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Abstract 

Automated Dietary Assessment Accurate food recognition is a big challenge in computer vision which is critical for 

developing Automated Dietary assessment and health monitoring systems. The key question it answered was whether 

traditional machine learning with feature engineering by hand can beat modern deep learning approaches? In this 

Context, this study serves as a comparative analysis of these two paradigms. The baseline method worked by 

extracting texture (LBP,GLCM) and color information from different channels of five colors spaces (RGB, HSV, 

LAB, YUV,YCbCr) followed by feeding these features into multiple classifiers such as Nearest Neighbor(NN), 

Decision Tree and Naïve Bayes. These were then compared to deep learning models (MobileNet_v2, ResNet18, 

ResNet50, EfficientNet_B0). The best traditional one can reach an accuracy of 93.33%, using texture features 

extracted from the UV channel and classified with a NN. Nevertheless, the deep learning models consistently 

presented higher performance and MobileNet_v2 reached up to 94.9% accuracy without requiring manual feature 

selection. In this paper, we show that end-to-end deep learning models are more powerful and error robust for food 

recognition. These results highlight their promise for constructing more effective and scalable real-world applications 

with less need for intricate, domain-specific feature engineering. 
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1. INTRODUCTION 

Food recognition in healthcare has great potential, especially for improving medical services and 

personalized health information systems [1], [2], [3], [4], [5]. Research related to diabetes, obesity or 

hypertension are chronic diseases that can be easier in clinical nutrition monitoring by identifying food 

types and adjusting portions appropriately [6]. Hospital electronic medical record systems, for example, 

can improve tracking of patient nutritional intake, reducing errors in human data entry [7], [8]. In 

addition, food recognition systems can also be used to speed up food recording by integrating deep 

learning-driven food identification models. Machine learning models can achieve excellent accuracy in 

classifying food images [9] [10] [11] [12], as demonstrated by studies such as those conducted by Feng 

et al. [13]. 

At present, the proliferation of internet and mobile usage has become a pervasive phenomenon, 

accompanied by the emergence of novel habits among certain demographics. In contemporary society, 

individuals frequently employ photographic documentation to disseminate information, eschewing 

solely textual means in their efforts to portray the dynamic interactions that characterize their daily lives. 

For instance, the practice of documenting one's experiences through social media has become 

increasingly prevalent. This phenomenon involves the act of taking a photograph prior to partaking in a 

meal, which has the potential to disseminate information pertaining to the image captured. The advent 

of the internet has profoundly transformed the landscape of image storage and dissemination. The ease 
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with which images can now be accessed, stored, and shared has had a significant impact on society. As 

indicated by the available literature, the images in question have been demonstrated to represent latent 

textual descriptions that can be retrieved automatically [5]. 

Some researches employ this circumstances to develop technologies that can recognize and 

analyze food images automatically to help some patients according to their health, such as obesity [14]. 

Obesity becomes main concern since it can inherit some diseases, for instance heart disease, diabetes, 

and some cancers [15]. One way to tackle obesity issue is by controlling food intake using food logging 

for dietary program [16] [17]. Preceding activity, people tend to write down on a book of their daily 

meals and physical exercise in order to maintain their weight loss. In digitization era, Smartphone 

application is one devices that can facilitate food logging easily and monitoring dietary interactively 

through food images taken by camera that is embedded in smartphones [18]. Automatic dietary 

management is necessary to store daily meal habits to prevent health risk and the common dare for this. 

Food images needs to be inserted in wearable sensors when applying it in different surroundings of 

problems to further analysis [19]. 

Food image  classification have been conducted to increase the accuracy and efficiency of 

automatic food consumption reporting systems[8] . Research in the domain of food image recognition 

is fraught with challenges, primarily due to the sheer diversity of foodstuffs and the inherent 

deformability of many of them. This category encompasses non-rigid objects, including porridge, 

pudding, and various types of soft food. The presence of color, shape, size, and texture in a given food 

is indicative of its similarity to other foods. The integration of these characteristics is regarded as a 

fundamental aspect of the classification of food images. [14]. 

Food recognition contains both color and texture which color represents valuable source of 

information [20] which can be seen indirectly and texture indicates the contour of food images to define 

clearly the unique feature of food [21]. Color features independent supports its higher ability to 

discriminate the naturally vivid foods that have distinct chromatic differences [22] [23] but in the case 

to communicate surface patterns or structural information texture features may be sufficient. However, 

using only color or texture may not always be sufficient to represent so food item, and therefore the 

accuracy of recognition will increased by considering both features, when two foods have similar color 

but different texture (bug), or one has same texture with another different color [24], [25]. Colour and 

texture extraction are depending on the process of segmentation [26]. So that, segmentation phase is 

considered to take the main area of food image [27]. The rest properties that is not indicated as food is 

ignored. Segmentation involved color space transformation [28] help to recognize food image in 

segmentation phase since the color of food can be distinguished easily [29]. 

The segmented image is then taken for its features and fed into the classifier. This paper compares 

various classifiers such as NN Euclidean, NN Manhattan, 3-NN Euclidean, 3-NN Manhattan, Naive 

Bayes (NB), J48 (DT), and SVM Polynomial Kernel. In addition to using machine learning, the deep 

learning approach is also compared to gain broader insights into how to recognize food types. While 

previous studies have successfully applied texture features like GLCM [30] or employed deep learning 

models for classification, a systematic analysis of how individual color channels (e.g., R, G, B, H, S, V) 

influence the performance of different feature extractors (LBP vs. GLCM) remains under-explored. 

Furthermore, a direct benchmark of this granular, traditional approach against a suite of modern deep 

learning models on a consistent dataset has not been thoroughly investigated. This gap leaves an open 

question regarding the trade-offs between complex, manual feature engineering and automated, end-to-

end learning in the context of food recognition [31] [32] [33] [34]. 

Several studies have been proposed including methods that combine machine learning techniques 

with features from artificial neural networks (CNN) to ensure accurate food recognition despite varying 

image quality [35]. In addition, there is also research that creates models that can overcome the problem 
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of imbalanced food data with special techniques so that food features can be analyzed better [36]. In this 

research, a comparative study was conducted on the difference in the effect of colour channel-based 

feature extraction with traditional machine learning and deep learning processes. 

Consequently, this research aims to carry out a systematic assessment of traditional machine 

learning approaches against state-of-the-art deep learning models for food recognition using detailed 

color channel and texture feature analysis. Our aim is to determine which method(s) are most reliable 

and consistent, while illustrating the interplay between interpretability and performance. 

2. RESEARCH METHODOLOGY 

2.1. Dataset 

To observe the function of color channel-based segmentation in each color space, a dataset was 

created. A total of 19 food categories were documented through photographic evidence, meticulously 

captured by hand using a smartphone camera. The photographic process did not entail the use of any 

specific technique, such as precise angles or rotations, in the capture of the food images. The 

photographic documentation was carried out using an iPhone7 smartphone. The foods were 

meticulously arranged on a white plate, positioned precisely in the center. The employment of a white 

background has been demonstrated to facilitate the segmentation phase, thereby enabling the distinction 

of the primary object. In the segmentation step, the use of a white backdrop facilitates the identification 

of the primary item. This method is most effective in conditions of unrestricted lighting during the 

photographic capture process.  In this scenario, the lighting conditions remain constant during image 

capture due to the arbitrary nature of the illumination changes. 

A total of 376 food images were identified, which were subsequently categorized into 19 distinct 

classes, as illustrated in Figure 1. The images in question contain a single, unvarying image of food. 

There is no specific rotation when capturing foods. Nevertheless, the majority of the images were 

captured at a perpendicular angle, with an approximate distance of 30 centimeters from the uppermost 

point. Nevertheless, an imbalance in the number of images per class was observed, as illustrated in 

Figure 1. The results of this case study suggest that an imbalance may become a troublesome component 

because of its ability to affect the training model and classification techniques in general. However, this 

study showed that the best categorization results may be obtained by using complete raw data. 

 

 
Figure 1. Example dataset with 20 labels 

 

Figure 2 shows the distribution of the number of images in each class in the food dataset. There 

are 20 food classes represented by numerical labels. Each vertical bar represents the number of images 

in each class. From the graph, it can be seen that the data distribution is not completely balanced. Some 

classes, such as classes 001, 002, 015, 018, and 029 have the highest number of images, which is about 

25 images per class. In contrast, classes such as 004, 011, and 032 have fewer images, below 15. 
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Figure 2. Food dataset class distribution 

2.2. Food Recognition using Machine Learning and Deep Learning 

2.2.1. Traditional Machine Learning 

Figure 3, in general, the input is generally taken using a smartphone camera and then the 

segmentation process is carried out. In segmentation using color channel based is done to find out its 

effect on the color space (see Figure 4). Then from the preprocessing, the features are extracted using 

GLCM and LBP color and texture statistical features, then classification is carried out. Texture 

information about food boundaries and surface structure is extracted with features such as the Gray 

Level Co-occurrence Matrix (GLCM) [13]. Whether this is because two foods have the same colour, or 

even if they share different tones in their own right, each option of texture can help highlight your 

selections. Specifically, in our case we extract GLCM features with the pixel distance=1 of 4 angular 

directions (0°, 45°,90° and 135°); contrast, correlation, energy and homogeneity. We use 8 neighboring 

points with a radius of 1 for LBP to capture fine-grained local texture patterns. Texture basedIt depends 

on accurate segmentation methods and several texture-based approaches are vulnerable to changes in 

illumination conditions. Like porridge or pudding, which are not rigid foods that can change with 

texture. 

 Figure 4 describes the processing flow of a food image (sunny side up egg) using color-based 

segmentation and filtering techniques, specifically with the transformation to Lab color space (L*a*b*). 

The following is a step-by-step explanation of the process shown: Original image is the original image 

of food (eggs), then resizing is done to equalize the size of the image to make it easier to process. For 

the color transformation process, the image is converted from RGB to L*a*b* color space. This color 

space separates lightness (L*) and color information (a*, b*), making it more effective for color analysis 

and segmentation. This is also applied to other color spaces. Then for per channel processing in Fugure 

4 for Per Channel Processing (L*, a*, b*)several steps are carried out,such as histogram equalization, 

average filtering, gaussian filtering, segmentation. Histogram Equalization: Increases the contrast of the 

channel to bring out the details. Average Filtering: Reduces noise by flattening the surrounding pixel 

values. Gaussian Filtering: Smoothing the image with a Gaussian filter, smoother than average. 

Segmentation: Separates the main object from the background based on the channel pixel values. The 

segmentation results from the three channels are combined to find the contours and edges of the object, 

resulting in an output image that shows only the important parts of the optimally selected food object. 

One of the food image classification processes is carried out using the K-Nearest Neighbor (KNN) 

method, a distance-based classification algorithm that determines the label of test data based on the K 

nearest neighbors of the training data. KNN works on the principle that similar objects tend to be located 

close to each other in feature space. This study uses Euclidean and Manhattan Distance. 

https://jutif.if.unsoed.ac.id/
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𝒅Euclidean(𝒙, 𝒚) = √∑ (𝒙𝒊 − 𝒚𝒊)𝟐𝒏
𝒊=𝟏    (1) 

Where, 𝒙 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) is feature vector of the test food image, 𝒚 = (𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏) is 

feature vector of the training food image, 𝒏 is  number of feature dimensions. While 𝒙𝒊, 𝒚𝒊 is 

the  𝒊-th feature value of the respective images 

𝒅Manhattan(𝒙, 𝒚) = ∑ |𝒙𝒊 − 𝒚𝒊|𝒏
𝒊=𝟏    (2) 

Where 𝑥 and 𝑦 is feature vectors of the test and training food images, n is number of feature 

dimensions., and  |𝑥𝑖 − 𝑦𝑖|is absolute difference of the 𝑖 − 𝑡ℎ feature value. 

 

 
Figure 3. General phase of traditional machine learning 

 

 

Figure 4. color channel based food image segmentation. From this figure, it can be shown that the b* 

channel in LAB plays a better role in food image segmentation. 

 
Figure 5. simple architecture of CNN for food recognition 
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2.2.2. Deep Learning 

 Figure 5 depicts a simple Convolutional Neural Network (CNN) architecture where the Input 

Layer receives a color (RGB) image with a size of 3 x 224 x 224 pixels depicted as a white block on the 

leftmost side of the diagram. The Feature Extraction Layers consist of two convolution blocks, each 

followed by ReLU and MaxPooling which consists of Conv2d Layer 1 (Light Blue) which includes 

using 32 filters of size 3×3 with padding=1. The output is a 32 x 224 x 224 feature map. Then followed 

by ReLU Activation (Green) which is an activation function to add non-linearity. Then the next process 

is MaxPooling Layer 1 (Purple) by reducing the resolution to 32 x 112 x 112. Next is Conv2d Layer 2 

(Light Blue) by using 64 filters of size 3×3 with padding = 1 with Output: feature map 64 x 112 x 112. 

Then using ReLU Activation (Green) and MaxPooling Layer 2 (Purple) which produces a 64 x 56 x 56 

feature map. Then to convert the 3D tensor into a 1D vector of 200,704 elements (64 × 56 × 56), the 

Flatten Layer (Yellow) is performed which marks the transition from spatial data to vectors. Then the 

last is Fully Connected Layers (Classifier which is marked with orange blocks, namely Linear Layer 1, 

namely Input: 200,704 neurons, in which output: 256 neurons, then apply ReLU Activation (Green). In 

Linear Layer 2, the output is the number of classes (num_classes) according to the dataset. Finally, the 

Output Layer (Red) produces a prediction score for each class. 

Pre-trained weight from the ImageNet dataset was employed to train these deep learning models 

using transfer learning. The final layer for classification was changed to 19 target classes for our dataset. 

The model was trained using the Adam optimizer for 50 epochs with a learning rate of 0.001 and batch 

size of 32. Within each epoch, setting the model to training mode and transferring both input images 

and labels to GPU(or CPU) device and running through forward pass where features were extracted. 

The cross-entropy loss was then backpropagated to update the model parameters using gradient descent. 

This would also keep a track of loss and accuracy among batches and how well the models were learning 

over time. 

 

2.2.3. Evaluation Matrices 

Accuracy is the most intuitive and the most common evaluation metric we can use in classification 

problems, that is used to know how well our model has predicted. The idea is that this metric gives a 

more general view of the model correctly predicting something. 

The accuracy is: the number of correct founded objects are divided by all objects in the data set. 

It indicates how accurate the model predicts, only to the positive class and even in negative classes. We 

assess accuracy  as stated in Equation (1) by comparing these correctly populated squares to the total 

number of predictions made at all. In mathematical term, accuracy is the ratio of total number of True 

Positives (TP) and True Negatives (TN) over total instances i.e. TP + TN + False Positives(FP)+ False 

Negatives(FN). 

ACCURACY =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
× 𝟏𝟎𝟎%  (3) 

3. RESULT 

3.1. Traditional Machine Learning 

The feature extraction results in 36 colour channel features, 26 LBP features, and 60 GLCM 

features. Figure 6 shows the results of how accurate each feature is. The Euclidean NN and Manhattan 

NN are usually the most accurate in most color spaces. They often have accuracy values above 91%. 

Both methods are reliable and the best choice for this data. The SVM Polynomial Kernel method also 

performed well, with accuracy ranging from 90% to 92%. However, the 3-NN with Manhattan distance 

and 3-NN with Euclidean distance methods performed worse, with an average accuracy of 86% to 88%. 

This suggests that using more neighbors does not necessarily improve performance.  However, the J48 

https://jutif.if.unsoed.ac.id/
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(DT) and Naive Bayes (NB) methods were consistently less accurate, with accuracy ranging from 78% 

to 84%. The two best ways to sort this dataset are Manhattan NN and Euclidian NN. Based on this result, 

we elaborate on experiment in detail of feature type accuracy in each color channel using NN with 

Euclidean distance as stated in Table 1, where the 'All Feature' column shows the results when all feature 

types (Color, LBP, and GLCM) are combined into one feature vector. 

 

 
Figure 6. Accuracy in all features 

      

Table 1 presents the classification performance across different color channels and feature types 

employing NN Euclidean Distance, with the peak accuracy of 93.07% reached on the V (Value) channel 

using an integration of all features. The B_RGB channel also shows an advantage, especially in texture 

characteristics, achieving an accuracy of 93.33%. The primary advantage is the dependability of the 

texture feature, especially in the RGB channel, which often achieves accuracy greater than 92%, 

showcasing the effectiveness of the textural feature in distinguishing image types. Despite this, the 

V_YUV and Cr channels show significant shortcomings, attaining the lowest accuracy rates of 89.60% 

and 89.33% for both overall and specific features, indicating their limited sensitivity to detecting 

changes in image patterns. Additionally, channels U and V_YUV show varying degrees of feature 

accuracy, with a significant difference observed between color and texture features. This implies that 

the color data in these channels is of reduced importance when texture features are not present. This 

result confirms the importance of selecting the right color channel and using texture features to achieve 

optimal accuracy, and shows that not all color channels are equal in their contribution to classification 

performance. The conclusions related to the feature comparison experiment are in Table 2. 

Table 2 indicates that the texture feature consistently yields the highest accuracy in over 80% of 

the channels, particularly in RGB and LAB color spaces. The LBP feature demonstrates consistent 

performance, particularly in the Y_YUV and HSV color spaces. At the same time, GLCM generally 

proves less effective than LBP, particularly in chrominance channels like Cb and Cr. The Color feature 

showed strong performance in the V (HSV) and G_RGB channels, but was less effective in the Cr and 

U channels, indicating its limitations in gathering distinguishing information.  

Table 3 presents an overview of the segmentation outcomes according to color space, channel, 

optimal feature type, and classification approach that produces the greatest accuracy. Texture feature 

clearly stands out as the most effective attribute across nearly all color channels, leading to significant 

accuracy in various color spaces, such as the B_RGB channel achieving the top accuracy of 93.33% 

with Manhattan NN, and the V (HSV) channel at 93.07% in Manhattan NN when all features are 

employed simultaneously.  
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Table 1. Classification accuracy per feature type and color channel in traditional machine 

learning using NN with Euclidean Distance 

Color Channel 
All 

Feature(%) 
Color(%) LBP(%) GLCM(%) Texture(%) 

L 92.27 87.20 91.47 89.87 92.00 

A 92.00 89.93 91.47 89.87 92.00 

B 91.73 88.53 91.47 90.13 91.73 

H 89.60 88.53 92.53 89.87 92.80 

S 90.40 90.13 92.53 88.27 92.80 

V 93.07 90.40 92.53 92.53 92.80 

Y_YUV 91.73 87.47 91.20 90.93 92.00 

U 91.20 83.73 90.40 88.53 91.20 

V_YUV 89.60 73.20 88.53 86.67 89.60 

R_RGB 91.20 87.20 91.73 88.27 92.00 

G_RGB 92.27 87.47 91.20 92.27 92.53 

B_RGB 92.27 90.13 92.80 91.47 93.33 

Y_CbCr 91.73 87.47 91.20 90.93 92.00 

Cb 92.00 85.87 91.20 85.87 91.47 

Cr 89.33 81.33 89.07 87.47 90.13 

 

Table 2. Summary of all features 

Feature Summary 

Color Highly contributes in HSV (V), G_RGB, but weak in Cr, U 

LBP Consistently gives high results, especially in Y_YUV and HSV 

GLCM Often does not exceed LBP, sometimes weaker in chroma segment 

Texture Provides best results in >80% of segments, especially in RGB and LAB 

 

Table 3. Color space segmentation summary 

Color 

Space 

Channel Best 

Feature 

Best Method Top Accuracy 

(%) 

LAB L Texture NN Euclidean 92.27 

LAB A LBP NN Euclidean 91.73 

LAB B Texture NN Euclidean 91.73 

HSV H Texture NN Euclidean 89.6 

HSV S Texture NN Manhattan 90.4 

HSV V All Feature NN Manhattan 93.07 

YUV Y Texture NN Euclidean 92 

YUV U Texture NN Euclidean 91.2 

YUV V Texture NN Euclidean 89.6 

RGB R Texture NN Euclidean 92 

RGB G Texture NN Euclidean 92.53 

RGB B Texture NN Manhattan 93.33 

YCbCr Y Texture NN Euclidean 92 

YCbCr Cb Texture NN Euclidean 91.47 

YCbCr Cr Texture NN Euclidean 90.13 

 

This result is consistent with previous studies which show that texture characteristics are very 

important for improving classification ability. In addition, the Euclidean NN and Manhattan NN 
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methods also consistently produced the highest accuracy. Certain colour channels, including H (HSV) 

and V (YUV), showed reduced accuracy (below 90%). This indicates a lack of informativeness without 

additional colour features. Therefore, choosing the right colour channels and features has a great 

influence on obtaining the best accuracy. 

3.2. Deep Learning 

  

Table 4. Mean Accuracy of Each Model 

Model Mean Accuracy 

  

MobileNet_v2 0.949438596 

ResNet18 0.94677193 

ResNet50 0.944105263 

EfficientNet_B0 0.941438596 

 

Table 4 displays the average accuracy of the four deep learning models assessed: MobileNet v2, 

ResNet18, ResNet50, and EfficientNet_B0. The findings show that MobileNet v2 has the highest 

performance, achieving an average accuracy of 94.94%. ResNet18 and ResNet50 ranked second and 

third, achieving 94.68% and 94.41% respectively. With a mean accuracy of 94.14%, EfficientNet_B0 

shows the lowest average accuracy of the four models. This difference in accuracy suggests that simpler 

models, such as MobileNet v2, can achieve equivalent or even better performance than more complex 

models. This is due to the ability of MobileNet v2 to reduce overfitting while improving computational 

efficiency. Deep Learning consistently outperforms with an average accuracy of ~94%–95%, surpassing 

all traditional machine learning results, including the best ones. 

3.3. Traditional Machine Learning vs Deep Learning in Food Recognition 

From the overall findings, the greatest accuracy in the conventional machine learning method is 

obtained in the RGB color space, particularly in the B channel. In this implementation, the prevalent 

approach involves utilizing texture features and neural networks with Manhattan distance, achieving 

93.33%. However, it is noteworthy that deep learning models, such as MobileNet_v2, ResNet18, and 

ResNet50, have been shown to consistently achieve accuracies of 94%, with MobileNet_v2 

demonstrating a notable 94.9% accuracy.  This suggests that while conventional machine learning 

approaches can attain high accuracy on individual channels, their efficacy is constrained and contingent 

on the features or methods employed, as well as the selection of channel combinations. In contrast, deep 

learning demonstrates consistently high performance overall, without reliance on color channels or 

manually designed features.  

Out of the 14 color channels, 13 indicate that texture is the most effective feature. This indicates 

that texture retains the most unique information pertinent to food image segmentation classification. 

Nevertheless, the highest outcomes of conventional machine learning still do not reach the average 

precision when compared to deep learning. Deep learning naturally comprehends the representation of 

texture, edge, spatial pattern, and color simultaneously, without requiring the explicit extraction of LBP 

or GLCM features. The benefits of deep learning go beyond just one type of visual data, including its 

ability to understand complex and contextually rich representations.  

RGB–B channel gives the best result in traditional machine learning with an accuracy value of 

93.33%. This shows that color channel B contains dominant contrast and texture, or reflects different 

important elements between food image classes. However, DL does not show any dependence on a 

particular color channel: CNN models work on full RGB combinations (or other augmentations), and 

have the ability to automatically weigh which channels are important, through an end-to-end learning 

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)                             Vol. 6, No. 4, August 2025, Page. 2484-2499 
P-ISSN: 2723-3863                                                                                                           https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871                                                                  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.5001 

 

 

2493 

process. Traditional machine learning requires explicit experiments for each channel, while deep 

learning abstracts it in its internal structure (e.g. convolutional filters learn color and texture features 

simultaneously). 

The selection of a combination of methods and features is crucial in traditional machine learning 

where users need to try many configurations (channels, features, methods) to find the best results. While 

on the deep learning side, models such as MobileNet, ResNet, EfficientNet only need to prepare the 

dataset and architecture, then learn the most optimal features and representations themselves. The 

performance of traditional machine learning fluctuates across color channels and methods. Color 

channels such as Cr and Cb (in YCbCr) experience performance degradation (90.13% and 91.47%) even 

when using the best texture features. Meanwhile, all deep learning models show performance stability 

above 94%, regardless of input channels because they work on full images. This shows that deep 

learning has a much higher generalization capacity, compared to traditional machine learning which is 

prone to local overfitting on certain channel-feature-method combinations. Table 4 shows the 

comparison of the traditional machine learning and deep learning based on this paper experiment. 

 

Table 5. Comparison between traditional machine learning and deep learning approaches 

based on this paper experiment. 

Criteria Traditional machine learning Deep Learning 

Maximum Accuracy 
93.33% (RGB-B + Texture + NN 

using Manhattan distance) 

94.9% (MobileNet_v2) ; the highest 

score 

Consistency 
Fluctuates across channels and 

methods 

Consistently high across all deep 

learning models 

Feature Dependence 
High since it requires feature and 

color channel exploration 
Learns automatically from data 

Feature Dominance 
Texture dominates in almost all 

channels 

No single dominant feature – end-to-

end abstraction 

Interpretability 
Can be explained per feature and 

create deep analysis 
Using complex models (black-box) 

Exploration Efficiency Manual experiments required 
One training process can generate 

many insights 

Adaptability 
Weak with new data if dominant 

channel changes 

Strong due to broader abstraction 

learning 

 

4. DISCUSSIONS 

A comparative overview of the various food picture classification approaches used between 2015 

and 2025 is provided in Table 6, with an emphasis on feature extraction methods such as GLCM, LTP, 

and Convolutional Neural Network (CNN). With respect to conventional techniques, texture-oriented 

methods such as GLCM and LTP continue to be widely utilized, evidenced by the 2018 research by 

Wint Myat Thu et al. [37], which employed GLCM and LTP alongside SVM classification, resulting in 

an accuracy of 93%.  However, other studies using GLCM on other datasets, such as Gade and 

Vyavahare (2018) [38], found accuracies of about 70-75%, indicating that the quality and characteristics 

of the used data are crucial for the effectiveness of texturing approaches. 

On the other hand, convolutional neural network (CNN)-based methods have become more and 

more advantageous in recent years. Feng et al. (2023) found that fine-grained CNN approaches could 

categorize Chinese food with an accuracy of 93.5% [13]. However, not all CNN implementations 

perform optimally.  A previous investigation by Matsuda et al. (2015) employing covariance pooling of 

CNN feature maps attained a mere 58.65% accuracy [39]. This finding indicates that CNN methods 
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necessitate the implementation of suitable architectures and training configurations to ensure optimal 

performance. Another study, published in 2023, sought to make a comparison between CNN and GLCM 

features. The findings indicated that CNN attained 67%, while GLCM achieved 69%. This suggests 

that, under specific circumstances, conventional media outlets can maintain a competitive edge against 

CNN [40]. 

 

Table 6. Comparison results of previous research of this research 

No Title Year Method(s) Features Used 
Accuracy or 

Result 

1 

Intelligent 

classification models 

for food products basis 

on morphological, 

colour and texture 

features [41] 

2017 

ML (Intelligent 

classification models): 

Multilayer Perceptron 

(MLP), Support Vector 

Machines (SVM), 

Random Forest (RF), 

Simple Logistic (SLOG) 

and Sequential Minimal 

Optimization (SMO) 

Morphological, 

color, texture 

80% to 96% 

for the training 

2 

GLCM and LTP Based 

Classification of Food 

Types [37] 

  

2018 
GLCM, LTP + 

classifiers (SVM) 

Texture 

(GLCM, LTP) 
93% 

3 

Feature Extraction 

using GLCM for 

Dietary Assessment 

Application [38]  

2018 
GLCM + classifier (not 

specified) 

Texture 

(GLCM) 

70–75% (from 

text) 

4 

A fine-grained 

recognition technique 

for identifying Chinese 

food images [13] 

  

2023 
CNN + fine-grained 

recognition 

Deep CNN 

features 

85.4% and 

93.5% 

5 

Selection of Food 

Identification System 

Features Using 

Convolutional Neural 

Network (CNN) 

Method [40] 

  

2023 CNN 
Deep CNN 

features 

67% of CNN 

and 69% of 

GLCM 

6 

Food Image 

Recognition Using 

Covariance of 

Convolutional Layer 

Feature Maps [39] 

2015 
CNN (Covariance 

pooling) 

Deep CNN 

features 

(covariance 

maps) 

58.65% 

7 Ours 2025 

NN Euclidean, NN 

Manhattan  

3-NN Euclidean, 3-NN 

Manhattan, Naive 

Bayes (NB), J48 (DT), 

SVM Polynomial 

Kernel,CNN 

Texture 

(combined 

GLCM and 

LBP), CNN 

features 

GLCM and 

LBP with 

Machile 

learning is 

93.33%, 

MobileNet_v2 

is 94.94% 

 

This paper's research shows the comparison between of CNN techniques and traditional machine 

learning approaches, including Euclidean NN, Manhattan, and Naive Bayes, along with the application 
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of joint GLCM and LBP features. The outcomes achieved are remarkable, with the GLCM + LBP + 

Manhattan NN approach attaining a competitive accuracy of 93.33%, and the MobileNet_v2 model 

showing an accuracy of 94.94%.  This finding serves to reinforce the prevailing trend in the field, which 

suggests that a combination of modern and traditional approaches can result in high performance in the 

domain of food image classification, contingent upon the judicious selection of features and methods 

that align with the distinctive characteristics inherent in the specific dataset under consideration.  

The better performance of MobileNet_v2 indicates that deep learning models can generalize more 

effectively through hierarchical feature representations, as opposed to the model being able to learn 

color-texture features in a hand-crafted manner. The subtle gap between MobileNet_v2 and ResNet18 

may be because of the depthwise separable convolutions that MobileNets uses, helping against 

overfitting in somewhat smaller datasets.  

Interestingly, a common trend in our internal results was the high accuracy of texture-based 

features extracted from the B (Blue) channel in RGB color space for many traditional methods. Since 

shadows and illumination variations might affect the skull color channel, this could be due to lighting 

conditions of the dataset and therefore intrinsic contrast between food items and background that makes 

blue channel less susceptible to variations. Because the blue color channel is generally less intense in 

food items with naturally warm tones (reds and yellows), both GLCM and LBP are better able to capture 

more discriminative structural properties (such as edges, textures), without being primarily concerned 

with capturing universal intensity signals. 

This is not a large margin even though this translates to the highest accuracy MobileNet_v2 

(94.94%) outperformed the best traditional method, GLCM + LBP + Manhattan NN (93.33%), by about 

1.6%. A more practical trade-off in real applications is then between accuracy and the computational 

cost. Traditional methods are less accurate but can provide speed-based inferences with high 

interpretability and low memory consumption. This implies that for resource-starved environments like 

embedded systems in hospitals or dietary apps on the mobile, old well-tuned methods may still be a 

good choice without much of a blow to classification performance. Together, these results suggest that 

a hybrid approach using color-texture features for rapid and interpretable classification, and deep 

learning in high-stakes or ambiguous cases may optimally balance efficiency and accuracy.  

The importance of the work lies in three aspects: methodological, as it presents a consistent 

benchmarking framework for performance gains (dropout) derived from feature engineering–entailing 

manual selection and tuning of handcrafted features–versus deep learning performance, which can be 

utilized by other researchers on similar computer vision tasks; practical, indicating that deep learning 

models are likely preferred to optimize accuracy through MobileNet_v2 while traditional methods 

optimized for either high resource utilization or interpretability concerns such as clinical validation 

remain relevant; and scientific, demonstrating empirical estimates of how imputations around black-box 

models and interpretable methodologies fare against each other in food recognition with potential 

realizations to ongoing topics within the field rather than relying on subjective perspectives.. 

5. CONCLUSION 

This study proposes a technique for comparative analysis of traditional machine learning and deep 

learning methods. In traditional machine learning itself, what is done is more complex related to the 

influence of feature extraction caused by segmentation, as well as from the selection of classifiers. It 

turns out that color space and color channel selection have an effect and texture features have an effect 

on food image classification. Based on the experiments that have been carried out, deep learning 

methods, especially CNN such as MobileNet_v2, have succeeded in achieving the highest accuracy of 

up to 94.94% in food image classification, showing significant advantages over traditional methods 

based on texture features such as GLCM or LBP which generally range from 70–93.33%. The advantage 
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of CNN lies in its ability to perform end-to-end feature extraction without the need for a manual feature 

selection process, resulting in consistent performance across various data schemes. However, traditional 

methods have important advantages in terms of interpretability, computational efficiency, and reliance 

on relatively small datasets, where methods such as Euclidean NN or Manhattan NN are still able to 

record competitive accuracy in the range of 93.33% when combining texture features (GLCM + LBP) 

and optimal color channel selection (eg B in RGB). 

Although CNN has proven to be superior in accuracy, significant weaknesses lie in the need for 

large training data, longer training time, and its “black-box” nature, making it difficult to interpret. 

Therefore, the direction of future research development needs to be focused on the integration of a 

hybrid approach that combines the advantages of deep learning in feature abstraction with traditional 

methods that are easier to interpret, while exploring explainable AI methods so that classification results 

can be explained transparently. In addition, further research can be directed to testing the robustness of 

the model on more varied real-world data, as well as minimizing the model's dependence on certain 

color channels or dominant features so that the food image classification system becomes more adaptive 

and practical for implementation on various application platforms, such as dietary assessment as one of 

the systems that plays an important role in hospital settings. 
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