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Abstract 

The increasing frequency of extreme weather events in Jakarta has disrupted daily life and critical infrastructure, 

highlighting the urgent need for accurate rainfall prediction models to support disaster mitigation and early warning 

systems. This study aims to evaluate and compare the performance of two machine learning algorithms Extreme 

Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) for multiclass rainfall 

classification using historical meteorological data. The dataset, which includes features such as temperature, 

humidity, wind speed, and rainfall, was preprocessed through mean imputation, oversampling to address class 

imbalance, one-hot encoding, and feature engineering. Both models were trained and tuned using 

RandomizedSearchCV and assessed through cross-validation and independent testing. The results show that 

XGBoost consistently outperformed LightGBM, achieving 94% accuracy compared to 91%. Furthermore, XGBoost 

demonstrated higher precision, recall, F1-score, and specificity across all rainfall categories, resulting in fewer 

misclassifications and more stable predictions. Confusion matrices confirmed its superior ability to distinguish 

between similar weather conditions such as cloudy and rainy classes. These findings indicate that XGBoost is more 

effective in capturing nonlinear interactions between weather features and is therefore better suited for use in 

complex tropical climates. The study concludes that XGBoost is the more reliable model and recommends its 

integration into real-time early warning systems to improve climate resilience and disaster preparedness in urban 

areas like Jakarta that are increasingly affected by climate variability. 
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1. INTRODUCTION 

Urban centers in Southeast Asia, such as Jakarta, are increasingly vulnerable to extreme weather. 

With over 10 million residents, Jakarta frequently experiences localized flooding due to short, intense 

rainfall. Between 2017 and 2021, daily rainfall reached up to 137.70 mm in Central Jakarta and 130.11 

mm in the West [1], causing disruptions to infrastructure, mobility, and public safety. 

Timely and accurate rainfall prediction is essential for disaster mitigation and urban water 

management. Machine learning (ML) has been widely used for this purpose, thanks to its ability to 

capture nonlinear patterns among weather variables. Oversampling techniques can enhance 

classification accuracy beyond 90% [2]. Adiyasa et al. [3] utilized daily rainfall data from several Jakarta 

regions (Central, South, East, and North) as key inputs to train ML-based flood detection models for the 

2016–2020 period. 

Meteorological parameters including solar radiation, temperature, humidity, wind speed, and air 

pressure are known to influence precipitation patterns [4], [5]. However, the interactions among these 

variables are often nonlinear and influenced by regional atmospheric dynamics, especially in tropical 

regions like Jakarta. Conventional models, such as autoregressive and linear regression methods, often 

struggle to capture these complex relationships [4], [5]. Additionally, while annual rainfall in Jakarta 
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has increased, the frequency of extreme events has declined, suggesting a nonlinear redistribution of 

rainfall across time [6]. This phenomenon is supported by recent research showing a shift in the 

distribution of rainfall intensity and seasonal onset in Jakarta over the last three decades, with higher 

occurrences of intense rainfall events particularly in southern zones [7]. Furthermore, the application of 

data-driven approaches such as Artificial Neural Networks (ANN) has proven effective in estimating 

rainfall using climatic variables—including temperature, humidity, solar radiation, and wind speed with 

high predictive accuracy and robustness against missing data problems [8]. These findings emphasize 

the importance of adopting flexible, adaptive models in response to evolving climate variability. 

Ensemble-based ML models like XGBoost and LightGBM, built on the Gradient Boosting 

Decision Tree (GBDT) framework, excel in handling high-dimensional data and modeling complex 

relationships [9]. XGBoost has shown strong performance in climate prediction tasks with proper 

hyperparameter tuning [10]. It has also been used successfully for flood risk assessment in urban areas 

using historical meteorological data [11]. Furthermore, Maulita et al.[12] showed that Gradient Boosting 

Regressor performs competitively in flood probability prediction, with results nearly matching linear 

regression in terms of MAE and RMSE, reinforcing its applicability in disaster mitigation systems. 

LightGBM, a more recent implementation of GBDT, improves training speed and reduces 

memory usage without sacrificing accuracy. It leverages innovations such as histogram-based learning 

and exclusive feature bundling, making it suitable for large-scale and near-real-time applications [13]. 

Several studies have demonstrated its competitive performance compared to XGBoost, particularly in 

scenarios with limited computational resources or imbalanced data. For instance, Soleha et al. [14] found 

that LightGBM achieved higher F1-scores in handling imbalanced classification tasks. Likewise, 

Handayani and Lailiah [15] reported that LightGBM outperformed XGBoost and Extra Trees in terms 

of accuracy and recall when applied to fetal health classification using SMOTE. 

For instance, Wibawa et al. [13] reported strong performance by LightGBM in predicting daily 

air humidity, with R² = 0.7981 and RMSE = 0.0786. Yasper et al. [10] applied GridSearchCV for 

XGBoost hyperparameter tuning in binary rainfall classification and achieved 95% accuracy, 

highlighting the importance of model optimization. Similarly, Fauziah et al. [16] used XGBoost for 

monthly rainfall forecasting in Banyuwangi, successfully capturing seasonal trends despite high 

variability. Syahreza et al. [17] compared XGBoost, SVR, and Random Forest for daily temperature 

prediction, with XGBoost showing the highest accuracy (R² = 0.8183). 

A notable study by Maharina et al. [18] emphasized the role of SMOTE and interaction-based 

features in improving flood prediction accuracy. While their study found LightGBM slightly 

outperformed XGBoost for flood prediction, this research focuses on multiclass rainfall intensity 

classification and finds the opposite XGBoost performs better. This contrast in problem focus and 

outcome forms the core novelty of this study.Other studies have explored different approaches, such as 

explainable machine learning and statistical pattern analysis to identify key climatic factors and detect 

anomalies in extreme rainfall conditions [19], [20]. In addition, Hermansyah et al.[21] applied XGBoost 

and LightGBM to predict flood events in Jakarta using weather data from 2016–2020. Their method 

involved data preprocessing, feature engineering, and SMOTE to address class imbalance. LightGBM 

slightly outperformed XGBoost, achieving 96.81% accuracy and an AUC of 0.9957. Interaction features 

like RR_RH_interaction and Tx_ss_interaction further enhanced model performance, with ten-fold 

cross-validation confirming its robustness. 

Beyond rainfall modeling, XGBoost has also been widely applied in various environmental 

forecasting tasks. Sangaji and Sutabri [22] demonstrated that XGBoost provided the fastest training and 

prediction times in forest fire risk modeling, making it suitable for real-time decision-support systems. 

Kahfi et al. [23] developed a rainfall classification model by integrating sea surface indicators such as 

SST and IOD into a hybrid neural network with XGBoost, significantly improving classification 
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accuracy. Alamsyah et al. [24] applied hyperparameter tuning using RandomizedSearchCV to enhance 

XGBoost performance in predicting forest fire fuel dryness, achieving an R² of 0.9820 and an MSE of 

0.0210. Employed XGBoost to classify Air Pollution Index (ISPU) levels based on meteorological and 

emission data, supporting the development of early warning systems for urban air quality management. 

These four studies reaffirm the strong potential of GBDT-based machine learning methods, particularly 

XGBoost, in improving the accuracy and efficiency of environmental prediction and monitoring systems 

[25]. 

In response to the increasing frequency of extreme weather events in Jakarta, this study compares 

XGBoost and LightGBM in classifying rainfall intensity using historical meteorological data, including 

temperature, humidity, solar radiation, wind speed, and rainfall. Both models are evaluated based on 

accuracy, computational efficiency, robustness, and their ability to address class imbalance. The 

objective is to determine which algorithm provides better performance to support early warning systems 

and strengthen climate resilience in urban areas. 

2. METHOD 

 

 
Figure 1. Model Overview 

 

The overall methodology employed in this study is illustrated in Figure 1. The process begins 

with data collection, followed by a comprehensive data preparation phase that includes missing value 

imputation, handling class imbalance, and data cleaning. Once the dataset is prepared, it undergoes data 

transformation, which involves feature engineering and one-hot encoding to convert categorical 

variables into a machine-readable format. 

The next phase is modelling, where both XGBoost and LightGBM pipelines are developed 

independently. Each pipeline includes data splitting, cross-validation, and hyperparameter tuning before 
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training the respective models. Finally, the trained models are evaluated using appropriate performance 

metrics to assess their classification effectiveness. This structured pipeline ensures a fair and consistent 

comparison between the two algorithms. 

2.1. Data Collection 

The dataset used in this research is titled Data Meteorologi and was obtained from the Satu Data 

Jakarta portal, provided by BMKG in the DKI Jakarta Province. It consists of daily weather records in 

CSV format, with a file size of approximately 4.97 MB. As shown in Table 1, the dataset includes key 

meteorological variables such as air temperature (temp_air), humidity (hum_air), wind speed (ff), and 

pressure gradient (grad), along with the target variable label_cuaca, which is categorized into three 

classes: 0 = No Rain, 1 = Cloudy, and 2 = Rain. The completeness and relevance of these features make 

the dataset suitable for predictive analysis and the development of a weather classification model in this 

study. 

 

Table 1. Dataset 

Name Type 

periode_data int64 

tanggal int64 

stasiun_pengamatan object 

grad float64 

temp_air float64 

hum_air float64 

ff float64 

rain float64 

 

2.2. Data Preparation 

This is an example of the use of sub-chapters in a paper. Sub-chapters are allowed to be included 

in all chapters, except in the conclusion. 

Data preparation ensures quality before modeling by checking structure, types, and missing 

values. Mean imputation is used for temperature and humidity, and rainfall is set to zero if missing. 

Oversampling addresses class imbalance, while cleaning removes irrelevant, inconsistent, and duplicate 

data for reliable modeling. 

2.2.1. Missing Value Imputation 

Missing values arise from incomplete collection or data errors, which can reduce dataset quality 

and bias model outcomes. These are classified as MCAR, MAR, or MNAR, each requiring specific 

handling. Imputation methods, such as mean or regression-based techniques, are commonly applied to 

preserve data consistency and improve learning reliability [26]. 

2.2.2. Class Imbalance 

Class imbalance occurs when one class dominates the dataset, leading to biased predictions and 

poor performance on minority classes. This can be mitigated through resampling techniques such as 

oversampling or undersampling [27] , which help the model learn equally from all classes and improve 

overall classification performance. 

2.2.3. Data Cleaning 

Data cleaning ensures validity by handling missing values, duplicates, and normalizing data. In 

sentiment analysis, steps like case folding and stemming improve structure [28], while removing 

irrelevant data boosts accuracy [29]. 
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2.3. Data Transformation 

After ensuring the data is clean and valid, data transformation is performed to convert it into a 

format suitable for modeling. This step enhances model training and ensures features are properly 

processed. 

2.3.1. Feature Engineering 

Feature engineering refines raw data into structured, informative inputs that enhance model 

accuracy and generalization. It involves creating, selecting, or modifying features to reduce noise and 

highlight patterns, which ultimately improves model reliability and predictive performance [30]. In this 

study, feature engineering includes not only one-hot encoding but also the creation of new features such 

as temp_minus_hum (temperature minus humidity) to capture relevant interactions and enrich the input 

data. 

2.3.2. One-hot Encoding 

One-hot encoding converts categorical features into binary vectors to eliminate ordinal bias in 

non-numeric data. While effective, this method can significantly increase feature dimensionality and 

lead to class imbalance issues, particularly with high-cardinality attributes. Moreover, it may reduce 

feature significance in distance-based algorithms without appropriate normalization [31]. 

2.4. Modeling 

After data transformation, XGBoost and LightGBM models were developed and evaluated using 

cross-validation and independent testing to assess their accuracy, generalization, and robustness. This 

approach ensures reliable performance on both training and unseen data. 

2.4.1. Split Data 

Data splitting divides the dataset into training and testing sets to assess model generalization. 

Ratios like 80:20 or 70:30 help balance learning and evaluation, and it's done after preprocessing to 

ensure reliable results [32], [33]. In this study, an 80:20 split was used, along with the random_state 

parameter to ensure reproducibility and the stratify option to maintain proportional class distribution in 

both sets. 

2.4.2. Cross Validation 

Cross-validation is a robust technique to evaluate model performance by dividing data into several 

folds. The model is trained on k–1 folds and tested on the remaining fold, repeating the process k times. 

K-Fold Cross-Validation helps reduce bias and variance in evaluation, offering a more accurate estimate 

of real-world performance [34]. 

2.4.3. Hyperparameter Tuning 

Hyperparameters are preset values like learning rate, number of trees (n_estimators), or tree depth 

(max_depth) that guide how a model learns. Unlike parameters learned during training, they are set 

beforehand and tuned using methods like Grid or Random Search. Proper tuning can significantly 

improve model performance and prediction accuracy in various tasks [35]. 

2.4.4. XGBoost 

Extreme Gradient Boosting (XGBoost) is a scalable, tree-based ensemble algorithm that builds 

models in a stage-wise manner, where each new tree attempts to correct the errors made by previous 

trees. It combines gradient boosting with advanced techniques such as L1/L2 regularization to prevent 

overfitting, sparse-aware handling for missing values, and parallel processing for faster computation. 
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These features make XGBoost highly efficient and well-suited for large, structured datasets, including 

meteorological data used in rainfall prediction tasks [36], [37]. 

The model’s objective function at iteration 𝑡 combines a loss function and a regularization term, 

as shown in Equation (1): 

𝐿(𝑡) = ∑ 𝑙𝑛
𝑖=1 (𝑦𝑖 , 𝑦𝑖

(𝑡−1)
+ 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑓𝑡) (1) 

The first term evaluates prediction error, while the regularization term, as shown in Equation (2): 

𝛺(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1  (2) 

penalizes complexity, where 𝑇 is the number of leaves and 𝑤𝑗 are leaf scores. XGBoost optimizes 

using a second-order Taylor expansion with both gradients and Hessians. 

2.4.5. LightGBM 

LightGBM is an efficient GBDT-based algorithm optimized for large and high-dimensional data. 

It uses techniques like histogram-based learning, EFB, and GOSS to boost speed and reduce memory 

usage [38], [39]. Trees are grown leaf-wise based on maximum loss reduction, with regularization to 

prevent overfitting. Its training relies on a second-order Taylor expansion to approximate the objective 

function at iteration 𝑡, as shown in Equation (3): 

𝛺(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1  (3) 

This function combines first-order gradients 𝑔𝑖 and second-order gradients  ℎ𝑖 to optimize model 

performance efficiently at each boosting step, where 𝛺(𝑓𝑡) represents the regularization term. 

2.5. Evaluation 

Evaluation metrics in classification, such as the confusion matrix, are key to assessing model 

performance by comparing predictions with actual labels. The matrix reveals correct and incorrect 

classifications, offering visual and numerical insights into model behavior. It also forms the basis for 

calculating key evaluation parameters as summarized in Table 2 including accuracy, precision, recall, 

and F1-score, enabling a thorough performance evaluation [40], [41]. 

 

Table 2. Evaluation Matrix  
Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

 

Evaluation metrics are essential for measuring classification performance: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

𝐹1 = 2𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (8) 
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These evaluation metrics, as defined in Equations (4) to (8), offer a more comprehensive view of 

model performance, particularly under conditions of class imbalance. While accuracy (Equations 4) is 

commonly used, it can be misleading when the dataset is imbalanced, as it may reflect high performance 

by favoring the majority class. In contrast, precision (Equations 5) and recall (Equations 6) evaluate the 

model’s ability to correctly identify positive cases, with F1-score (Equations 7) balancing the trade-off 

between them. Additionally, specificity (Equations 8) measures the ability to correctly identify negative 

cases. Together, these metrics provide a more balanced and insightful evaluation of classification models 

by addressing both types of prediction errors false positives and false negatives. 

3. RESULT 

3.1. Data Preparation Results 

3.1.1. Missing Value Imputation 

The imputation process was carried out to complete the dataset before transformation and 

modeling. Initial data exploration revealed missing values in the temp_air, hum_air, and rain columns. 

For temp_air and hum_air, the missing values were imputed using their respective mean values, as both 

features followed a normal distribution and showed no significant outliers. This approach ensures that 

the central tendency of the data remains intact. Meanwhile, missing values in the rain column were 

replaced with zeros, based on the reasonable assumption that no recorded value indicates no rainfall on 

those days. This step helped maintain data consistency while minimizing potential bias. 

These steps were implemented using the fillna() function from the pandas library, a standard 

method for handling missing data in Python-based workflows. After applying imputation, the temp_air, 

hum_air, and rain columns were successfully completed and no longer contained missing values, 

ensuring they were ready for transformation and modeling. However, the grad and ff columns still had 

189 and 230 missing entries, respectively, requiring further preprocessing such as interpolation or 

removal. A summary of missing values before and after imputation is shown in Table 3 to provide a 

clearer picture of data completeness. 

 

Table 3. Missing Value Imputation 

Predicted Positive Predicted Negative 

periode_data 0 

tanggal 0 

stasiun_pengamatan 0 

grad 189 

temp_air 0 

hum_air 0 

ff 230 

rain 0 

 

3.1.2. Class Imbalance 

To address the class imbalance in the label_cuaca variable, an initial analysis revealed that the 

dataset exhibited a disproportionate distribution across the three predefined weather categories: 0 for 

Clear, 1 for Cloudy, and 2 for Rainy. Such imbalance can significantly hinder the learning process of 

classification models, as they may become biased toward predicting the majority class while neglecting 

underrepresented classes. This often results in inflated accuracy scores but poor recall and precision for 

minority categories, ultimately reducing the model’s effectiveness in real-world applications. 

To mitigate this issue, an oversampling strategy was employed during the data preprocessing 

phase. The original dataset was first divided into separate subsets based on the class labels to facilitate 
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targeted resampling. For the underrepresented classes (Cloudy and Rainy), additional samples were 

generated through random resampling with replacement using the resample() function from the scikit-

learn library. This technique increases the presence of minority classes in the dataset without altering 

the original feature distributions. 

After generating sufficient samples, the resampled subsets were merged with the data from the 

majority class (Clear) to form a new, balanced dataset. To ensure randomness and prevent any sequential 

bias during training, the combined dataset was shuffled. This balancing process not only supports fairer 

and more representative model training but also enhances the model's ability to generalize across all 

class categories. The final class distribution after this preprocessing step can be seen in Table 4. 

 

Table 4. Class Imbalance 

label_cuaca Predicted Negative 

0 60944 

1 60944 

2 60944 

 

3.1.3. Cleaning Data  

After completing the imputation process, data cleaning was performed to further prepare the 

dataset for transformation and modeling. This step involved handling the remaining missing values and 

checking for duplicate entries. Specifically, missing data was still present in the grad and ff features. 

Given the importance of these numerical variables for model performance, rows containing missing 

values were removed using the dropna() method to avoid introducing bias or incomplete information. 

Additionally, the dataset was examined for duplicate records using .duplicated().sum(), which 

helps identify redundant entries that could skew the model. Any detected duplicates were then removed 

using .drop_duplicates() to maintain data integrity and ensure that each observation contributed unique 

information to the training process. 

3.2. Modeling Results 

3.2.1. Split Data 

This is an example of the use of sub-sub-chapters in a paper. Sub-Sub-chapters are allowed to be 

included in all chapters, except in the conclusion. 

To evaluate the model effectively and ensure consistent and unbiased performance assessment, 

the dataset was divided into training and testing subsets using the train_test_split() function from 

sklearn.model_selection. An 80:20 ratio was applied, where 80% of the data was used for training to 

capture essential patterns, while the remaining 20% was reserved for evaluating the model’s ability to 

generalize on unseen data. This split ratio is commonly adopted in machine learning workflows, offering 

a good balance between learning and validation. 

    

Table 5. Split Data 

label_cuaca Predicted Negative 

X_train 146008, 5 

X_test 146008, 5 

 

To ensure reproducibility of results, a fixed random_state value was assigned so that the same 

split could be replicated across different runs. Additionally, the stratify=y parameter was used to 

preserve the class distribution in both training and testing sets. This is especially important for datasets 

with class imbalance, as it guarantees that all weather categories are proportionally represented during 
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both training and evaluation. This careful splitting strategy helps prevent biased performance metrics 

and supports a more robust classification model. The final distribution of each class in both subsets is 

summarized in Table 5. 

3.2.2. Cross Validation 

To evaluate the baseline performance of both models before hyperparameter tuning, a 5-fold 

cross-validation was performed using the cross_val_score() function from sklearn.model_selection. 

This method offers a more reliable performance estimate by reducing the variance of a single train-test 

split. Two models were initialized: XGBoost (with 'mlogloss' as the evaluation metric) and LightGBM. 

The training data was divided into five parts, where each model was trained on four folds and validated 

on the remaining one. Accuracy was used to measure performance in predicting weather categories. The 

baseline cross-validation results for both models are presented in Table 6. 

 

Table 6. Cross Validation 

Name Accuracy 

XGBoost 0.8579 

LightGBM 0.8324 

 

The results showed that XGBoost consistently achieved a higher average accuracy than 

LightGBM, indicating stronger baseline performance under default settings. This suggests that XGBoost 

may generalize better on the given dataset and is more effective in capturing the underlying patterns of 

the data. These findings provide a useful reference point for further enhancements, such as 

hyperparameter tuning, additional preprocessing, or feature engineering, to maximize model 

performance. Moreover, the comparison helps guide informed decisions in selecting the most suitable 

model for multiclass weather classification tasks. 

3.2.3. Hyperparameter 

To optimize both the XGBoost and LightGBM models, a comprehensive hyperparameter search 

space was defined and utilized in conjunction with Randomized Search, a tuning technique that 

randomly samples a fixed number of parameter combinations from predefined distributions. This 

approach allows for broader coverage of the parameter space compared to manual tuning and is 

significantly more efficient than exhaustive Grid Search, particularly when dealing with numerous 

hyperparameters and limited computational resources. By leveraging this method, the models have a 

higher chance of identifying optimal or near-optimal parameter sets that improve overall performance 

while maintaining reasonable training times. 

For XGBoost, the tuning involved parameters such as max_depth, learning_rate, n_estimators, 

subsample, colsample_bytree, gamma, reg_lambda, and reg_alpha, which influence model complexity, 

learning dynamics, and regularization strength. These parameters were carefully adjusted to improve 

model accuracy, training stability, and to reduce the risk of overfitting, especially in the presence of 

noisy or imbalanced data. Similarly, the LightGBM model was optimized using a comparable set of 

parameters, enabling it to adapt tree structure, sampling techniques, and regularization strategies to 

better capture patterns in the data and improve overall predictive performance across different rainfall 

intensity classes. 

By applying RandomizedSearchCV, each model was evaluated through cross-validation across 

multiple randomly selected combinations of hyperparameters. This method allows efficient exploration 

of the parameter space without the exhaustive cost of a full grid search. It balances computational 

efficiency with the goal of finding strong-performing configurations, selecting the one that produced the 

best average performance across folds. As a result, the models are better tuned for generalization and 
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are less likely to overfit the training data. The optimal hyperparameter configurations for both XGBoost 

and LightGBM are summarized in Table 7, serving as the foundation for final model evaluation. 

       

Table 7. Hyperparameter 

Parameter Values 

max_depth [5, 7, 9] 

learning_rate [0.01, 0.05, 0.1] 

n_estimators [200, 300, 500] 

subsample [0.6, 0.8, 1.0] 

colsample_bytree [0.6, 0.8, 1.0] 

gamma [0, 1, 5] 

reg_lambda [1, 5, 10] 

reg_alpha [0, 1, 5] 

 

3.3. Evaluation 

3.3.1. Evaluation Metrics Performance 

XGBoost was correct 95% of the time, which is particularly important in domains like rainfall 

prediction, where false alarms (false positives) could lead to unnecessary public concern or resource 

allocation. The recall value of 93% reflects XGBoost’s capability to detect actual occurrences of each 

class, such as true rainy days. The F1-score of 94%, being the harmonic mean of precision and recall, 

illustrates a balance between the two. Finally, a specificity of 96% shows that the model could also 

correctly identify negative instances (e.g., “no rain” days). See Table 8 for details. 

Meanwhile, LightGBM achieved slightly lower values: accuracy of 91%, precision of 90%, recall 

of 89%, F1-score of 89%, and specificity of 94%. Although these results are still considered strong, they 

suggest that LightGBM may struggle more than XGBoost in correctly identifying minority classes or in 

balancing trade-offs between precision and recall. The complete evaluation for LightGBM is shown in 

Table 9. 

      

Table 8. XGBoost Evaluation 

Predicted Positive Predicted Negative 

Accuracy 0.94 

Precision 0.95 

Recall 0.93 

F1-score 0.94 

Specificity 0.96 

      

Table 9. LightGBM Evaluation 

Predicted Positive Predicted Negative 

Accuracy 0.91 

Precision 0.90 

Recall 0.89 

F1-score 0.89 

Specificity 0.94 

 

These results indicate that both models are capable of performing multiclass classification of 

rainfall events with reasonable accuracy, demonstrating their potential for use in meteorological 

analysis. However, XGBoost consistently delivers more stable and reliable performance across various 

evaluation metrics, including accuracy, precision, recall, and F1-score. Its ability to generalize better, 

especially in handling imbalanced classes, makes it a stronger and more robust candidate for practical 
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applications in weather prediction systems. This advantage is particularly valuable for early warning 

systems, where consistent and dependable predictions are critical for timely decision-making and 

disaster preparedness in urban environments. 

3.3.2. Hyperparameter Tuning 

To achieve optimal model performance, hyperparameter tuning was performed on both 

algorithms used in this study, namely XGBoost and LightGBM. Hyperparameters are external 

configuration settings that are not learned directly from the training data but significantly influence the 

model's learning process and outcomes. Proper tuning of these parameters helps balance bias and 

variance, improve generalization on unseen data, and enhance the model’s ability to capture complex 

patterns in meteorological variables. Without tuning, models may underperform due to suboptimal 

configurations, regardless of the quality of the input data. 

In this research, a manual tuning approach was applied by adjusting commonly used parameter 

values based on prior studies and empirical testing, due to computational constraints. Key parameters 

adjusted include n_estimators, max_depth, and learning_rate for XGBoost, as well as num_leaves, 

feature_fraction, and learning_rate for LightGBM. 

The optimal sets of hyperparameters resulting in the best model performance are summarized in 

Table 10, following multiple rounds of evaluation and fine-tuning: 

 

Table 10. Hyperparameter Best Value 

Model Parameter Best Value 

XGBoost max_depth 5 

 learning_rate 0,1 

 n_estimators 200 

 subsample 0.8 

LightGBM colsample_bytree 0.8 

 gamma 5 

 reg_lambda 1 

 reg_alpha 1 

    

These hyperparameter values were selected based on the combinations that yielded the highest 

accuracy and AUC scores during cross-validation. Although this tuning process did not yet involve 

automated techniques such as GridSearchCV or Optuna, it still contributed to improved model 

performance. 

For future research, more systematic hyperparameter optimization methods may be applied to 

further enhance the predictive capability of the models. 

3.3.3. Evaluation Metrics Performance 

To better understand the classification performance of both models, confusion matrices were 

constructed for XGBoost and LightGBM, as shown in Figure 2. These matrices provide detailed insights 

into how well each model distinguishes between the three weather classes: 0 = No Rain, 1 = Cloudy, 

and 2 = Rain. The diagonal elements represent correctly classified instances for each class, indicating 

high confidence in those predictions. Meanwhile, the off-diagonal elements reflect misclassifications, 

revealing where the models tend to confuse one class with another. This analysis is crucial for 

identifying potential weaknesses, especially in borderline cases such as differentiating between cloudy 

and rainy conditions, which often share overlapping meteorological features. By examining these 

patterns, researchers can better understand model behavior, assess robustness across different weather 

scenarios, and make targeted improvements to enhance prediction reliability and support more accurate 

decision-making in climate-sensitive applications. 
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Figure 2. Confusion matrix of classification results 

 

XGBoost Confusion Matrix: 

• No Rain (Class 0): 11,963 instances were correctly classified. Only 4 were misclassified 

as Cloudy, and 178 as Rain. 

• Cloudy (Class 1): 11,237 correctly classified, with 5 instances predicted as No Rain, and 

936 predicted as Rain. 

• Rain (Class 2): 11,294 were correctly identified, but 141 were predicted as No Rain, and 

744 as Cloudy. 

This matrix demonstrates that XGBoost has strong overall accuracy, with misclassifications being 

relatively low and mostly occurring between the Cloudy and Rain classes, which often exhibit similar 

atmospheric characteristics such as moderate humidity and temperature levels. These subtle overlaps 

can make it challenging for models to distinguish between the two categories, yet XGBoost still manages 

to maintain high precision and recall across all classes, highlighting its robustness in handling complex 

weather classification tasks. 

• No Rain (Class 0): 11,850 correctly predicted, with 17 misclassified as Cloudy and 278 

as Rain. 

• Cloudy (Class 1): 10,759 instances correctly identified, 8 misclassified as No Rain, and 

1,411 as Rain. 

• Rain (Class 2): 10,000 correctly predicted, while 397 were predicted as No Rain, and 

1,324 as Cloudy. 

Compared to XGBoost, LightGBM shows higher misclassification rates, particularly for the Rain 

class, where a significant number of instances were confused with Cloudy. This suggests that LightGBM 

may have more difficulty distinguishing between mid-to-heavy precipitation patterns, possibly due to 

overlapping feature distributions or lower sensitivity to minority class boundaries. 

3.3.4. Comparative Visualization 

To provide a clear and intuitive comparison between the XGBoost and LightGBM models, a line 

chart was constructed to visualize five key evaluation metrics: accuracy, precision, recall, F1-score, and 

specificity, as shown in Figure 3. This visual comparison enables a direct assessment of the relative 

strengths and weaknesses of each model. 

The blue line representing XGBoost consistently lies above the green line for LightGBM, 

indicating superior performance across all metrics. XGBoost achieved the highest value in specificity 

(0.96), followed by precision (0.95), and both accuracy and F1-score (0.94), with recall at 0.93. This 

balanced performance shows that the model is not only precise but also effective in detecting true 

positives and correctly identifying negatives. 
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In contrast, LightGBM achieved a maximum value of specificity at 0.94, but scored lower on 

other metrics, with values around 0.91 for accuracy, 0.90 for precision, and 0.89 for both recall and F1-

score. The consistently lower scores suggest that while LightGBM performs reasonably well, it is 

igurerecall in imbalanced data scenarios. 

 

 
Figure 3. Comparative performance of XGBoost and LightGBM 

 

These findings confirm that while both models perform well, XGBoost offers more stable and 

precise classificationan advantage that is particularly crucial in rainfall detection and early warning 

systems, where prediction errors such as false positives or false negatives can lead to significant 

operational inefficiencies, misallocation of resources, or even safety risks for the public. 

4. DISCUSSIONS 

The evaluation results show that the XGBoost algorithm outperforms LightGBM in multiclass 

rainfall classification in Jakarta. XGBoost achieved an accuracy of 94%, with precision, recall, and F1-

score values of 95%, 93%, and 94%, respectively. Meanwhile, LightGBM reached an accuracy of 91% 

and an F1-score of 89%. These findings indicate that although both models are capable of performing 

classification tasks, XGBoost produces more stable results, particularly in tropical weather datasets that 

exhibit highly variable and complex patterns. 

The performance difference can be attributed to the algorithmic approaches of each model. 

XGBoost incorporates L1 and L2 regularization as well as complexity-based tree pruning, which 

contribute to its ability to avoid overfitting and enhance generalization [10]. In contrast, LightGBM, 

while offering advantages in training speed and memory efficiency, appears to struggle in distinguishing 

overlapping patterns between rainfall classes, especially between “cloudy” and “rainy” conditions. 

These results are consistent with previous studies. For instance, Maharina et al. found that 

although LightGBM was effective for flood classification, its performance could vary depending on 

interaction features and class imbalance handling [18]. Likewise, Yasper et al. demonstrated that 

hyperparameter optimization using GridSearchCV significantly improved the performance of XGBoost 

in binary rainfall classification tasks [10]. The present study extends these findings to a multiclass 

setting, showing that XGBoost remains superior in more complex prediction scenarios. 

Furthermore, confusion matrix analysis reveals that XGBoost had fewer classification errors than 

LightGBM, particularly for the minority class “rain.” This advantage is crucial in the context of early 

warning systems, where classification errors could directly affect disaster mitigation efforts and 

operational decision-making [16]. 

Although XGBoost demonstrates a 3% higher accuracy, it is important to consider the trade-off 

with computational efficiency. This study did not explicitly measure training time or memory usage; 
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however, such factors could be critical when deploying models in resource-constrained environments. 

Discussing whether the performance gain justifies the potentially higher computational cost of XGBoost 

would offer valuable practical insight, especially for applications requiring frequent retraining or real-

time prediction capabilities. 

5. CONCLUSION 

XGBoost and LightGBM algorithms were employed to classify rainfall intensity based on 

historical meteorological data in Jakarta. The evaluation results indicate that XGBoost outperforms 

LightGBM in terms of accuracy, consistency of evaluation metrics, and fewer classification errors. With 

an accuracy of 94% and an F1-score of 94%, XGBoost demonstrates higher reliability compared to 

LightGBM, which achieved an accuracy of 91% and an F1-score of 89%. 

The consistent performance of XGBoost confirms its capability in handling complex and 

nonlinear tropical weather data, as well as its effectiveness in classifying all three rainfall categories in 

a balanced manner. Therefore, XGBoost is recommended as the more suitable model for implementation 

in urban weather prediction systems and early warning mechanisms for hydrometeorological disasters 

in regions like Jakarta. The integration of this model can enhance forecasting accuracy and support more 

responsive decision-making amid increasing climate variability. 

For future research, several directions can be explored to enhance model performance and 

practical deployment. First, deep learning architectures such as Long Short-Term Memory (LSTM) or 

Transformer networks may be investigated, as they are designed to capture temporal dependencies 

inherent in meteorological time series data. Second, incorporating additional data sources—such as 

satellite imagery or weather radar data could enrich feature sets and improve prediction accuracy. Lastly, 

the most promising model from this study may be developed into a real-time early warning system 

prototype to assess its performance under operational conditions. 

By including these concrete suggestions, this study not only highlights current findings but also 

contributes valuable insight for further exploration in the domain of data-driven weather prediction and 

climate risk mitigation. 
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