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Abstract 

Forecasting the output power of photovoltaic (PV) systems is crucial in managing renewable energy efficiently and 

sustainably. The availability of historical data and environmental variables, such as temperature and humidity, greatly 

influences prediction accuracy. However, in practice, historical data is often incomplete due to technical constraints 

or limited monitoring infrastructure, which results in decreased prediction quality and system efficiency. To 

overcome these challenges, this study proposed a comparative approach between two predictive models, namely 

SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous variables) as a classical statistical 

model, and WGAN-GP (Wasserstein Generative Adversarial Network with Gradient Penalty) as a generative deep 

learning model designed to handle incomplete data and capture nonlinear relationships. The datasets included PV 

power output from the monitoring system at Universitas Kristen Immanuel (UKRIM) Yogyakarta, along with 

temperature and humidity data from the Kalitirto weather station in Sleman, Yogyakarta. The research was conducted 

through several stages, namely: data collection, pre-processing, model training, and evaluation using MAE, MSE, 

RMSE, and MAPE metrics. The results show that the SARIMAX model using the Time-Series Cross-Validation 

(TSCV) achieves the best numerical performance (MAE = 0.085; RMSE = 0.145). However, this model fails to 

represent daily patterns realistically. In contrast, both the standard SARIMAX and WGAN-GP models are more 

consistent in representing seasonal patterns and daily fluctuations, even though their prediction errors were slightly 

higher in terms of numerical metrics. The findings advance scientific understanding of hybrid forecasting models and 

offer practical implications for improving energy reliability and decision-making in data-constrained environments. 
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1. INTRODUCTION 

The global transition toward clean energy [1], [2] has driven a significant increase in the 

utilization of renewable energy sources, particularly solar energy, which offers environmentally friendly 

and sustainable solutions. Photovoltaic (PV) systems have emerged as a key component in this effort 

due to their ability to generate electricity from solar radiation[3]. To ensure efficient management and 

integration of solar energy systems into the electrical grid, accurate forecasting of PV power output is 

essential[4], [5]. This predictive information supports load scheduling, energy storage management, and 

real-time power distribution planning. However, a major challenge in PV power forecasting lies in its 

strong dependence on dynamic weather conditions, as well as limitations in historical data, especially 

in regions with underdeveloped monitoring infrastructure[6]. 

Various approaches have been developed to address these challenges, ranging from classical 

statistical models to deep learning-based methods. One of the most commonly used statistical models is 

https://jutif.if.unsoed.ac.id/
mailto:1sandinoberutu@ukrimuniversity.ac.id
http://creativecommons.org/licenses/by/4.0/


Jurnal Teknik Informatika (JUTIF)                             Vol. 6, No. 4, August 2025, Page. 2453-2466 
P-ISSN: 2723-3863                                                                                                           https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871                                                                  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.4955 

 

 

2454 

the SARIMAX, due to its ability to accommodate seasonal patterns and incorporate exogenous 

variables, such as weather data[7], [8]. This model is also favored for its long-term stability and 

interpretability[9]. For example, Kachalla et al.[7] developed a SARIMAX-MLP framework that 

demonstrated strong performance in forecasting energy output for residential microgrids. Sultana[8] 

compared the performance of LSTM, NARX, and SARIMAX models and found that LSTM 

outperformed the others in multi-step forecasting scenarios, particularly in handling complex temporal 

patterns. 

Haider et al. [10]conducted a comparative study involving SARIMAX, Prophet, Artificial Neural 

Networks (ANN), Convolutional Neural Networks (CNN), and LSTM models for forecasting Global 

Horizontal Irradiance (GHI). The results indicated that SARIMAX performed more reliably for long-

term forecasting, whereas LSTM, ANN, and CNN were better suited for short-term prediction. In 

addition, Kim et al. [6] also utilized ARIMA, SARIMA, SARIMAX, and LSTM approaches to predict 

photovoltaic energy generation, and found that LSTM produced the least accurate results among the 

models tested. Further research by Abuzaid et al.[9], emphasized that the combination of statistical 

models with machine learning techniques can lead to more accurate predictions across different 

forecasting horizons. For instance, Lee and Cho developed a hybrid model that integrates SARIMAX 

with ANN, Support Vector Regression (SVR), and LSTM. This combination outperformed standalone 

SARIMAX in capturing nonlinear patterns and detecting data anomalies that were not detected by 

ordinary linear models[11].  

In the context of incomplete data and complex data distributions, WGAN-GP-based generative 

approaches have begun to gain significant attention. Liu et al.[12] developed a WGAN model to predict 

PV output during rainy conditions, where solar radiation variability is particularly high. Park et al.[13] 

combined an autoencoder with WGAN-GP to generate synthetic PV data, which proved beneficial for 

improving model training quality. Additionally, this method has also been applied to synthesize wind 

speed data[14], [15] either independently or in combination with BiLSTM and CNN models[16]. Its 

application has even been extended to battery-based household energy management systems, as 

demonstrated by Mansour et al.[17], highlighting the potential of generative models in optimizing 

energy consumption and load control. Beyond the energy sector, WGAN-GP has been effectively 

applied in related domains, including battery state-of-charge (SOC) estimation[18] fault detection in 

solar panels[19], and failure prediction in pumping systems[20]. These developments indicate that 

generative models offer high flexibility in handling incomplete datasets and enhancing training 

scenarios in various smart energy applications. 

However, there is a gap in the existing literature. Most studies still focus primarily on short-term 

numerical accuracy without thoroughly evaluating the models, ability to reconstruct seasonal patterns 

and realistic fluctuations. Studies that combine statistical analysis, such as SARIMAX, with generative 

models such as WGAN-GP for PV forecasting under conditions of missing data are still very limited. 

Therefore, this study aims to address this gap through an evaluative approach that considers both 

numerical prediction accuracy and the fidelity of seasonal pattern reconstruction in the forecast results. 

This research seeks to evaluate and compare the performance of SARIMAX and WGAN-GP 

models in forecasting PV power output under conditions of incomplete historical data and limited local 

weather variables. The case study was conducted on the PV system at UKRIM, which experienced data 

loss between December 2023 and February 2024. The researchers used weather data from the Kalitirto 

station as an exogenous input. The main contributions of this study include: (1) the integration of 

statistical and generative methods within a limited data scenario, and (2) an empirical analysis of the 

predictive capabilities and temporal pattern reconstruction of both models. 

https://jutif.if.unsoed.ac.id/
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2. METHOD 

This study aims to develop a predictive framework for forecasting photovoltaic (PV) system 

power output based on statistical and deep learning approaches. The primary focus lies in the application 

and comparison of two methods with distinct yet complementary characteristics, namely SARIMAX, 

representing a classical statistical approach, and WGAN-GP, representing a generative deep learning 

method. The proposed framework consists of five main stages: (1) data collection, (2) data 

preprocessing, (3) model development, (4) performance evaluation, and (5) result validation as shown 

in the Figure 1. 

 

 
Figure 1. The stages of research 

 

2.1. Data Collection. 

The first stage of this study involved collecting data from two primary sources. Energy output 

data from the solar panel system was obtained via the Huawei Fusion Solar platform, which was used 

to monitor energy production from the PV system installed at Universitas Kristen Immanuel (UKRIM). 

The second source was weather data retrieved from the Wunderground application, specifically from 

the Kalitirto Sleman station, Yogyakarta 

(https://www.wunderground.com/weather/id/sleman/ISLEMA43).  

The dataset spanned the period from May 18, 2023, to September 6, 2024. From the Fusion 

platform, daily electricity production data were collected in kilowatt-hours (kWh). Meanwhile, from 

Wunderground, temperature and humidity data were obtained and used as exogenous variables in the 

prediction models. 

2.2. Data Pre-processing 

Missing data identification was a significant step in this stage. It was performed by visualizing 

the dataset using time series plots to detect anomalies or data gaps. Following this, the data were 

segmented into two parts, namely pre-gap (before the missing data period) and post-gap (after the 

missing data period). This segmentation was crucial to ensure that model training and evaluation were 

conducted appropriately according to the temporal structure of the dataset. 

2.3. Model Development of SARIMAX and WGAN-GP 

2.3.1. SARIMAX Model 

The development of the SARIMAX model is carried out in several stages. First, the optimal 

combination of hyperparameters is determined, specifically (p, d, q) for the ARIMA component [21]and 

(P, D, Q, s) for the seasonal component. The selection is performed using a minimization approach based 

on the Akaike Information Criterion (AIC)[22], as shown in Equation (1): 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿)   (1) 

https://jutif.if.unsoed.ac.id/
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where: 

    is the number of parameters in the model, 

    is the likelihood of the estimated model. 

Once the optimal parameter combination is obtained, the model is trained using the pre-gap data. 

Validation is performed using the TSCV approach without shuffling to preserve the temporal structure 

of the data[23]. 

2.3.2. WGAN-GP Model 

To overcome the challenges posed by incomplete data and enhance the variability of input data, 

the WGAN-GP generative deep learning model is employed. This model is designed to generate realistic 

synthetic data that closely approximates the distribution of the original data. This model employs the 

loss function in the training stage as shown in Equation (2): 

𝐿(𝐷) =  −𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎𝐷(𝑥) + 𝐸𝑧∼𝑃𝑧𝐷(𝐺(𝑧)) + 𝜆𝐸𝑥∼𝑃𝑥(‖∇𝐷(𝑥‖2 − 1 )2   (2) 

where: 

𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎𝐷(𝑥) is real data score 

𝐸𝑧∼𝑃𝑧𝐷(𝐺(𝑧)) is fake data score 

𝜆𝐸𝑥∼𝑃𝑥(‖∇𝐷(𝑥‖2 − 1 )2 is gradient penalty 

 

The core architecture of the WGAN-GP model consists of two neural networks, namely a 

generator and a discriminator. The generator produces new data samples, while the discriminator 

evaluates whether these samples resemble real data. The model is trained iteratively by adding a gradient 

penalty term to ensure training stability and prevent mode collapse. 

A general overview of the WGAN-GP architecture [24] is illustrated in Figure 2. 

 

 
Figure 2. The architecture of the WGAN-GP Model 

 

2.4. Model Performance Evaluation 

The predictive performance of both models were evaluated using four common metrics in time 

series analysis: MAE (Mean Absolute Error) as in (2), MSE (Mean Squared Error) as in (3), RMSE 

(Root Mean Squared Error) as in (4), and MAPE as in (5) [25]. These metrics are calculated using the 

Equation (3), (4), (5), and (6): 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑦𝑖 − 𝑦̂𝑖  |𝑛

𝑖=1       (3) 

https://jutif.if.unsoed.ac.id/
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𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1     (4) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸     (5) 

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
 | ×𝑛

𝑖=1 100%   (6) 

Description: 

n  = number of data, 

𝑦𝑖 = actual value, 

𝑦̂𝑖 = predictive value. 

2.5. Validation and interpretation 

In addition to evaluation based on numerical metrics, researchers also conducted visual validation 

of the distribution of predicted results. The distribution of prediction results regarding SARIMAX and 

SARIMAX with TSCV, WGAN-GP were compared with actual data using time-series plot. For 

synthetic data from WGAN-GP, this approach aims to determine the extent to which the generative 

model can mimic the real distribution pattern of the PV system output data. In addition, differences in 

daily and seasonal patterns were also analysed to assess the accuracy of the temporal structure of the 

predicted results. 

3. RESULT AND ANALYSIS 

This section presents the results of experiments conducted using two modeling approaches, 

namely SARIMAX and WGAN-GP, in predicting the power output of PV systems under data loss 

conditions. Analysis was conducted to evaluate the effectiveness of each model based on metrics of 

accuracy, prediction stability, and the ability to reconstruct missing data. In addition, visual and 

numerical comparisons between actual data and predicted results were also presented, in order to assess 

how well the model is able to capture seasonal patterns and the influence of exogenous variables. 

3.1. PV and Weather Data 

The daily data on solar panel energy production from 18 May 2023 to 6 September 2024 is shown 

in Figure 3, in kWh, which illustrates the pattern of actual energy output throughout that time span. 

 
Figure 3. Dataset of daily records of energy production 

 

Figure 3 shows a seasonal trend where energy production tends to be higher in the middle of the 

year, which coincides with the dry season in Yogyakarta. The graph also shows a significant data gap 

https://jutif.if.unsoed.ac.id/
https://www.codecogs.com/eqnedit.php?latex=n#0


Jurnal Teknik Informatika (JUTIF)                             Vol. 6, No. 4, August 2025, Page. 2453-2466 
P-ISSN: 2723-3863                                                                                                           https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871                                                                  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.4955 

 

 

2458 

between December 2023 and February 2024, indicating data loss due to logging system constraints. 

After that period, the system recorded data consistently until September 2024. Sharp fluctuations in 

daily data reflect the influence of atmospheric conditions such as clouds, rain, or high humidity that 

inhibit the intensity of solar radiation.  

The monitoring system at UKRIM does not record weather data directly, hence no 

meteorological information is available to analyse the relationship between weather conditions and 

energy production. To overcome these limitations, this study uses external weather data obtained 

through engineering web scraping from the Wunderground app. The data was taken from the nearest 

weather station, namely Kali Tirto station, Sleman, Yogyakarta, which is about 3 km from UKRIM. The 

data time range covered the period 18 May 2023 to 6 September 2024. The dataset is visualized in Figure 

4. 

 

Figure 4. Plot of Temperature and Humidity Time Series from Wunderground Station 

 

Figure 4 shows the fluctuations in temperature (in °C) and air humidity (in %) from May 2023 to 

September 2024. The daily temperature ranges 20-36°C with a gradually decreasing pattern from mid-

2023 to mid-2024, while the humidity ranges from 40-100% and tends to increase in the rainy season 

(around late 2023 to early 2024). Both variables show high daily variability, which reflects the dynamics 

of tropical weather in Yogyakarta. The pattern of the relationship between temperature and humidity is 

inverse in general, where an increase in humidity is usually accompanied by a decrease in temperature, 

especially during the rainy season. 

3.2. Experiment  

3.2.1. Training and testing of SARIMAX model 

SARIMAX Model is used in this study to predict the output power of solar panels (PV yield) by 

considering historical patterns and the influence of external variables such as temperature and humidity. 

At the initial stage, the process of selecting hyperparameters was carried out to explore various 

combinations of model parameters. The selection of the best combination was based on the minimization 

of the AIC value, which measured the balance between the complexity of the model and its predictive 

capabilities. Optimization results produce the best parameters as follows: (p, d, q) = (2, 0, 0) and (P, D, 

Q, s) = (1, 1, 1), with an AIC value of -4804.9959. Furthermore, SARIMAX models with these 

parameters were trained using pre-defined training data. After the training was completed, the model 

was tested using test data to evaluate its performance in predicting PV power. The results of the 

comparison between the predicted value and the actual data are shown in Figure 5 to assess the extent 

to which the model can represent the actual time pattern. 

 

https://jutif.if.unsoed.ac.id/
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Figure 5. Prediction Results with SARIMAX 

 

Figure 5 shows the predicted results PV yield using the SARIMAX model (green line) compared 

to the actual test data (yellow line) during the observation period between early November to early 

December 2023. The Model utilizes historical data as well as external variables such as temperature and 

humidity as additional predictors. 

The predictive results of the SARIMAX model show the suitability of seasonal patterns and daily 

fluctuations are quite good against the actual data. The peak values consistently follow the shape of the 

actual curve, which shows that the model successfully captures the main trends and seasonal cycles of 

solar panel energy output. 

However, there are some significant deviations on certain days, where the actual value is much 

higher than the predicted result. This is most likely due to weather anomalies such as cloudy clouds or 

rain causing extreme fluctuations, or sudden yield peaks due to unexpected sun exposure. 

To assess the performance of the SARIMAX model in predicting the output power of solar panels, a 

quantitative evaluation was carried out using four main metrics, namely MAE, MSE, RMSE, and 

MAPE. The evaluation results are shown in Table 1. 

 

Table 1. Evaluation of SARIMAX prediction 

Model MAE MSE RMSE MAPE 

SARIMAX 0.094 0.038 0.196 9.25 

 

The results of the evaluation of sporadically occurring error patterns are also consistent with the 

high MAPE values shown in Table 1, which indicates that although the model is generally trend-

accurate, there are inaccuracies at some extreme points. In addition, it appears that the SARIMAX model 

is quite stable in replicating repetitive daily patterns, which indicates its ability to understand the periodic 

cycle (seasonality) of PV yield data. This deemed SARIMAX suitable for use as a short-to medium-

term predictive tool, especially for solar energy planning and monitoring needs. In addition, the 

performance of the SARIMAX model showed a fairly low prediction error rate on MAE and RMSE 

metrics, with values of 0.094 and 0.196, respectively. This shows that on average the absolute error of 

PV yield prediction is still within acceptable limits for data-driven energy monitoring or prediction 

system applications. 

 

3.2.2. SARIMAX with TSCV  

After obtaining the initial results, further optimization was carried out with TSCV to overcome 

potential bias in data sharing. The technique used is Expanding Window Validation. This approach helps 

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)                             Vol. 6, No. 4, August 2025, Page. 2453-2466 
P-ISSN: 2723-3863                                                                                                           https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871                                                                  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.4955 

 

 

2460 

the model become more robust to changes in trends in historical data, as well as more adaptive in the 

face of fluctuations in solar energy production due to external factors. Figure 6 shows the results of 

SARIMAX predictions by the method TSCV, which is compared with actual data to see how the model 

captures energy production patterns over time. 

 

 

Figure 6 shows the prediction results PV yield using SARIMAX model with pure time series data 

integration without external variables. 

 

The SARIMAX TSCV Model can mimic the daily pattern of PV yield quite accurately. It appears 

that the model's predictions follow a strong daily energy up-and-down pattern, indicating the model’s 

ability to study and replicate seasonal trends as well as daily cycles of solar energy. However, at some 

specific points, such as around 9-11 October, there were deviations in predictions from actual values, 

which were most likely caused by sudden changes in the weather or interruptions in observational data.  

Table 2 presents the results of the performance evaluation of the SARIMAX with TSCV model based 

on four evaluation metrics, namely MAE, MSE, RMSE, and MAPE. The use of TSCV aims to test the 

resilience of the model to new data not seen before, which reflects the ability of generalization in 

predicting PV yield more realistically. 

 

Table 2. Sarimax Prediction Evaluation with TSCV 

Model MAE MSE RMSE MAPE 

SARIMAX with TSCV 0.085 0.021 0.145 9.63 

 

The MAE value of 0.085 indicates that the average absolute error between the predicted result 

and the actual value is low, indicating a good prediction accuracy. The MSE value of 0.021 and RMSE 

of 0.145 are also quite small, indicating that the squared error that occurs in the prediction is relatively 

minimal and consistent. In addition, the MAPE value of 9.63% indicates that the prediction error in 

percentage terms to the actual value is below 10%, which in practice is considered to be very good 

accuracy for renewable energy forecasting models. Overall, the results show that the usage of TSCV in 

SARIMAX model training has successfully increased the reliability and prediction accuracy by 

minimizing overfitting to seasonal and temporal patterns in historical data. 

3.2.3. Predictions of WGAN-GP  

https://jutif.if.unsoed.ac.id/


Jurnal Teknik Informatika (JUTIF)                             Vol. 6, No. 4, August 2025, Page. 2453-2466 
P-ISSN: 2723-3863                                                                                                           https://jutif.if.unsoed.ac.id                                       

E-ISSN: 2723-3871                                                                  DOI: https://doi.org/10.52436/1.jutif.2025.6.4.4955 

 

 

2461 

After completing the training process, WGAN-GP was evaluated using testing dataset consisting 

of actual solar panel energy output (PV yield) data, along with relevant weather features, such as 

temperature and humidity. This evaluation aimed to assess the model’s ability to predict the PV score 

based on the prior studied pattern. The prediction results were directly compared with the actual data to 

examine the accuracy level. Four common evaluation metrics in time series analysis, MAE, MSE, 

RMSE, and MAPE, were employed to quantitively assess the model’s performance. Figure 7 illustrates 

the visualization prediction result which shows that the model predictions (the green line) closely follow 

the actual values (yellow line) across most time points. In addition, the model is also able to capture 

seasonal patterns effectively, particularly during periods of high energy fluctuations. However, there are 

some deviations in certain segments, such as between indices 600 to 800, where the model struggles to 

track abrupt changes or noise in the actual data. This suggests that while WGAN-GP is proficient in 

reconstructing general patterns, it still encounters challenges when dealing with extreme dynamics or 

sudden perturbations in historical data. 

 

 
Figure 7 Performance of WGAN-GP model in predicting PV yield value against actual data 

 

After the WGAN-GP model was trained, it was evaluated using a testing dataset comprising actual 

PV output data and relevant weather variables. A performance evaluation was then conducted to assess 

the model’s accuracy, with the results presented in Table 3 below. 

 

Table 3. Prediction Evaluation WGAN-GP 

Model MAE MSE RMSE MAPE 

WGAN-GP 0.161 0.071 0.267 1.79 

 

The MAE value of 0.161 indicates that the average absolute error between the predicted and actual 

values is moderate, higher than the previous SARIMAX model. The MSE value of 0.071 and RMSE of 

0.267 indicate that statistically, the squared error and root mean square error of the prediction are at an 

acceptable level. However, the MAPE value of 1.79% is very low and indicates that in percentage terms, 

the model prediction is very close to the actual value. This shows that although the absolute error is 

higher than SARIMAX, the WGAN-GP model is more stable in the context of relative error. The 

advantage of WGAN-GP lies in its ability to capture the structure seasonal patterns and daily fluctuation 

effectively, as well as reconstructing missing data realistically. These results shows that even though 

WGAN-GP model is not the best in terms of absolute numerical error, this model is very competitive in 

representing the general pattern of PV energy production. Thus, WGAN-GP is superior in scenarios 

with limited data or when pattern interpretation is the main priority, not just numerical accuracy. 

https://jutif.if.unsoed.ac.id/
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3.2.4. Forecast on missing period data 

Figure 8 shows the daily forecast results for the missing data period using the SARIMAX, 

SARIMAX TSCV, and WGAN-GP methods. From the plot results, it can be seen that the SARIMAX 

and WGAN-GP methods show a more realistic pattern, where PV Yield production tends to be low in 

the morning, increases during the day, and decreases again in the afternoon, in accordance with the 

characteristics of solar energy production. However, the results obtained from SARIMAX TSCV show 

the opposite pattern, where PV Yield production is high in the morning and actually decreases during 

the day. This pattern contradicts the fact that sunlight intensity is usually maximum during the day, so 

energy production should also peak at that time. This indicates that the SARIMAX TSCV method fails 

to capture the daily pattern of PV Yield production well on a smaller time scale. 

 

 
Figure 8 Daily forecast result graph of the model 

 

4. DISCUSSIONS 

4.1. Performance Comparison between Models  

Comparison between three approaches, SARIMAX, SARIMAX with TSCV, and WGAN-GP, in 

this study was done to get more comprehensive understanding about each model performance in 

predicting photovoltaic system output power. Each model was evaluated using the same metrixes which 

are MAE, MSE, RMSE, and MAPE. This comparison aimed to highlight the relative advantage of each 

approach, both in terms of numerical accuracy and consistency of predictions against actual patterns. 

Table 4 and Figure 9 below present the model performance comparison. 

Table 4. Model performance comparison 

Model MAE MSE RMSE MAPE 

SARIMAX 0.094 0.038 0.196 9.25 

SARIMAX with TSCV 0.085 0.021 0.145 9.63 

WGAN-GP 0.161 0.071 0.267 1.79 

 

https://jutif.if.unsoed.ac.id/
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Figure 9 Performance comparison chart between models 

 

SARIMAX produces MAE of 0.094, MSE of 0.038, and RMSE of 0.196. This shows that this 

model is quite good at minimizing absolute and squared errors in prediction. The resulting MAPE of 

9.25% indicates that on average, SARIMAX predictions deviate by about 9% from the actual value, 

which is still in the moderate accuracy category for energy applications. 

SARIMAX equipped with Time-Series Cross-Validation technique shows improved 

performance. MAE decreases to 0.085, MSE to 0.021, and RMSE to 0.145. This decrease reflects the 

improvement in accuracy and stability of the model in recognizing time and seasonal patterns. However, 

MAPE increases slightly to 9.63%, which is likely due to larger prediction errors at points with low 

actual values, thus having a proportional impact on the error percentage. Nevertheless, overall, 

SARIMAX with TSCV provides superior results in terms of numerical metrics, making it a good choice 

for scenarios that require high precision in predicted values. 

Unlike the two previous models, WGAN-GP shows unique evaluation characteristics. MAE of 

0.161, MSE of 0.071, and RMSE of 0.267 indicate that this model has higher absolute and squared error 

rates. However, the MAPE value of only 1.79% is very surprising and indicates that the prediction error 

relative to the actual value is very small. This shows that although WGAN-GP tends to have a larger 

absolute deviation, the model’s prediction is proportionally very close to the actual data, especially at 

large PV values. WGAN-GP is also known to excel in representing daily and seasonal fluctuation 

patterns and in handling missing data. 

These differences in characteristics indicate that each model has its own strengths. SARIMAX 

with TSCV excels in absolute value accuracy and is suitable for use in forecasting contexts with high 

numerical precision demands, such as energy capacity planning or daily load management. WGAN-GP 

excels in maintaining the stability of error patterns and proportions, making it ideal for scenarios where 

representation of data shape and long-term trends is more important than numerical precision. Standard 

SARIMAX still performs quite well and can be used in complete data conditions without special cross-

validation. 

To evaluate the effectiveness and relevance of the proposed approach, a performance comparison 

was conducted against several existing studies that applied different modeling techniques. Table 5 

presents a summary of model performance metrics, including Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), error rate, and coefficient of determination (R²), as reported in prior research. 

 

Table 5. Model performance comparison with previous studies 
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References Performances Values 

Kachala et al.[7] 
RMSE 0.153 

MAE 0.091 

Kim et al.[6] Error rate 7.12 

Haider et al.[10] 
RMSE 63.54 

MAE 35.23 

Abuzaid et al.[9] R2 0.9174 

This study 
RMSE   0.196 

MAE 0.094 

 

 From the comparison, it can be observed that the model proposed in this study achieves an RMSE 

of 0.196 and  MAE of 0.094. Although slightly higher than the RMSE and MAE reported by Kachala 

et al. (0.153 and 0.091, respectively), the values remain within a competitive range, indicating a 

reasonably accurate performance. Kim et al. reported an error rate of 7.12, which, although not directly 

comparable due to the difference in metric, provides a useful reference point in terms of prediction 

accuracy. 

In contrast, the significantly higher RMSE and MAE reported by Haider et al. (63.54 and 35.23, 

respectively) suggest that the proposed model in this study offers a major improvement in terms of error 

minimization. Additionally, while Abuzaid et al. reported a high R² value of 0.9174, which indicates 

strong predictive power, the different nature of the metric limits direct comparison. 

This research plays an important role in helping scientists and engineers better understand how to 

predict the power output of photovoltaic (PV) systems. By comparing three different forecasting 

models—SARIMAX, SARIMAX with time-series cross-validation, and WGAN-GP—the study shows 

that no single method is best for every situation. Instead, each model offers its own strengths: SARIMAX 

with TSCV works well when accuracy in numbers is needed, while WGAN-GP does a great job 

capturing overall trends and patterns, even when data is missing or incomplete. 

5. CONCLUSION 

This study has reviewed and compared the performance of SARIMAX, SARIMAX with Time-

Series Cross-Validation (TSCV), and WGAN-GP models in forecasting the output power of 

photovoltaic (PV) systems under data loss conditions for a certain period. The SARIMAX model shows 

good performance in capturing seasonal patterns and daily fluctuations of PV yield data, with an MAE 

value of 0.094 and an RMSE of 0.196. This model can represent the main trend of solar energy 

production even though there are deviations in unexpected extreme conditions. The use of the TSCV 

approach on SARIMAX resulted in improved predictive performance, with an MAE of 0.085 and an 

RMSE of 0.145. This indicates that time series validation can improve the generalization ability of the 

model, making it more robust to changes in data patterns and seasonal fluctuations. However, when 

applied to the missing data period, the SARIMAX model with TSCV showed an unrealistic daily pattern, 

indicating the model’s weakness in accurately capturing the daily time distribution. On the other hand, 

the WGAN-GP model showed quite promising ability in learning the distribution of PV yield data and 

producing predictions that resembled the actual data. Despite having higher MAE and RMSE values 

(0.161 and 0.267), this model was able to follow the main patterns, including seasonal fluctuations, well. 

However, the predictive performance of WGAN-GP decreased in very low or highly fluctuating data 

conditions and showed a high MAPE value due to sensitivity to small values. 

Overall, the comparison results show that SARIMAX with TSCV is superior in numerical 

accuracy, but standard SARIMAX and WGAN-GP are more stable in pattern in daily prediction. 

Therefore, for practical application in solar energy forecasting in future research, model selection will 

consider specific needs such as medium-term numerical accuracy or daily pattern realism and data 

distribution flexibility. 
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