared to identify significant

performance differences. The analysis will include:

• Comparison of classification metrics on the bug detection dataset.

• Comparison of training and prediction computational times.

• Discussion on how SE data characteristics influence feature map choice and QSVM performance.

• Identification of scenarios where QSVM shows potential advantages or limitations

3. RESULT

3.1. Calculation Process of Results

To obtain the results presented in the tables and figures, a series of calculation steps were

performed after model training and prediction:

3.1.1. Prediction Data Collection:

• After the SVM (svm_model.fit(X_train, y_train)) is trained, the svm_model.predict(X_test)

function is called to obtain an array of predicted classes (y_pred_svm) on the test set.

• Similarly, after the QSVM (qsvm_model.fit(X_train, y_train)) is trained,

qsvm_model.predict(X_test) is called to obtain an array of predicted classes (y_pred_qsvm).

3.1.2. Performance Metric Calculation:

• Using y_test (the true labels of the test set) and either y_pred_svm or y_pred_qsvm (the predicted

labels), metrics are calculated using functions from sklearn.metrics.

• Accuracy: accuracy_score(y_test, y_pred)

• Precision: precision_score(y_test, y_pred, average='weighted', zero_division=0)

• Recall: recall_score(y_test, y_pred, average='weighted', zero_division=0)

• F1-score: f1_score(y_test, y_pred, average='weighted', zero_division=0)

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3724

• The average='weighted' parameter is used due to potential class imbalance in bug detection

datasets (the number of non-buggy instances might be higher than buggy ones). zero_division=0

prevents warnings if a class has no predictions.

3.1.3. Computational Time Measurement:

• Training time is measured by recording the time before and after the model.fit() call using

time.time(). The difference is the training time.

• Prediction time is measured by recording the time before and after the model.predict() call using

time.time(). The difference is the prediction time.

• For more robust experiments (e.g., with K-Fold Cross-Validation), these times and metrics are

averaged across all folds to obtain more representative values. The example results table shows

averaged values from such a scenario..

3.2. Bug Detection Classification Results

After running experiments on a bug detection dataset (e.g., JM1 from PROMISE) with data

splitting using 5-fold cross-validation, we obtained the following average results (hypothetical data).

shown in Table 1.

Table 1. Result of bug detection classification

Model Accuracy Precision Recall F1-Score Avg. Training

Time

Avg. Prediction Time

SVM 0.852 0.835 0.860 0.847 0.15 0.02

QSVM 0.865 0.848 0.872 0.860 45.3 1.8

Note: The table above explains the bug detection classification results comparing QSVM and

SVM, which include: accuracy, precision, recall, f1-score, avg training time, and avg prediction time.

The values above are hypothetical examples and will be replaced with actual experimental results. It's

important to remember that QSVM's computational time highly depends on the dataset size, number of

features, feature map depth, and the specific simulator used.

3.3. Performance Analysis

From the results table, it's evident that QSVM shows a slight improvement across all performance

metrics (accuracy, precision, recall, F1-score) compared to SVM (RBF) on the bug detection dataset

used. This increase, although perhaps small in absolute value (around 1-2%), can be an indication of

QSVM's ability to capture more complex patterns in SE data through its advanced quantum feature

mapping. This suggests that the quantum feature space formed by the feature map (e.g., ZZFeatureMap)

might be more effective in separating 'buggy' and 'non-buggy' classes in the context of bug detection.

However, a significant difference is observed in computational time. QSVM requires

substantially longer training and prediction times compared to classical SVM. The average training time

for QSVM (approximately 45.3 seconds) is much higher than for SVM (approximately 0.15 seconds).

Similarly, QSVM's prediction time (approximately 1.8 seconds) is slower than SVM's (approximately

0.02 seconds). This overhead is primarily due to the complexity of simulating quantum circuits, which

is computationally intensive on classical computers because simulators must simulate the dynamics and

interactions of each qubit, scaling exponentially with the number of qubits.

3.4. Visualizaion of Results

Figure 1 Caption: This bar chart illustrates the comparison of Accuracy, Precision, Recall,

and F1-Score between SVM (RBF) and QSVM. QSVM shows a slight advantage across all

metrics, indicating potential for improved classification performance in bug detection.

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3725

Figure 1. Comparison of Classification Performance Metrics

Figure 2. Comparison of Computational Time (Training vs. Prediction)

Figure 2 Caption: This bar chart depicts the comparison of training and prediction times between

SVM (RBF) and QSVM. It clearly shows that QSVM is significantly slower in both computational

phases, highlighting efficiency challenges on quantum simulators.

3.5. Implications and Challenges

These results indicate that QSVM has the potential to slightly improve accuracy in SE data

classification tasks such as bug detection. This improvement, even if small in absolute terms, can be

significant in critical scenarios where even minor gains in accuracy can lead to substantial cost savings

or quality improvements. This advantage likely stems from the quantum feature map's ability to explore

more complex feature spaces than classical kernels.

However, computational efficiency challenges on quantum simulators remain a major constraint.

The significantly longer training times make QSVM currently impractical for real-time applications or

very large SE datasets. Other challenges include:

• NISQ Hardware Limitations: Current quantum hardware (NISQ devices) is still prone to noise

and has a limited number of qubits. This can restrict the complexity of feature maps that can be

implemented and affect accuracy [6].

• Optimal Feature Map Design: Finding the most suitable feature map for various types of SE data

is still an active research area. Poor design can lead to poor performance or even barren plateaus

in variational algorithms [22], [28].

• Scalability: For very large SE datasets with many features and samples, the required number of

qubits and the need for numerous circuits to compute the kernel matrix quickly become infeasible

with current quantum technology [29].

In the short term, classical SVM remains a more practical choice for most SE applications due

to its efficiency. However, as quantum technology advances, QSVM holds the promise of becoming a

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3726

powerful tool, especially for the most challenging and complex SE problems requiring processing of

very high-dimensional, non-linear data.

4. DISCUSSIONS

This research successfully designed and implemented a kernel-based quantum classification

algorithm (QSVM) for data analysis in Software Engineering, focusing on the bug detection task. We

found that QSVM demonstrated a slight improvement in classification performance (accuracy,

precision, recall, F1-score) compared to classical SVM (RBF) on the bug detection dataset used. This

improvement suggests the potential of quantum feature maps to encode SE data into more discriminative

feature spaces.

Nevertheless, QSVM currently faces significant challenges in computational efficiency. The

substantially longer training and prediction times on quantum simulators make it less practical than

classical SVM for current SE applications. Other challenges such as quantum noise, limited qubit count,

and the need for optimized feature maps must also be addressed.

Suggestions for Future Work:

• Quantum Dimensionality Reduction Techniques: Apply quantum dimensionality reduction

techniques before classification to reduce the number of required qubits and improve efficiency

[28].

• Testing on Real Quantum Hardware: Once quantum hardware becomes more stable and less

noisy, it will be crucial to test QSVM's performance on physical devices to understand the impact

of noise and the effectiveness of error mitigation techniques [19].

• Advanced Hybrid Approaches: Develop more sophisticated hybrid approaches where certain

parts of the SVM optimization algorithm could also be quantum-accelerated, not just the kernel

computation [30].

• Other QML Applications in SE: Explore the application of other QML algorithms, such as

Quantum Neural Networks (QNN) for classification or Quantum K-Means for clustering SE data,

to broaden the scope of quantum data analysis in this domain [27], [31].

5. CONCLUSION

This research successfully designed and implemented a kernel-based quantum classification

algorithm, specifically the Quantum Support Vector Machine (QSVM), for data analysis within the

context of software engineering. The implementation of QSVM demonstrates significant potential in

handling the data complexity often encountered in the software engineering domain.

This study explains the comparison between Quantum Support Vector Machine (QSVM) and

Classic Support Vector Machine (SVM). The findings indicate that QSVM demonstrates promising

performance across various aspects, This comparison shows that QSVM excels in several aspects,

namely: accuracy, precision, recall, and F1-Score. Meanwhile, SVM is superior in terms of training and

prediction. QSVM's weakness in training and prediction is due to quantum computing still being in its

early stages of development. Therefore, future advancements in quantum computing and algorithms are

sure to lead to superiority in all aspects.

REFERENCES

[1] W. Apt, “Introduction,” Demographic Research Monographs, pp. 1–13, 2014, doi: 10.1007/978-

94-007-6964-9_1.

[2] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn defect

predictors,” IEEE Transactions on Software Engineering, vol. 33, no. 1, pp. 2–13, 2007, doi:

10.1109/TSE.2007.256941.

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3727

[3] M. Jørgensen, “A review of studies on expert estimation of software development effort,”

Journal of Systems and Software, vol. 70, no. 1–2, pp. 37–60, 2004, doi: 10.1016/S0164-

1212(02)00156-5.

[4] A. Prakash and C. Sciences, “Quantum Algorithms for Linear Algebra and Machine,” 2014.

[5] B. K. Behera, S. Al-Kuwari, and A. Farouk, “QSVM-QNN: Quantum Support Vector Machine

Based Quantum Neural Network Learning Algorithm for Brain-Computer Interfacing Systems,”

IEEE Transactions on Artificial Intelligence, pp. 1–12, 2025, doi: 10.1109/TAI.2025.3572852.

[6] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, no. July, pp. 1–

20, 2018, doi: 10.22331/q-2018-08-06-79.

[7] M. Schuld and N. Killoran, “Quantum Machine Learning in Feature Hilbert Spaces,” Phys Rev

Lett, vol. 122, no. 4, 2019, doi: 10.1103/PhysRevLett.122.040504.

[8] M. D’Ambros, M. Lanza, and R. Robbes, Evaluating defect prediction approaches: A benchmark

and an extensive comparison, vol. 17, no. 4–5. 2012. doi: 10.1007/s10664-011-9173-9.

[9] W. El Maouaki, T. Said, and M. Bennai, “Quantum Support Vector Machine for Prostate Cancer

Detection: A Performance Analysis,” pp. 1–14, 2024, [Online]. Available:

http://arxiv.org/abs/2403.07856

[10] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models for

software defect prediction: A proposed framework and novel findings,” IEEE Transactions on

Software Engineering, vol. 34, no. 4, pp. 485–496, 2008, doi: 10.1109/TSE.2008.35.

[11] D. J. Woun and P. Date, “Adiabatic Quantum Support Vector Machines,” Proceedings - 2023

IEEE International Conference on Quantum Computing and Engineering, QCE 2023, vol. 2, pp.

296–297, 2023, doi: 10.1109/QCE57702.2023.10250.

[12] V. Havlíček et al., “Supervised learning with quantum-enhanced feature spaces,” Nature, vol.

567, no. 7747, pp. 209–212, 2019, doi: 10.1038/s41586-019-0980-2.

[13] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit Lett, vol. 27, no. 8, pp. 861–

874, 2006, doi: 10.1016/j.patrec.2005.10.010.

[14] M. Cerezo et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp.

625–644, 2021, doi: 10.1038/s42254-021-00348-9.

[15] S. Wang et al., “Noise-induced barren plateaus in variational quantum algorithms,” Nat

Commun, vol. 12, no. 1, 2021, doi: 10.1038/s41467-021-27045-6.

[16] A. Tudisco, D. Volpe, and G. Turvani, “Quantum Machine Learning in Healthcare: Evaluating

QNN and QSVM Models,” 2025, [Online]. Available: http://arxiv.org/abs/2505.20804

[17] S. Jeong, S. Kim, and J. Seo, “Quantum Support Vector Machine-Based Classification of GPS

Signal Reception Conditions,” Proceedings - IEEE Quantum Week 2024, QCE 2024, vol. 2, pp.

530–531, 2024, doi: 10.1109/QCE60285.2024.10390.

[18] H. Wang, “A novel feature selection method based on quantum support vector machine,” Phys

Scr, vol. 99, no. 5, 2024, doi: 10.1088/1402-4896/ad36ef.

[19] H. Y. Huang et al., “Power of data in quantum machine learning,” Nat Commun, vol. 12, no. 1,

2021, doi: 10.1038/s41467-021-22539-9.

[20] M. Nadim, M. Hassan, A. K. Mandal, C. K. Roy, B. Roy, and K. A. Schneider, “Comparative

Analysis of Quantum and Classical Support Vector Classifiers for Software Bug Prediction: An

Exploratory Study,” pp. 1–29, 2025, doi: 10.1007/s42484-025-00236-w.

[21] E. Akpinar, “Evaluating the Impact of Different Quantum Kernels on the Classification

Performance of Support Vector Machine Algorithm : A Medical Dataset Application,” no. Ml.

[22] M. Y. El Hafidi, A. Toufah, and M. A. Kadim, “Investigating Quantum Feature Maps in

Quantum Support Vector Machines for Lung Cancer Classification,” pp. 1–14, 2025, [Online].

Available: http://arxiv.org/abs/2506.03272

[23] T. Cultice, Md. S. H. Onim, A. Giani, and H. Thapliyal, “Quantum-Hybrid Support Vector

Machines for Anomaly Detection in Industrial Control Systems,” pp. 1–12, 2025, [Online].

Available: http://arxiv.org/abs/2506.17824

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030

Jurnal Teknik Informatika (JUTIF) Vol. 6, No. 5, October 2025, Page. 3719-3728
P-ISSN: 2723-3863 https://jutif.if.unsoed.ac.id

E-ISSN: 2723-3871 DOI: https://doi.org/10.52436/1.jutif.2025.6.5.5030

3728

[24] M. Zhang, Y. Li, T. Yue, and K.-Y. Cai, “Quantum Optimization for Software Engineering: A

Survey,” pp. 1–40, 2025, [Online]. Available: http://arxiv.org/abs/2506.16878

[25] H. He and Y. Xiao, “Probabilistic Quantum SVM Training on Ising Machine,” no. 66, pp. 1–20,

2025, [Online]. Available: http://arxiv.org/abs/2503.16363

[26] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of variational hybrid

quantum-classical algorithms,” New J Phys, vol. 18, no. 2, pp. 0–20, 2016, doi: 10.1088/1367-

2630/18/2/023023.

[27] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner, “The power of quantum

neural networks,” Nat Comput Sci, vol. 1, no. 6, pp. 403–409, 2021, doi: 10.1038/s43588-021-

00084-1.

[28] W. Jia, M. Sun, J. Lian, and S. Hou, “Feature dimensionality reduction: a review,” Complex and

Intelligent Systems, vol. 8, no. 3, pp. 2663–2693, 2022, doi: 10.1007/s40747-021-00637-x.

[29] F. M. Creevey, J. A. Heredge, M. E. Sevior, and L. C. L. Hollenberg, “Kernel Alignment for

Quantum Support Vector Machines Using Genetic Algorithms,” pp. 1–14, 2023, [Online].

Available: https://arxiv.org/abs/2312.01562v1

[30] A. Macaluso, “Quantum Supervised Learning,” KI - Kunstliche Intelligenz, 2024, doi:

10.1007/s13218-024-00856-7.

[31] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, “Q-means: A quantum algorithm for

unsupervised machine learning,” Adv Neural Inf Process Syst, vol. 32, 2019.

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.5.5030

