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Abstract 

Arrhythmia is a heart rhythm disorder that may occur unpredictably with life-threatening risk if it were 

not treated immediately. This heart disorder generally affects the elderly, but symptoms of this disorder 

can also arise in children and adolescents, especially for those with heart problems or are often under 

stress. The implementation of this research is aimed at analyzing the symptoms of early arrhythmia in 

adolescent children using electrocardiogram signals. In order to obtain the best possible results in 

determining the higher performing algorithm, two machine learning methods were used to predict the 

classification of arrhythmia which will be compared for their accuracy. The subjects of this study included 

106 students from SMK Swasta Teladan Sumatera Utara 2 located in the city of Medan, of which 72 final 

subject data were used to train the capability of both models used to predict arrhythmia classification 

categorized into four categories, namely normal, abnormal, potential of arrhythmia, and high potential of 

arrhythmia. The LightGBM model outperformed the XGBoost model, with 95.11% accuracy and 95.03% 

F1 Score, and although the loss value of the LightGBM model is higher than the loss value of the XGBoost 

model, the difference between these two values is negligible and the loss value of LightGBM can be 

considered as excellent with a value of 0.1503. This research contributes to the advancement of digital 

health by demonstrating the potential of machine learning-based ECG analysis for highly accurate early 

arrhythmia detection in adolescent, non-clinical populations. 
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1. INTRODUCTION 

Arrhythmia is a heart rhythm disorder that can occur unexpectedly to anyone and poses a fatal 

risk if left untreated swiftly and appropriately [1]. The rate of incidence of arrhythmia tends to rise as 

people age [2]. Recent cohort studies have shown that the prevalence of atrial fibrillation (AF), a 

common cardiac arrhythmia, increases with age: among individuals aged 65-69 years, the prevalence of 

AF is about 6.4%, increasing to 10.3% at 70-74 years, 15.1% at 75-79 years, 22.4% at 80-84 years, and 

reaching 28.5% in those aged 85 years or older. [3]. Although many cases of arrhythmia are commonly 

found in adults and the elderly, children and adolescents are also susceptible to this risk, especially for 

those with a certain cardiac history or frequent physical and mental stress [4], [5]. 

One of the main ways to detect arrhythmias is by recording and analyzing ECG 

(electrocardiogram) signals, which is a non-invasive measurement of the heart's electrical activity that 

serves as the standard in the diagnosis of heart rhythm abnormalities [6]. ECG is a standard diagnostic 

tool for detecting heart rhythm abnormalities and may provide important information such as time 

intervals between waves and wave patterns [7]. However, manual analysis of ECG signals is 
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complicated, time-consuming, and requires the involvement of trained medical personnel [8]. Therefore, 

the use of Machine Learning (ML) technology has become a promising approach to automate the ECG 

signal classification, with recent systematic reviews reporting classification accuracies exceeding 90% 

across various tasks, including arrhythmia detection [9]. 

ML is a branch of artificial intelligence that enables computers to learn from existing data and 

recognize patterns without being explicitly programmed [10]. Two ML algorithms, XGBoost and 

LightGBM, are examples of the most widely used and high-performing gradient boosting methods 

[11][12]. Gradient boosting is an ensemble technique that combines predictions from many decision 

trees to improve model accuracy [13]. In general, XGBoost excels in terms of accuracy and overfitting 

controllability through strong regularization techniques, and has full-featured support for customization, 

meanwhile LightGBM was developed to improve the efficiency of the training process by using a leaf-

wise approach in tree formation, making it faster and memory-efficient on large datasets with many 

features [15]. However, the leaf-wise approach of LightGBM can lead to overfitting on small or highly 

imbalanced datasets [16]. 

The performance of these two algorithms has been observed to vary depending on specific data 

characteristics, such as the number of features, imbalance of classes, and the size of the dataset [17], 

[18]. In the context of complex and sometimes noisy student ECG data, it is unclear as to which 

algorithm performs better for the classification of arrhythmias [19], [20]. Therefore, this study examines 

the performance comparison of XGBoost and LightGBM based on evaluation metrics such as accuracy, 

F1 score, and log loss on student ECG data. Previous research has shown that XGBoost has good 

generalization ability on various medical classification problems, while LightGBM excels in training 

time especially on large datasets [21][22]. However, studies regarding the application of these two 

algorithms specifically for arrhythmia classification in student populations remain scarce [23]. 

 This research offers a novel approach in addressing a gap in arrhythmia detection studies, which 

typically rely on clinical datasets or data from older populations such as adults and geriatrics, by 

focusing on ECG data collected from a younger population rarely researched as the subject of studies in 

arrhythmia detection. In terms of machine learning model development, in addition to using standard 

evaluation metrics such as accuracy, precision, recall, and F1 score, this study also features the use of 

log loss to better assess the reliability of model predictions.  

This research aims to provide a contribution to the development of an efficient and precise early 

detection system of arrhythmia using the optimal ML method for student ECG data by comparing the 

performance of XGBoost and LightGBM on multi-class and imbalanced ECG data from a non-clinical 

adolescent population, an area that remains underexplored in existing research. With the latest advances 

in signal processing technology and ML algorithms, it is hoped that the result of this research may assist 

medical personnel in quicker and more accurate diagnosis, while improving access to preventive health 

services among adolescents. 

2. METHOD 

This research aims to compare two methods with different algorithms, namely XGBoost (Extreme 

Gradient Boosting) and LightGBM (Light Gradient Boosting Machine). XGBoost and LightGBM are 

decision tree-based Machine Learning algorithms. Both of these methods are part of the Gradient 

Boosting Decision Tree (GBDT) method which is an ensemble technique that forms a set of weak 

models to gradually build strong models [24], [25]. 

Gradient Boosting, which is an iterative process, works in several stages. First, the initial model 

will be initialized as a constant model. Next, a weak model will be formed and trained to predict the 

difference (residual) between the actual value of the training data label and the predicted value will be 

calculated. This model will be combined with the previous model with certain weights controlled by the 
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learning rate parameter. This process is repeated incrementally until certain criteria are met, such as the 

final number of iterations is reached or the loss function value is sufficiently low. 

XGBoost and LightGBM implement similar approaches albeit with different strategies for 

optimization. XGBoost makes use of pruning techniques, L1/L2 regularization, and full parallelization 

support to improve accuracy and reduce overfitting [24], [25]. Meanwhile, LightGBM implements 

Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) techniques to 

improve efficiency on large and high-dimensional datasets [25]. 

Generally, both algorithms optimize an objective function consisting of two main components, 

namely loss function and regularization function. The general formula of the objective function in the 

gradient boosting method can be written as shown in (1). 

𝐿 (𝑡) = ∑ 𝑙(𝑦𝑖, ŷᵢ⁽ᵗ⁻¹⁾ + 𝑓ₜ(𝑥ᵢ)) + 𝛺(𝑓ₜ)𝑛
𝑖=1    (1) 

Where l(yᵢ, ŷᵢ) is the loss function (e.g. log-loss), ŷᵢ⁽ᵗ⁻¹⁾  is the model prediction at iteration (t-1), 

fₜ(xᵢ) is the new tree model at iteration t, and Ω(fₜ) is the regularization function for model complexity. 

The flow of this research is presented as a block diagram in Figure 1, starting with the collection 

of ECG data from multiple students. The collected data then were preprocessed with multiple filters and 

its features extracted. After going through the process of normalization, the data is split into training and 

testing dataset with Stratified Cross Validation method, which were then used to train and test the 

XGBoost and LightGBM model. Confusion matrix was used to visualize the prediction results, from 

which the evaluation parameters such as Accuracy and F-1 Scores can be determined. These parameters 

could further be used to compare the performance of the models using visual tools such as bar graphs. 

 

 
Figure 1. Block Diagram Representing the Flow of Research 

2.1. Materials 

The research was conducted at SMK Swasta Teladan Sumatera Utara 2, Jl. Pendidikan No.62, 

Cinta Damai, Kec. Medan Helvetia, Medan City, North Sumatera in partnership with UNPRI. 

Collaborating parties involved in this research involved the research participants, as well as the field 

supervisors. The tools and materials used in this study were in the form of a 5-lead ECG Smart Holter 

tool totaling 3 units based on Raspberry Pi 4, electrode cables, and laptops used in data recording and 

the use of data recording programs. Respondents in this study consisted of 106 student subjects aged 

between 15 and 20 years. A total of 101 male students and 5 female students were involved. 
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This experiment was conducted under the condition of the subject sitting for approximately two 

minutes. Subjects were then requested to remove their upper clothing to facilitate the application of the 

electrodes on the necessary areas of the subject's body, as shown in Figure 2. During data collection, the 

researcher conducted interviews with the subjects to obtain additional data regarding the subject's name, 

age, height, weight, and medical history. 

 

 
Figure 2. Recording using Smart Holter ECG 5 lead device 

2.2. Data Collection 

Data collection was performed by running a Serial Data Acquisition program that reads and parses 

the raw ECG signals from the Smart Holter 5-lead ECG system with 6 electrodes, which are then 

transmitted via the serial port of the ECG hardware as depicted in Figure 3. At Jack 1, the red electrode 

is attached to the upper right chest (RA), the yellow electrode to the upper left chest (LA), and the green 

electrode to the lower right body (RL). Whereas on Jack 2, the red electrode is placed at the sternal area 

leaning to the right (V1), the yellow electrode at the bottom of the left (LL), and the green electrode 

remains at the bottom of the right (RL). The Smart Holter ECG machine works by recording electrical 

signal data from the subject’s torso, which is then converted into integer values, in this case with the 

assumption that the signal has a range of 2.4 Volts and 24-bit resolution. 

 

 
Figure 3. Smart Hoster ECG 5 Lead  applied at specific points on the torso. 

2.3. Data Preprocessing 

 Before model building and training can begin, the initial dataset will be preprocessed and its 

features extracted to produce ECG data suitable for preprocessing by utilizing a custom made Python-

based pipeline implemented in Google Colab designed for automatic processing of large-scale ECG 

data, implementing libraries such as NeuroKit2, pandas, NumPy, and SciPy for signal processing and 

feature extraction.  
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Raw signals collected from the subjects were first organized and converted in the form of a 

compressed ZIP file containing the raw ECG data for each subject. The data then went through several 

filtering processes to remove noise and signal drift. Once the ECG signal is cleaned and filtered, the P, 

Q, R, S, and T peaks will be identified which will then be used to extract key features such as heart rate 

and duration of various intervals. The features that have been obtained will be arranged in the form of 

numerical data with a fixed dimension of 7, namely RR Interval, PR Segment, QRS Duration, QT 

Interval, ST Segment, R/S Ratio, heart rate. This ensures that the ECG data is consistent and ready to 

be used to analyze heart function and rhythm patterns.  

The training of machine learning models was conducted using a supervised learning approach, 

which refers to a machine learning technique that requires external assistance in the form of output labels 

which serve as objective values [10]. These output labels are used during model training to learn the 

relationship between output targets and features. In the testing data, these labels provide a reference for 

the model in evaluating the accuracy of the prediction.  

Feature normalization was then applied using the StandardScaler utility from scikit-learn library. 

This method standardizes the input features by subtracting the mean and scaling them to unit variance. 

Normalization is performed to ensure that all features are on a similar scale, allowing each one to 

contribute equally during the training process. This step also helps improve the learning efficiency and 

performance of algorithms that are sensitive to feature scaling, such as XGBoost and LightGBM. 

In order to address the class and gender imbalance, the Stratified Cross-Validation method is 

implemented using the StratifiedKFold utility from scikit-learn library. K-Fold Cross Validation works 

by dividing the data into several equally sized folds, where each fold takes turns being the validation set 

while the rest are used for training. However, in classification tasks with imbalanced data, this approach 

may result in unequal class distributions across the folds. To keep the class proportion balanced in each 

fold, stratification was applied to ensure that each fold possessed approximately the same class 

distribution as the original dataset.  

2.4. Model Building 

The model used in this research was built in the Visual Studio Code software which supports the 

Python programming language, the language used by the LightGBM and XGBoost models. The main 

libraries used to support the design of this model are libraries from LightGBM and XGBoost, Seaborn 

for Confusion Matrix visualization, Matplotlib.pyplot for bar and line graph comparison visualization, 

Pandas for reading dataset files so that they can be used by the model, Numpy for mathematical 

operations, and Sklearn for cross-validation using StratifiedKFold, normalizing features, and model 

evaluation such as accuracy, precision, recall, F1-Score and log loss. 

The two models XGBoost and LightGBM were built using the XGBClassifier and 

LGBMClassifier classes respectively, with hyperparameters for each model customized for the general 

boosting settings which were fine-tuned with multiple testing in order to achieve the highest accuracy 

and efficiency. Both models use similar parameters to maintain training consistency, such as objective 

to specify the type of multi-class classification problem, num_class for the number of output classes, 

learning_rate of 0.01, n_estimators of 3000, max_depth 8, subsample 0.8, colsample_bytree 0.8, and 

regularization of L1 (reg_alpha) and L2 (reg_lambda) both set to 1.0. The main difference lies in the 

parameters specific to each model that uses different approaches, where XGBoost uses 

eval_metric=‘mlogloss’ while LightGBM uses boosting_type=‘gbdt’ as well as num_leaves=31 and 

min_child_samples=20 which are specific settings to control tree complexity in LightGBM. Unlike 

XGBoost, LightGBM does not include eval_metric explicitly in the model initialization. Although both 

models share similar basic settings, the different parameters reflect the different architectures and 

internal optimizations of the two algorithms.  
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2.5. Evaluation 

In this study, the confusion matrix is first used to visualize and quantify the performance of the 

classification models by comparing predicted class labels against the actual class labels. From this 

matrix, the fundamental values of True Positives (TP), True Negatives (TN), False Positives (FP), and 

False Negatives (FN) can be obtained to serve as the basis for calculating various evaluation parameters 

such as accuracy, precision, recall, F1-score. Log loss however, is gained from calculating predicted 

probabilities of each class. These metrics provide a comprehensive understanding of the model’s 

effectiveness, particularly in the presence of imbalanced classes. 

Accuracy reflects the overall correctness of the model’s predictions by measuring the proportion 

of correctly classified instances among all data, as shown in (2). However, accuracy alone may not fully 

represent performance when class imbalance is present. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%   (2) 

Precision measures the proportion of the correct positive predictions out of all positive 

predictions by the model, indicating how reliable the model is when it predicts a certain class to reduce 

false alarms, calculated with (3). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%    (3) 

Recall measures the ability of the model to correctly identify all actual positive instances with 

the (4) formula. This metric is crucial in medical diagnosis where missing a positive case carries serious 

consequences. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%    (4) 

The F1-score combines precision and recall into a single metric by calculating their average as 

shown in (5). It provides a balanced evaluation of the model’s performance, especially when the dataset 

is imbalanced. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
× 100%  (5) 

Log loss evaluates the uncertainty of the predicted probabilities by penalizing confident but 

wrong predictions more. Lower log loss values indicate better calibrated probability estimates, with the 

formula defined in (6). 

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 =  −
1

𝑁
∑ ∑ 𝑦𝑖𝑗𝑙𝑜𝑔(𝑝𝑖𝑗)𝑀

𝑗=1
𝑁
𝑖=1   (6) 

3. RESULT 

3.1. Data Selection 

In the process of evaluating ECG data recorded and collected using the Smart Holter device, a 

number of incomplete subject data were identified. These incompletenesses were characterized by 

missing iterations or segments of data, indicating interference or imperfections in the process of 

recording the data. To address this issue, the data of these 106 subjects was pruned through a selection 

process to remove the data of subjects that did not meet the criteria.  

After this pruning process, the number of subjects with usable data for this study decreased. 

From the initial total number of 106 subjects, 72 subjects remained with complete and valid data for the 

purposes of this study. Although this number is fewer than planned, the remaining data is expected to 

have sufficient signal quality to be analyzed accurately, allowing for the analysis of the ECG parameters 

which were the primary focus in this study. 

https://jutif.if.unsoed.ac.id/
https://doi.org/10.52436/1.jutif.2025.6.4.5015


Jurnal Teknik Informatika (JUTIF)  Vol. 6, No. 4, August 2025, Page. 2281-2296 
P-ISSN: 2723-3863  https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.5015 

 

 

2287 

3.2. Preprocessing Result 

The preprocessing and feature extraction pipeline started by converting raw ADC values into 

millivolts (mV). However, the results of this ADC conversion is too high as shown with an example of 

a raw ECG signal in Figure 4, where ECG signals generally range between -5 and +5 mV, while the 

value of the illustrated raw ECG signal data was observed to reach up to 871 mV. To obtain the correct 

and accurate values, filtration will be applied with three different methods gradually. These methods 

consist of baseline correction, Butterworth Filter, and FIR (Finite Impulse Response) Filter.  

 

 
Figure 4. Plot of raw ECG signal. 

 

First, baseline correction is performed to remove baseline drift, a slow shift of the baseline of the 

ECG signal caused by factors such as breathing, body movement, or noise from the electrodes. This was 

achieved using linear detrending, allowing the basic shape of the signal to become more visible, 

including the PQRST wave potential, which can be observed in Figure 5.  

 

 
Figure 5. Plot of ECG signal after baseline correction process 
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Following the baseline correction, Butterworth low-pass Filter is used to filter out noise or high 

frequencies such as electrical interference or muscle activity without causing distortion to the features, 

implemented as a 4th-order filter with a cutoff frequency of 0.6 Hz. As a result, the PQRST signal 

components became cleaner and more recognizable, as shown in Figure 6. 

 

 
Figure 6. Plot of ECG signals filtered using the Butterworth Filter method. 

Finally, FIR filter is applied using a Kaiser window with a cutoff frequency of 4 Hz to smoothen 

the overall signal while maintaining an accurate waveform, as shown in Figure 7. 

 

 
Figure 7. Plot of ECG signal further filtered using FIR filter. 
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Figure 8. Plot of the filtered and preprocessed PQRST waveform. 

The result of this filtration is used to detect the PQRST peaks of the ECG signal, performed with 

NeuroKit2’s Discrete Wavelet Transform (DWT) method, allowing for accurate identification of the P, 

Q, R, S, and T peaks as well as their corresponding onsets and offsets. The processed ECG waveform, 

now within the approximate range of -1.0 mV to 2.0 mV, is displayed with identifiable marking for each 

peak as shown in Figure 8. 

With the results of PQRST peak detection, extraction was performed to obtain features in the 

form of interval and duration values. The average ST interval was obtained from Lead I, the average 

intervals of RR, PR, QT, QRS duration, and heart rate (bpm) were obtained from Lead II, and the R/S 

ratio was obtained from Lead V1. This process was then carried out on all data from 72 subjects, with a 

total of 655 pieces of feature extraction data, which were packaged in a CSV (Comma Separated Value) 

file. Data labeling is done manually based on specific physiological features, with the criteria shown in 

Table 1. 

 

Table 1. Range of ECG values based on classification category 

Output 

Label 

RR 

Interval 

(ms) 

PR 

Interval 

(ms) 

QRS 

Complex 

(ms) 

QT 

Interval 

(ms) 

ST 

Segment

(ms) 

R/S 

Ratio 

Heart Rate 

(bpm) 

Normal 

600- 

1000 

120- 

200 60-100 

350- 

440 80-120 <1 60-100 

Abnormal <600 <120 <60 <350 <80 >1 <60 

Potential of 

Arrhythmia 

600- 

1000 190-200 101-120 441-460 120-130 >1 101-110 

High 

Potential of 

Arrhythmia 

600- 

1000 >200 >120 >460 >130 >1 >111 

 

Each row corresponds to one of four classification categories, namely Normal, Abnormal, 

Potential of Arrhythmia, and High Potential of Arrhythmia. Meanwhile, each column indicates the name 

of the variable used in determining the classification such as RR interval, PR interval, QT interval, QRS 
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complex duration, ST segment, R/S ratio, and heart rate to a range of physiological values that have 

been determined according to medical standards. These value ranges reflect both normal and 

pathological conditions and are used as a basis in determining the classification category of the ECG 

signal. 

The preprocessing, feature extraction, and labeling results in a dataset consisting of 665 instances 

of ECG recordings, each represented by 7 numerical features as well as the output label. The class spread 

consists of 236 counts for class 0 representing Normal, 312 counts for class 1 representing Abnormal, 

and 107 counts for class 3 representing High Potential of Arrhythmia, while no instance of class 2, 

representing Potential of Arrhythmia, is observed in the process. The result is then compiled into one 

CSV file for subsequent training and evaluation, with the sample of the complete data shown in table 2.  

Each row represents a data instance corresponding to a specific subject’s ECG reading, while 

each column reflects one of the extracted features: RR interval, PR interval, QRS complex duration, QT 

interval, ST segment, R/S ratio, and heart rate. The final column, labeled output, indicates the class label 

assigned to the instance based on predefined medical thresholds, with values representing different 

arrhythmia risk levels. This structured dataset, compiled after preprocessing, feature extraction, and 

labeling, serves as the input for training and evaluating the classification models. 

In the initial stage, the dataset will be read using the pandas library, which will then be stored as 

a dataframe. The variables x and y will then be taken from this dataframe, where x is all the columns 

excluding the column containing the subject’s identification number and output label as the required 

features, while y is the column containing the output label as the actual value. 

 

Table 2. Table of dataset as input to the models 

Subject rr pr qs qt st r/s ratio heart rate output 

1 629.7376 115.3846 87.91209 295.1895 217.93 0.50375 95.27778 0 

1 494.6667 103.5294 80.47059 221.7778 160.8889 0.482003 121.2938 1 

1 511.1972 114.4551 73.41541 238.1568 173.5573 0.900144 117.3715 1 

 ...        

106 506.6138 87.76844 71.42857 213.4039 181.2169 7.587139 118.4334 1 

106 472.0648 76.11336 78.13765 241.2955 180.7692 11.03366 127.1012 1 

106 451.9531 65.37829 81.82566 243.75 177.3438 9.05171 132.7571 1 

 

The dataset of x that will then be used as an input for the model will be normalized using 

StandardScaler which is a method from the scikit-learn library that serves to modify feature values in 

order to obtain an average value (mean) of 0 and standard deviation of 1. This process is carried out to 

increase the effectiveness of the learning model and the stability of the results.  

Data splitting is then implemented using the Stratified K-Fold Cross Validation method by 

dividing the data into folds using the StratifiedKFold function. This method divides the dataset as equal 

in size as possible to balance the class proportion in each fold. In this research, the data is split into 5 

folds, chosen to ensure the balance of reliability and computational efficiency. The training and testing 

process is repeated 5 times, with each fold used once as the testing data while the remaining folds were 

used for training. The random state parameter is also defined for consistency and reproducibility in the 

division of data into folds.  

3.3. Testing Results 

In the process of assessing and comparing the XGBoost and LightGBM models, one of the tools 

used is the Confusion Matrix table. Confusion Matrix describes the performance of the model by 

comparing the predicted results with the actual labels. Confusion Matrix is useful for evaluating 
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classification, especially in the case of multi-class classification in this study. In addition, this research 

also uses a number of quantitative evaluation parameters to measure accuracy and consistency in model 

prediction, which consist of Accuracy, Precision, Recall, F1 Score, and Log Loss. These parameters are 

calculated by comparing the model's predicted results against the true labels using the concepts of True 

Positive, False Positive, True Negative, and False Negative to provide a comprehensive overview of the 

model's performance. Log Loss, however, differs by utilizing predicted class probabilities to assess the 

confidence and calibration of the models. 

3.4. Result of XGBoost Model Testing 

The results of testing the XGBoost model with datasets that have gone through the Stratified Cross 

Validation process as the main method of dividing training data and testing data show excellent 

predictive performance, with the prediction accuracy value obtained from testing this model reaching 

93.74%, indicating that most of the testing data could be predicted accurately. The precision and recall 

values also reached 93.74%, indicating that this model is able to provide accurate predictions and also 

recognize samples from each class evenly. F1 Score obtained from calculating the results of precision 

and recall produces a value of 93.66%, indicating a good balance between the two values. The log loss 

value of 0.1471 shows that this model is able to predict the probability with high confidence in the 

correct arrhythmia class. 

The Confusion Matrix graph in Figure 9 shows that most of the correct predictions are on the 

main diagonal, where the vertical axis shows the actual value, while the horizontal axis shows the 

predicted value. In class 0, a total of 230 data were correctly predicted, while 2 data and 4 data were 

incorrectly predicted as class 1 and class 3, respectively. While in class 1, a total of 298 data were 

correctly predicted, but there were 8 data and 6 data that were incorrectly predicted into class 0 and class 

3, respectively. Finally, in class 3, 86 data were correctly predicted, with 13 and 8 data incorrectly 

predicted as class 0 and class 1, respectively. 

 

 
Figure 9. Confusion Matrix of XGBoost Model prediction results. 

3.5. LightGBM Model Testing 

As in the case with the previous model, the LightGBM Model also shows excellent prediction 

performance with the same dataset. The accuracy achieved by this model is 95.11%, precision and recall 

reached 95.10% and 95.10% respectively, F1 Score reached 95.03%, and the log loss value amounted 

to 0.1503. 

In the Confusion Matrix graph of the LightGBM Model prediction results shown in Figure 10, 

the results are similar to the Confusion Matrix graph of the XGBoost prediction results, where most of 
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the correct prediction results are on the main diagonal of this graph. This Confusion Matrix graph shows 

that in class 0, there are 230 correctly predicted data, with errors of 2 and 4 data found in class 1 and 3 

respectively. Class 1 gets 306 accurate data, while errors are found in 3 data each for class 0 and class 

3. Finally, in class 3, 87 data are correctly predicted, errors of 15 data and 5 data are found in class 0 

and class 1 respectively. 

 

 
Figure 10. Confusion Matrix of LightGBM Model prediction results. 

 

3.6. Comparison 

Based on the outcome of testing both Machine Learning models above using the ECG dataset of 

students, it can be seen that the LightGBM Model obtained prediction results which tended to 

outperform the prediction results of the XGBoost Model. The LightGBM Model achieved an accuracy 

of 95.11% compared to the accuracy of the XGBoost Model which achieved 93.74%, showing a 

difference of 1.37%. Similar value differences can also be seen in the Precision, Recall, and F1 Score 

values, showing a difference of 1.36%, 1.37%, and 1.37% respectively. The comparison of these four 

test parameters can be seen in Figure 11. 

 

 
Figure 11. Comparison chart of Accuracy, Precision, Recall, and F1 Score of XGBoost and LightGBM 

models. 
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In addition to using the four test parameters above, comparisons have also been made using log 

loss. In Figure 12, it is shown that the prediction results of the XGBoost Model have a lower log loss 

than the prediction results of the LightGBM Model. This difference indicates that although the 

LightGBM Model has a higher accuracy rate, the XGBoost Model has a slightly better confidence level 

in its prediction probability. 

 

 
Figure 12. Log Loss comparison graph of XGBoost and LightGBM models. 

 

4. DISCUSSIONS 

This research compares the performance of two popular boosting algorithms, XGBoost and 

LightGBM, in multi-class classification of student ECG signals across four arrhythmia categories: 

normal, abnormal, potentially arrhythmic, and high potential of arrhythmic. Both models demonstrated 

strong predictive capabilities with high accuracy, precision, recall, and F1 scores. LightGBM showed a 

slight edge over XGBoost in accuracy and other classification metrics, indicating better overall 

prediction performance on this dataset. Analysis of the confusion matrices revealed that both models 

correctly classified the majority of samples, with minimal misclassification across classes. However, 

XGBoost displayed a marginally lower log loss value, suggesting slightly better calibration or 

confidence in its predicted probabilities. Despite this, the differences in log loss were minor and did not 

outweigh the higher accuracy metrics favoring LightGBM. One possible reason why LightGBM 

performs better in this study is due to its leaf-wise tree growth approach, which enables the model to 

capture more complex patterns in the data while still maintaining computational efficiency. In addition, 

LightGBM is known to handle sparse features well and includes built-in regularization mechanisms, 

making it less susceptible to overfitting. These characteristics may have contributed to the model's strong 

performance when applied to the interval-based ECG features used in this research. 

Comparison with recent studies using machine learning on ECG data in arrhythmia prediction 

conducted by Xie et al. [9] and Li et al. [22] is favourable, showing improvements in accuracy. Xie et 

al. reported an average accuracy of approximately 92% across multiple models evaluated in their 

systematic review of atrial fibrillation detection using machine learning. Similarly, Li et al., by utilizing 

K-means clustering for feature extraction combined with LightGBM, reported an overall classification 

accuracy of 93.5%. The performance achieved by the present LightGBM model, showing 95.11% and 

supported by the F1 score of 95.03% and the log loss value 0.1503 highlight that the present model not 

only matches, but also outperforms many recent approaches in terms of both discriminative power and 

calibration, suggesting strong generalization on the tested arrhythmia classes. 
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5. CONCLUSION 

This study compares the performance of two machine learning methods with popular boosting 

models, namely XGBoost and LightGBM, in multi-class ECG signal classification using four categories 

of arrhythmia classes. These classes are normal, abnormal, potential of arrhythmia, and high potential 

of arrhythmia. Based on the evaluation results using test parameters such as accuracy, precision, recall, 

F1 score, and log loss, both models show excellent performance, where LightGBM appears to be 

superior in prediction accuracy supported by additional test parameters with similar results. The 

confusion matrix analysis also shows the accurate prediction distribution and minimal misclassification 

of both models. However, XGBoost has a slightly lower log loss value, indicating a slightly more stable 

prediction probability compared to the LightGBM Model. However, this difference is minimal and does 

not detract from the advantages of the LightGBM Model in predicting potential arrhythmias in students. 

These findings suggest that the LightGBM model, with its strong predictive performance, has high 

potential to be integrated into a machine learning-based clinical decision support system, assisting 

medical professionals in the early detection and classification of arrhythmias from ECG data. Further 

development could also be done to adapt for real-time prediction by integrating it with streaming ECG 

data sources or wearable devices, enabling continuous arrhythmia monitoring using multi-lead ECGs. 

Despite the promising results of this study, there are some limitations that should be considered. 

The research utilized ECG data from only three leads (I, II, and V1) combined with intervals like RR 

and PR, which may not fully capture the complexity of cardiac signals across diverse populations. This 

could affect the generalizability of the findings. Additionally, this study did not explore variations in 

model hyperparameters or alternative feature engineering approaches, which could potentially improve 

performance further. Moreover, evaluation was limited to stratified k-fold cross-validation on the same 

dataset without validation on completely unseen external data, restricting the assessment of the models’ 

robustness in more practical settings. 

These limitations present valuable opportunities for future work. Expanding the dataset to include 

additional ECG leads and a more diverse pool of subjects may improve generalizability. Systematic 

hyperparameter tuning and experimentation with advanced feature extraction methods may also boost 

the accuracy of the classification. Moreover, validating the models on external unseen data may help to 

confirm their practical applicability and stability for general use. Overall, despite these limitations, the 

current findings provide a solid foundation for ongoing research into optimizing machine learning 

models for arrhythmia classification using student ECG data. 
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