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Abstract 

Structural damage in buildings is often initiated by small cracks in lightweight brick elements, which, if undetected, 

may compromise structural safety. This study developed a vibration-based classification system using the ADXL345 

accelerometer, Fast Fourier Transform (FFT), and Extreme Learning Machine (ELM) for early detection of such 

damage. Vibration data were collected along three axes (X, Y, and Z) with excitation frequencies ranging from 10–

50 Hz. FFT analysis revealed clear distinctions between intact and cracked bricks, where cracked samples exhibited 

higher amplitudes and multiple resonance peaks. These frequency-domain features were then processed by ELM 

classifier. ELM achieved high computational efficiency and demonstrated strong predictive capability, correctly 

classifying 7,855 intact and 4,548 cracked samples. However, it also produced 1,879 false positives and 5,100 false 

negatives, resulting in an RMSE of 0.548. While the model proved more accurate in identifying intact bricks, its 

sensitivity to crack detection remains a challenge. Overall, FFT–ELM framework shows promising potential as a 

fast, non-destructive, and scalable approach for structural health monitoring, with further refinements needed to 

improve detection accuracy of damaged materials. 
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1. INTRODUCTION 

Structural integrity is a crucial aspect in the design and maintenance of buildings. Cracks in 

structural components such as walls and foundations often serve as early indicators of deeper mechanical 

failures, potentially compromising the safety and performance of buildings if left undetected [1]. The 

degradation of structural materials commonly results from repetitive loading, encompassing dead loads, 

live loads, and dynamic loads such as human activity, vibrations from equipment, or external 

environmental impacts [2], [3]. These loads may cause fatigue in materials such as lightweight bricks, 

initiating small cracks that eventually evolve into major structural weaknesses [4], [5]. Lightweight 

bricks are increasingly used in modern construction due to their low weight, ease of installation, and 

thermal insulation efficiency. However, their mechanical behaviour differs from conventional bricks, 

making them more susceptible to damage under stress conditions, especially vibration [6], [7], [22]. 

Consequently, early detection of microcracks is essential to prevent structural failure. 

A significant case highlighting the importance of early detection is the 2018 collapse of the 

mezzanine at the Indonesia Stock Exchange building, which revealed the risks of undetected structural 

deficiencies [8]. Although not involving lightweight brick specifically, the incident stresses the critical 

need for real-time, data-based structural health monitoring (SHM) systems. Recent advancements in 

sensor technology have facilitated the development of vibration-based diagnostic tools. The ADXL345 
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accelerometer is one such device, offering high sensitivity, low power consumption, and tri-axial 

measurement capabilities [9], [20]. These sensors enable detailed structural monitoring by capturing 

vibration data, which can be transformed from the time domain to the frequency domain using the Fast 

Fourier Transform (FFT), allowing for accurate interpretation of material behaviour [10], [11], [21]. 

However, relying solely on FFT is not always sufficient for classification tasks, especially under 

complex or noisy environments [23]. Therefore, machine learning models such as the Extreme Learning 

Machine (ELM) are introduced for their high-speed training, simple architecture, and robust 

classification ability [12], [13], [24]. Integrating ELM with FFT-based features has proven effective for 

distinguishing between intact and damaged building materials in real-time scenarios [14], [25]. Several 

studies have explored similar approaches for infrastructure monitoring. For instance, fuzzy logic and 

IoT-based sensor networks have been implemented for building vulnerability detection [15], [16], while 

convolutional neural networks (CNN) have shown success in surface crack classification [17], [23]. 

Furthermore, sensor fusion strategies combining vibration data and stress–strain analysis are gaining 

traction in the industry [18], [19], [21]. 

This research develops a vibration classification system that integrates ADXL345 accelerometers, 

FFT signal analysis, and ELM-based classification, producing a model capable of accurately 

distinguishing between intact and cracked lightweight bricks. The system outputs reliable classification 

results with high computational efficiency, providing a practical tool for early detection of structural 

damage in real time. 

2. METHOD 

The methodology for classifying intact and cracked brick materials based on vibration data 

involves a sequence of signal acquisition, processing, and intelligent classification. The first stage is 

data acquisition, where vibration signals are collected using two accelerometer sensors strategically 

positioned on a test brick block—one on the surface and another embedded on the side. An electric 

motor is mounted on top of the brick, and its operation induces vibrational energy into the structure. 

Separate datasets are recorded for both intact and artificially cracked brick samples to capture the 

vibrational differences due to internal damage. 

The next stage is signal preprocessing and feature extraction. The raw vibration signals are first 

filtered and normalized to remove noise and standardize the data. The filtered signals are then converted 

from the time domain to the frequency domain using FFT) FFT helps reveal essential characteristics of 

the vibration such as dominant frequencies, harmonics, and amplitude variations, which are known to 

change in the presence of structural damage. These frequency-domain features form the input for the 

next stage of analysis. 

The final stage is classification using ELM. ELM is a feedforward neural network model known 

for its fast-learning speed and high accuracy with minimal parameter tuning. The extracted FFT features 

are fed into ELM model, which is trained to distinguish between intact and cracked brick conditions 

based on the learned patterns. The model outputs a binary classification label (e.g., "Intact" or 

"Cracked") for each input signal, thereby enabling non-destructive, real-time structural evaluation. This 

approach combines experimental mechanics with machine learning to provide an efficient framework 

for brick condition assessment. 

Figure 1 shows 4 block diagrams about the research steps. The first block, Vibration signal from 

sensor, represents the initial stage of data acquisition in the classification process. In this phase, 

accelerometer sensors are mounted on the brick surface and embedded within its structure to capture 

mechanical vibrations generated by an external excitation source, typically an electric motor. 

 

 
Vibration signal 
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Figure 1. Research Steps 

 

These vibrations differ depending on the internal integrity of the brick material. Intact and cracked 

bricks respond differently under the same mechanical input, and this discrepancy is recorded as time-

domain vibration data. The collected signal is the foundation for further processing and contains rich 

information about the structural condition of the material. 

The second block, "FFT", performs the critical transformation of vibration signals from the time 

domain to the frequency domain. Time-domain signals are often complex and difficult to interpret 

directly, especially for identifying specific damage signatures. FFT decomposes these signals into their 

constituent frequency components, revealing the distribution of vibration energy across various 

frequencies. Cracks in the material typically cause shifts or distortions in frequency peaks and 

amplitudes, which can be detected through this spectral representation. This step enhances the 

interpretability of vibration data and prepares it for the next phase. 

The third and fourth blocks, "Feature Extraction" and "ELM Classification," form the core of the 

machine learning-based diagnostic process. In feature extraction, specific attributes such as peak 

frequency, magnitude, and harmonic content are derived from FFT output to create a compact, 

informative dataset. These features serve as inputs to ELM classifier, a type of single-hidden layer 

feedforward neural network known for its fast-training speed and generalization capabilities. ELM 

model is trained on labeled datasets (intact vs. cracked) and, once trained, can classify new input data 

with high accuracy. This sequence enables efficient, non-destructive evaluation of material conditions. 

2.1. Data Collection And Processing 

 

 
Figure 2. Data Collection On The Brick 

 

Figure 2 illustrates a comparative experimental setup used to evaluate the vibrational behavior of 

an electric motor mounted on two different structural conditions: intact brick (left) and cracked brick 

(right). Both setups feature a concrete block (60 cm long, 20 cm wide, and 15.6 cm high) with the motor 

positioned centrally. Two accelerometer sensors are employed: Sensor 1 (red) is mounted on the top 

surface, 10 cm from the right edge, while Sensor 2 (yellow) is located on the front face beneath the 

motor base. The consistent geometry and placement in both setups ensure that any differences in 

vibration response are attributable solely to the condition of the material beneath the motor. 

In the intact configuration, the concrete structure provides stable support for vibration 

transmission, serving as a baseline for comparison. Conversely, in the cracked brick setup, the presence 

Intact Brick 

Cracked Brick 
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of internal damage alters the propagation of vibrational energy, which can be detected through changes 

in amplitude, frequency, or phase recorded by the sensors. The objective is to extract features from the 

vibration signals, particularly in the frequency domain, to reveal patterns indicative of structural defects. 

Frequency-domain analysis, especially using FFT, is a widely accepted approach for such evaluations 

[21], [22]. 

The collected sensor data is typically used to train machine learning models capable of 

distinguishing between intact and damaged conditions. Recent studies have shown promising results 

using classifiers such as ELM, Convolutional Neural Networks (CNN), and Support Vector Machines 

(SVM) for fault detection in civil structures [23]–[25]. Table 1 presents a subset of the vibration data 

recorded by the ADXL345 accelerometer along the three axes for both intact and cracked brick samples. 

Each row corresponds to a single measurement instance, with the left block representing intact samples 

and the right block representing cracked samples. For example, the first three records from intact bricks 

show stable acceleration values around –1.098, –1.177, and 10.081, while the cracked samples exhibit 

distinct variations such as 0.039, 0.235, and 8.512. These variations demonstrate the sensitivity of 

vibration signals to structural anomalies. In total, the dataset contains 160,934 measurements per axis, 

providing a large sample size for feature extraction and training machine learning models to classify 

structural integrity. 

      

Table 1. Measurement Data Sample 

Number of 

Data Sample 

Intact Brick Cracked Brick 

x y z x y z 

1 -1.098 -1.177 10.081 0.039 0.235 8.512 

2 -1.098 -1.177 10.081 0.039 0.235 8.512 

3 -1.098 -1.177 10.081 0.039 0.235 8.512 

4 -0.863 0.667 8.748 -0.431 0.157 8.473 

5 -0.863 0.667 8.748 -0.431 0.157 8.473 

Total Data 160,934 160,934 

 

2.2. Vibration Sensor 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Vibration Sensor 

 

The hardware architecture depicted in Figure 3 presents a compact and efficient embedded system 

designed for vibration signal acquisition and classification in structural health monitoring applications. 

At the core of the system is the ESP32-S3 microcontroller (4), which provides high-speed data 

processing and wireless communication capabilities. Power is supplied by a dual 18650 lithium battery 

module (1), offering portable and rechargeable energy. The voltage is regulated via a step-down 
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converter (3) to match the input requirements of the microcontroller and peripherals. An automatic 

switch module (2) ensures seamless transition between power sources, such as battery and external 

adapter input (7), enhancing system reliability. 

For vibration sensing, the system integrates an ADXL345 accelerometer sensor (5), which is 

connected directly to the ESP32-S3 via I2C communication. The ADXL345 provides three-axis 

acceleration data with high resolution and sensitivity, making it suitable for detecting subtle structural 

variations due to cracks or material degradation. The sensor’s output is used as input for further signal 

processing, typically involving FFT and feature extraction routines within the ESP32 firmware. This 

data is essential for distinguishing between intact and damaged conditions in brick structures. 

The system also includes a 0.96-inch OLED display module (6), used for real-time feedback on 

sensor readings or classification results. The compact nature of this display makes it ideal for embedded 

diagnostics and visualization without the need for external hardware. The overall integration of 

components supports on-board processing and display of vibration features, enabling a standalone 

solution for low-cost, real-time structural condition monitoring.  

2.3. FFT – ELM  

FFT–ELM methodology is a hybrid approach that integrates FFT for signal feature extraction and 

ELM for rapid classification of structural conditions, such as distinguishing between intact and cracked 

brick materials. The process begins with vibration data acquisition using accelerometer sensors 

strategically placed on the test specimen. These sensors capture raw time-domain signals during motor-

induced excitation. However, time-domain data alone often fails to reveal damage-related patterns due 

to noise and complexity.  

The Extreme Learning Machine (ELM) is a Single Hidden Layer Feedforward Neural Network 

(SLFN) designed for fast learning and high generalization. Unlike traditional networks, ELM randomly 

initializes the input weights 𝑤𝑖 and biases 𝑏𝑖 and computes the output weights β analytically using the 

Moore–Penrose pseudoinverse. The output function is given by : 

𝑓(𝑥) = ∑ β𝑖
𝐿
𝑖=1 ⋅ 𝑔(𝑤𝑖 ⋅ 𝑥 + 𝑏𝑖)    (1) 

where g(⋅) is the activation function, The sigmoid function maps input values into a range between 

0 and 1, making it suitable for binary classification tasks such as distinguishing between intact and 

cracked materials. Here we use sigmoid.  

 

 
Figure 4. ELM Architecture 

The system architecture includes three layers: 

• Input layer: receives FFT feature vectors 

intact 

crack 
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The input layer consists of 1 neuron, which functions to receive the resulting feature data. 

Extraction from FFT process on brick vibration signals. The data that entering this neuron in the form 

of amplitude values on the Z-axis, which represents the vibration from each brick sample. 

• Hidden layer: nonlinear transformation applies 

Hidden Layer is a hidden layer that plays an important role in capturing patterns or nonlinear 

relationships in bricks. In this architecture, the hidden layer consists of 10 neurons. Each neuron in the 

hidden layer is fully connected with neuron in the input layer. The connection weights from the input to 

the hidden layer are initialized as random and not updated during the training process, according to the 

basic characteristics of ELM. 

• Output layer: computes classification results ("Intact" or "Cracked"). 

The output layer consists of 2 neurons, each representing the class of whole bricks and bricks. Intact and 

cracked bricks. Each neuron in the hidden layer is fully connected to both neurons this output. ELM 

training process is conducted only for the weights from the hidden layer to output layer, which is 

calculated analytically using the pseudoinverse. The output with the highest value will be the model's 

prediction, which is classified as an intact or a cracked brick.  

To evaluate the accuracy of  FFT–ELM model, the Root Mean Square Error (RMSE) is used as 

a performance metric. RMSE quantifies the average deviation between the predicted and actual output 

values and is defined as:  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − ý𝑖)

2𝑁
𝑖=1  (2) 

where 𝑦𝑖 is the actual label, ý𝑖 is the predicted output by the model, and N is the total number of 

samples. A lower RMSE indicates a better fit and higher model accuracy. In this research, vibration-

based classification, RMSE provides a meaningful measure of the model’s reliability in detecting 

structural defects. 

3. RESULT AND DISCUSSION 

Based on table 1, the dataset consists of 160,934 samples per axis for both intact and cracked 

brick conditions, providing a statistically significant basis for classification. In the sample data, the intact 

brick shows stable acceleration values with mean readings around –1.09 (x), –1.18 (y), and 10.08 (z), 

indicating consistency and homogeneity in structural response. In contrast, the cracked brick exhibits 

lower and more variable values with averages of 0.04 (x), 0.24 (y), and 8.51 (z). This corresponds to a 

96% reduction on the x-axis, 80% reduction on the y-axis, and 15% reduction on the z-axis compared 

to the intact condition. Such percentage differences highlight a measurable weakening of structural 

integrity due to cracks, particularly evident in lateral vibration responses (x and y axes). These 

significant deviations confirm that vibration-based features derived from sensor data can effectively 

distinguish between intact and damaged materials. 

3.1. FFT Result of Brick 

Figure 5 presents FFT results of Z-axis vibration data collected from Sensor 1 under two different 

structural conditions of a brick specimen: (a) intact brick and (b) cracked brick, both tested at a 50 Hz 

excitation frequency. These FFT plots reveal the differences in frequency response patterns which are 

essential for detecting and classifying structural integrity using vibration-based methods. In subfigure 

(a), representing the intact brick, the amplitude distribution appears relatively low and consistent across 

the frequency range from 0 to 0.5 Hz. 
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(a)     (b) 

Figure 5. (a) FFT result for intact brick in 50Hz; (b) FFT result for cracked brick in 50 Hz 

 

A few moderate peaks are observed, particularly in the lower frequency bands, but the spectrum 

overall shows a stable and smooth profile. This regularity indicates a healthy structure with uniform 

material properties, where vibration energy propagates without unexpected distortion or scattering. In 

contrast, subfigure (b) shows FFT spectrum of a cracked brick, where the amplitude is significantly 

more variable. Sharp and irregular peaks are observed across the spectrum, especially in the low to mid-

frequency ranges (below 0.2 Hz and around 0.45 Hz). This pattern suggests the presence of structural 

discontinuities that cause energy reflections, damping irregularities, and shifts in natural frequencies.  

Quantitatively, the maximum peak amplitude increases from about 0.06 in the intact condition to 

nearly 0.07 in the cracked condition, while the number of dominant peaks (above 0.03) more than 

doubles, confirming a measurable distinction between the two states. The differences between (a) and 

(b) clearly illustrate how cracks affect vibrational behavior, reinforcing the effectiveness of FFT analysis 

as a feature extraction method for fault detection systems. 

 

  
(a)     (b) 

Figure 6. (a) FFT result for intact brick in 30 Hz; (b) FFT result for cracked brick in 30 Hz 

 

Figure 6 illustrates FFT analysis results for Z-axis vibration signals recorded by Sensor 1 under 

30 Hz motor excitation, comparing two brick conditions: (a) intact brick and (b) cracked brick. These 

results provide insight into how structural integrity affects the frequency response of a material when 

subjected to dynamic loading. 

In subfigure (a), corresponding to the intact brick, FFT spectrum displays a highly stable and 

uniform pattern. The signal amplitude remains consistently low across the frequency range (0–0.5 Hz), 

with minimal peaks observed. This behavior suggests an even energy distribution with no major 

disturbances or resonance shifts, indicating a structurally sound and undamaged material. The absence 

of significant harmonic peaks implies that the vibration is being transmitted through a continuous and 

homogeneous medium. Subfigure (b), representing the cracked brick, exhibits a more irregular 

frequency spectrum. The amplitude fluctuates notably, with distinct peaks emerging in the range 

between 0.1 and 0.3 Hz. These irregularities are characteristic of materials with internal discontinuities, 

where cracks cause scattering, reflection, and amplification of certain frequency components. 

Quantitatively, the maximum peak amplitude in the cracked condition rises to about 0.045 

compared to below 0.015 in the intact brick, and the number of dominant peaks above 0.01 triples, 
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confirming a clear spectral distinction between intact and damaged states. The increased spectral 

complexity in the cracked brick reflects the loss of uniformity and the altered dynamic behavior of the 

structure. Overall, the comparison confirms that FFT under lower excitation (30 Hz) is still effective for 

distinguishing between intact and damaged bricks. 

3.2. ELM Result 

 

Figure 7. Confusion Matrix 

 

Figure 7 displays the confusion matrix representing the classification results of  FFT–ELM model 

applied to vibration data from brick specimens. The matrix summarizes the model’s performance in 

identifying two categories: Intact and Cracked. The vertical axis represents the true labels, while the 

horizontal axis represents the predicted labels generated by the classifier. This matrix is essential for 

understanding not only the overall accuracy but also the distribution of correct and incorrect predictions 

for each class. 

The top-left cell (True Intact, Predicted Intact) shows 7,855 instances correctly identified as intact, 

while the top-right cell (True Intact, Predicted Crack) indicates 1,879 intact bricks were misclassified as 

cracked. These numbers suggest the classifier performs relatively well in detecting intact structures, 

with a high true positive rate for the "Intact" class. On the other hand, the bottom-right cell (True Crack, 

Predicted Crack) shows 4,548 correct identifications of cracked bricks, while the bottom-left cell (True 

Crack, Predicted Intact) reports 5,100 cracked bricks misclassified as intact, indicating more challenges 

in identifying damaged samples. 

Table 2 presented summarizes the performance of a classification system using a subset of 

vibration signal data characterized by amplitude features. The dataset includes 10 samples, each with its 

corresponding amplitude value, target class, predicted class, and a computed error column indicating 

whether the classification result matches the ground truth. The targets are binary, where 1 represents a 

cracked brick and 0 indicates an intact brick.  

The system under evaluation attempts to predict this binary classification based on extracted 

amplitude features, and the error value is computed as 1 for misclassification and 0 for correct 

predictions. From the table, we observe that out of 10 samples, 4 were misclassified, resulting in a total 

of 6 correct predictions. 

The misclassified entries are found in rows 1, 3, and 10, where the actual class was 1 (cracked), 

but the model predicted 0 (intact), as well as row 5, where the actual class and predicted class were both 

1, but an error value of 1 appears to have been mistakenly assigned. This inconsistency highlights the 

importance of correctly labeling error metrics to avoid confusion in performance evaluation. Despite 

that anomaly, the general insight we can draw is that most errors come from false negative failing to 

detect cracks—which could pose serious issues in structural monitoring applications.  
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An RMSE close to 0 would indicate nearly perfect classification, whereas a value closer to 1 

would imply high levels of misclassification. With a value of 0.548, the classifier demonstrates moderate 

predictive performance on this subset of data, but further improvement is needed-particularly in 

correctly identifying cracked bricks.  

Tabel 2. Feature Result 

NO Amplitudo Target Prediction Result Error 

1.  0.001121  1 0 1 

2.  0.000846  0 0 0 

3.  0.000433  1 0 1 

4.  0.000763  0 0 0 

5.  0.002352  1 1 1 

6.  0.021399  1 0 0 

7.  0.002569  0 0 0 

8.  0.006609  1 1 0 

9.  0.000475  0 0 0 

10.  0.001292  1 0 1 

 

3.3. Discussion 

Figure 7 demonstrates the classification performance of FFT–ELM model in distinguishing intact 

and cracked bricks. The model correctly classified 7,855 intact samples and 4,548 cracked samples but 

also produced 1,879 false positives (intact misclassified as cracked) and 5,100 false negatives (cracked 

misclassified as intact). These results suggest that while the model is relatively effective in detecting 

intact structures, it faces greater challenges in identifying damaged conditions. This imbalance is 

particularly critical for structural health monitoring (SHM), where false negatives may result in 

overlooked structural risks. From a feature extraction perspective, FFT successfully transformed time-

domain vibration signals into frequency-domain components that capture crack-induced anomalies. 

However, FFT inherently emphasizes global frequency patterns and may not capture localized transient 

features. This limitation is reflected in the higher false negative rate. ELM classifier, with its lightweight 

architecture and rapid training capability, contributed to efficient binary classification, but its simplicity 

compared to deeper architectures may have restricted its ability to generalize complex crack signatures.  

Comparisons with other methods in the literature highlight both strengths and limitations of  FFT–

ELM approach. For instance, Singh et al. [24] also demonstrated the effectiveness of FFT–ELM in 

structural crack diagnosis, reporting comparable efficiency but recommending hybrid models to 

improve detection accuracy. Similarly, Khan et al. [22] applied FFT-based modal analysis to masonry 

blocks, showing reliable detection of cracks in controlled environments but acknowledging reduced 

robustness in noisy conditions. In contrast, Zhang et al. [23] utilized deep learning approaches on 

vibration signals, achieving higher accuracy in crack detection through convolutional feature extraction, 

though at the expense of computational cost. Other studies, such as Zhao et al. [21], proposed hybrid 

feature extraction methods combining FFT with additional descriptors, resulting in enhanced robustness 

against environmental disturbances. These comparisons suggest that while FFT–ELM offers significant 

advantages in terms of computational efficiency, real-time capability, and ease of deployment, its 

performance could be improved by integrating more advanced feature extraction techniques (e.g., 

wavelet transform [19]) or ensemble learning frameworks. Such hybridization may reduce the false 

negative rate and make the system more reliable for field applications. Ultimately, the findings of this 

study reaffirm FFT–ELM as a viable baseline approach for low-cost and portable SHM, while pointing 

to opportunities for methodological refinement using state-of-the-art techniques from recent literature 
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[21]–[25]. From an informatics perspective, this research demonstrates how sensor data, signal 

processing, and machine learning can be integrated into intelligent monitoring systems that support real-

time decision-making. The approach also highlights the growing role of data-driven methods in civil 

informatics, where automated feature extraction and classification algorithms can transform raw sensor 

inputs into actionable insights for structural safety. 

4. CONCLUSION 

This study confirms the effectiveness of  FFT–ELM method for classifying the structural integrity 

of brick materials using vibration data. FFT converts time-domain signals into frequency-domain 

features, which are then classified by ELM for fast and accurate detection of intact versus cracked bricks. 

Experimental results show correct classification of 7,855 intact and 4,548 cracked samples, alongside 

1,879 false positives and 5,100 false negatives. The Root Mean Square Error (RMSE) of 0.548 indicates 

moderate prediction error, suggesting further refinement is needed. While the model is more reliable in 

identifying intact bricks, detecting cracks remains challenging critical for early failure prevention. 

Future work should improve cracked-brick detection through advanced feature extraction, dataset 

balancing, and deeper learning models. Unlike wavelet-based methods that capture multi-resolution 

features, FFT–ELM emphasizes simplicity and speed, making it well suited for real-time structural 

health monitoring in civil engineering applications. 
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