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Abstract 

This study addresses the limited availability of automated recognition systems for Arabic Alphabet Sign Language 

(ArSL), particularly in facilitating Qur’anic Tadarus for the deaf and hard-of-hearing community. While research on 

American and Indonesian sign languages has advanced significantly, ArSL studies, especially for static alphabet 

gestures, remain underrepresented. The aim of this research is to develop an accurate and efficient ArSL classifier 

using the VGG16 convolutional neural network with transfer learning. The study employs the publicly available RGB 

Arabic Alphabets Sign Language Dataset, comprising 7,856 annotated images across 31 Hijaiyah letters, collected 

under varied backgrounds and lighting conditions. The proposed model integrates pretrained ImageNet weights with 

a customized classification head, trained through a two-stage fine-tuning process with data augmentation. The model 

achieves 97.07% test accuracy, performing competitively against a ResNet-18 baseline (98.0%) while offering a 

simpler architecture suitable for resource-constrained deployments. Evaluation using precision, recall, F1-score, and 

confusion matrix shows consistently high performance, with minor misclassifications among visually similar letters. 

This work demonstrates a novel application of VGG16-based deep learning for ArSL recognition, contributing to 

inclusive religious education and accessibility technologies. 
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1. INTRODUCTION 

For people who are deaf or have hearing loss, sign language is a key tool for effective 

communication worldwide. It serves not only as a medium for daily interactions but also as a key enabler 

for educational participation, religious practices, and broader social inclusion [1], [2]. For the Muslim 

community, particularly those with hearing impairments, accessing religious education, such as Qur'anic 

recitation, presents a significant challenge due to the lack of accessible resources and technological 

support. 

The Arabic alphabet is fundamental in the context of religious education, especially in reading 

the Qur'an. Arabic Alphabet Sign Language (ArSL) consists of 31 distinct manual gestures representing 

each letter of the Arabic script [3], [4]. Mastery of these gestures is essential for spelling, word 

construction, and religious literacy. Despite its importance, the development of automatic recognition 

systems for Arabic alphabet sign language remains underrepresented compared to other sign languages, 

such as American Sign Language (ASL) [5] or Indonesian Sign Language (SIBI) [6]. 

Recent developments in artificial intelligence, particularly in computer vision and deep learning, 

have significantly advanced the field of Sign Language Recognition (SLR). Convolutional Neural 

Networks (CNNs) have shown remarkable capability in capturing spatial features from visual data, 

resulting in substantial improvements in the recognition of static hand gestures across different sign 
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languages [7], [8]. A wide range of research has confirmed the efficacy of CNNs in tasks involving 

alphabet-based sign recognition, facilitating precise and rapid translation of hand gestures into written 

or spoken language [9], [10]. 

However, research on Arabic sign language recognition, particularly for the alphabet, is still 

limited [11]. Most existing works focus on small datasets, handcrafted features, or classical machine 

learning approaches, which often lack scalability and robustness when applied to diverse real-world 

conditions. Furthermore, while many studies address general communication signs, few have 

concentrated on alphabet-based recognition as a foundational tool for literacy and religious education. 

Comparative analyses between Arabic and non-Arabic sign language research also reveal 

significant gaps. Studies on American Sign Language (ASL) in [12] have benefited from large-scale, 

well-annotated datasets collected from diverse sources, enabling the development of deep learning 

models with high accuracy and strong generalization across various users and environments. These 

advancements in ASL research demonstrate how comprehensive datasets and rigorous model training 

can substantially improve recognition performance [13], [14]. 

 

 
Figure 1. Literature Gap in Arabic Sign Language Research for Qur’anic Accessibility 

 

Similarly, research on Indonesian Sign Language, including both SIBI and BISINDO, has also 

leveraged structured datasets and consistent annotation protocols as reported in [15], [16], [17], [18]. 

Such resources allow the creation of models tailored to the linguistic and cultural characteristics of the 

Indonesian deaf community. In contrast, Arabic Sign Language (ArSL) still lacks comparable dataset 

availability and domain-specific model development, particularly for applications that could facilitate 

Qur’anic education and religious accessibility for the deaf community. These shortcomings are further 

illustrated in the literature gap diagram (Figure 1), which contrasts the maturity of ASL, SIBI, and 

BISINDO research with the comparatively limited progress in ArSL, particularly within Qur’anic 

educational contexts. 
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This lack of technological advancement creates a critical gap, particularly in enabling accessible 

Qur'anic learning for the deaf community [19], [20], [21]. Current technologies do not sufficiently 

support the recognition of Arabic alphabet gestures, which is a prerequisite for helping individuals 

engage in Qur'anic Tadarus, an essential practice in Islamic education that involves reading, reciting, 

and reflecting upon the Qur'an [22]. 

Deep learning approaches, especially those utilizing transfer learning with pretrained models, 

have developed as a hopeful solution to address these challenges. Various image classification problems 

have been effectively addressed using models like VGG16, ResNet, and MobileNet, which have shown 

outstanding accuracy [23], [24]. Among these, VGG16 stands out for its balance between architectural 

simplicity and classification accuracy, making it well-suited for tasks involving static gesture 

recognition with limited datasets [25]. 

Despite the success of transfer learning in other sign language contexts, its application to Arabic 

alphabet sign language, specifically in support of religious learning, remains underexplored [26], [27]. 

Beyond advancing sign language recognition, this initiative plays a key role in promoting broader digital 

inclusion for the Muslim deaf and hard-of-hearing population. 

Addressing this research gap requires the development of a reliable, efficient, and accurate Arabic 

alphabet sign language recognition system that can serve as a foundation for educational tools, 

particularly those aimed at facilitating Qur'anic learning. Such a system would significantly enhance 

accessibility, allowing individuals with hearing disabilities to participate more fully in religious 

education and community life. 

This study proposes an Arabic Alphabet Sign Language classifier based on the VGG16 deep 

learning architecture using transfer learning. The model is designed to classify static hand gesture 

images into 31 classes of the Arabic alphabet. The research aims to contribute both technically, by 

enhancing gesture recognition accuracy, and socially, by supporting inclusive education and religious 

accessibility for the deaf community. 

2. METHOD 

This study aims to develop a strong Arabic Alphabet Sign Language (ArSL) classifier using deep 

learning techniques. Specifically, we employ a VGG16 model with pretrained weights, which helps in 

feature extraction, followed by the classification of 31 distinct Arabic alphabet letters in ArSL. The 

methodology is arranged into three main phases: dataset preparation and preprocessing, model 

architecture and training, and model evaluation and finalization. Each of these phases, as illustrated in 

Figure 2, plays a critical role in ensuring that the model performs optimally and generalizes well to 

unseen data. 

2.1. Dataset Preparation and Preprocessing 

In this study, the dataset employed was the RGB Arabic Alphabets Sign Language Dataset, which 

is publicly available on Kaggle and compiled by Muhammad Albarham [28]. It comprises 7,856 RGB 

images, each representing a static hand gesture for one of the 31 Hijaiyah letters. The images exhibit 

variations in background, lighting, and hand orientation, providing diversity in visual characteristics that 

enhance the dataset’s suitability for sign language recognition tasks. Representative examples 

illustrating these variations are shown in Figure 3. Each image is manually annotated and stored in 

Parquet format, an efficient storage type for large-scale data. The dataset is divided into three subsets: 

training, validation, and testing [29], [30]. The training subset is used for model fitting, the validation 

subset for hyperparameter tuning, and the testing subset, kept entirely separate from training, for final 

performance evaluation. This stratified division helps minimize overfitting and ensures a reliable 

assessment of the model’s generalization capability. 
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Figure 2. Workflow of the VGG16-Based ArSL-A Recognition System 

 

To ensure uniformity and compatibility with the VGG16 model, it is necessary to resize all images 

to the same dimensions. Initially, the images in the dataset are of size 256 × 256 pixels. These are resized 

to 224x224 pixels, which is the required input size for the VGG16 architecture. This resizing step is 

critical because the model expects fixed-size inputs, and varying image sizes could lead to performance 

issues during the training process. Standardizing image dimensions also helps optimize computational 

resources during model training [31]. 

To enhance the model’s robustness and its ability to perform effectively in diverse real-world 

environments, a range of data augmentation techniques is employed [32]. These include random 

cropping, horizontal flipping, rotation, perspective distortion, Gaussian blur, and color jitter. Such 

transformations artificially increase the variability within the dataset by simulating different visual 

conditions, such as varying angles, lighting, and distortions. Incorporating this variability into the 

training process helps the model become more resilient to noise and fluctuations commonly encountered 

in real-world scenarios, thereby improving its generalization capabilities and classification performance. 

Normalization serves as a crucial preprocessing step by scaling the pixel values of the images to 

a consistent range. In this study, normalization is performed using the mean and standard deviation 

values derived from ImageNet, the large-scale dataset on which VGG16 was originally trained. This 

process facilitates faster convergence during training by ensuring that all input features share a similar 
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scale, thereby preventing any single feature from disproportionately influencing the learning process. 

As a result, the model can more effectively identify meaningful patterns for Arabic Sign Language 

(ArSL) classification, ultimately enhancing both the optimization process and the overall learning 

performance. 

 

 
Figure 3. Example RGB images from the Arabic Alphabet Sign Language Dataset, illustrating 

variations in hand shapes and background settings across different classes. 

 

2.2. Model Architecture and Training 

The second phase of the methodology involves selecting a suitable model architecture, followed 

by the training process. In this phase, the pretrained VGG16 model is fine-tuned to classify the 31 letters 

of the Arabic alphabet in sign language. This ensures that the model can effectively recognize ArSL 

gestures. VGG16 is a deep convolutional neural network (CNN) that has proven highly effective in 

various image classification tasks. For this study, we utilize the VGG16 model, which is pretrained on 

ImageNet. Transfer learning is used to leverage the knowledge acquired by VGG16 from millions of 

images across diverse categories. By initializing the model with pre-trained weights, we can 

significantly reduce training time and improve the model's performance. This strategy enables the model 

to begin with robust feature extraction capabilities, which can be further refined for the specific task of 

ArSL classification. 

To adapt the VGG16 model for the ArSL classification task, several modifications are made. First, 

the early layers (features [0] to [19]) of the VGG16 model are frozen. Freezing these layers ensures that 

the model retains the general, low-level features, such as edges, textures, and simple shapes, that are 

common across various image types. These features are not specific to ArSL and can be reused for this 

task. The deeper layers (features [20] to the end) are unfrozen, allowing them to learn more complex, 

task-specific features that are crucial for recognizing the hand gestures in ArSL. Additionally, the final 

fully connected layer is replaced with a new classifier that produces 31 output classes, corresponding to 

the 31 letters of the Arabic alphabet. This modification ensures that the model can output the correct 

ArSL gesture classification. 

To enhance the model's training efficiency and performance, the Adam optimizer is utilized [33], 

[34]. This adaptive optimization algorithm dynamically adjusts the learning rate for each parameter, 

contributing to a more stable and accelerated training process. A learning rate of 0.0005 is chosen, 
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balancing the need for meaningful weight updates with the risk of overshooting optimal solutions. For 

the loss function, CrossEntropyLoss is employed, which is well-suited for multi-class classification 

problems. It quantifies the discrepancy between the predicted class probabilities and the actual labels, 

penalizing incorrect predictions and guiding the model toward improved classification accuracy over 

successive training iterations. 

To further improve the training process, a learning rate scheduler is introduced. Specifically, the 

ReduceLROnPlateau scheduler is used, which reduces the learning rate when the validation loss 

stagnates or plateaus. This strategy helps to fine-tune the model as it nears optimal performance. By 

gradually lowering the learning rate, the model can make more refined adjustments to its weights, 

ensuring that it converges to a better solution and avoids overshooting the optimal weights. This helps 

the model achieve better results, particularly in the later stages of training. 

The training process is divided into two distinct phases to ensure more effective and controlled 

learning [35]. In the initial phase, only the newly added classifier layers are trained, while the pretrained 

convolutional layers of VGG16 remain frozen. This approach allows the model to adapt to the specific 

characteristics of Arabic Sign Language (ArSL) while preserving the general low-level features learned 

from ImageNet. Throughout this phase, the model is trained using the training dataset and evaluated 

periodically on the validation set. Validation performance is monitored to track learning progress and to 

detect any signs of overfitting to the training data. 

To preserve the best version of the model, checkpointing is employed. The model is saved at 

regular intervals based on its performance on the validation set, specifically when it achieves a higher 

validation accuracy [36]. This ensures that the most optimal version of the model is retained, and training 

can be resumed from the best checkpoint in case of interruptions. This step is instrumental in avoiding 

the loss of progress during lengthy training processes. 

In the second phase of training, the entire VGG16 network is unfrozen, allowing all layers to be 

updated. This fine-tuning phase enables the model to refine its learned feature representations, thereby 

enhancing its ability to accurately recognize Arabic Sign Language (ArSL) gestures. A lower learning 

rate is employed during this stage to ensure that weight adjustments are subtle and precise, minimizing 

the risk of disrupting previously learned features. By allowing the network to adapt more deeply to the 

ArSL dataset, this phase helps the model capture complex patterns and subtle variations, leading to 

improved overall performance. 

2.3. Model Evaluation and Finalization 

After the training process is complete, the model is evaluated using the test set, comprising data 

that was not exposed to the model during training, making it suitable for assessing the model’s ability 

to generalize to unseen inputs [37]. Multiple evaluation metrics are employed to comprehensively assess 

performance, including Accuracy, Precision, Recall, F1-Score, and the Confusion Matrix. 

The mathematical definitions of these metrics are as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 
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Where: 

• TP = True Positives 

• TN = True Negatives 

• FP = False Positives 

• FN = False Negatives 

 

For a more granular analysis, a confusion matrix is used to visualize class-specific performance, 

revealing patterns of misclassification across gesture categories [38]. Furthermore, a classification report 

is generated, providing key metrics such as precision, recall, and F1-score. These metrics offer deeper 

insight into the model’s effectiveness in correctly identifying gestures while minimizing both false 

positives and false negatives. 

To contextualize the performance of the proposed VGG16-based ArSL classifier, we also 

compare its results with those of previously reported methods on the same dataset. Only methods that 

use the RGB Arabic Alphabets Sign Language Dataset [28] or an equivalent dataset with identical class 

definitions are considered. The evaluation metrics (Accuracy, Precision, Recall, and F1-Score) and 

testing protocol are kept consistent across all methods to ensure fairness in comparison. For published 

studies where only partial metrics are reported, missing values are derived from the available confusion 

matrices or classification reports. This methodological alignment allows for a direct and unbiased 

assessment of the relative strengths and weaknesses of the proposed model compared to existing 

approaches. 

After evaluation, the final ArSL classifier is obtained. This model is capable of classifying images 

of ArSL gestures into 31 distinct classes, each corresponding to a letter in the Arabic alphabet. The 

model's high performance demonstrates its effectiveness in solving the ArSL classification task and its 

potential for use in real-world applications [39]. With its robust ability to accurately classify gestures, 

the model holds significant promise for supporting sign language users in communication, particularly 

in applications like Qur'anic Tadarus, which can be made more accessible to the hearing-impaired 

community. 

3. RESULT 

The dataset used in this study consists of 7,856 RGB images representing 31 static hand gestures 

of the Arabic Alphabet Sign Language (ArSL). Table 1 presents the number of images for each class, 

along with their names in Indonesian, English, and Arabic script. The distribution shows that the dataset 

is relatively balanced, with the number of images per class ranging from 201 to 307, minimizing the risk 

of bias toward any particular class during model training. The most populated class is Ba’ with 307 

images, while the least populated is Zain with 201 images. The relatively even distribution ensures that 

no single class dominates the dataset, thereby supporting fair and unbiased training and evaluation. This 

balanced composition also reduces the likelihood that the high overall model performance is driven 

solely by majority class recognition. 

The performance of the Arabic Sign Language (ArSL) classification model was evaluated using 

several key metrics. These included training and validation accuracy/loss curves, the confusion matrix, 

and performance indicators such as precision, recall, and F1-score [40]. These metrics provide a 

comprehensive understanding of how well the model performed in classifying the 31 letters of the 

Arabic alphabet in ArSL, shedding light on both its strengths and areas for improvement. 

The model's performance was further analyzed through various metrics. The training and 

validation accuracy and loss were examined to assess the model's learning process and generalization 

capabilities [41]. The confusion matrix was explored to identify common misclassifications and 

understand the challenges in distinguishing visually similar ArSL gestures. Finally, precision, recall, 
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and F1-score were presented to evaluate the model's effectiveness in classifying each ArSL gesture and 

its overall performance across all classes. 

 

Table 1. Distribution of Images per Class in the Arabic Alphabet Sign Language (ArSL) Dataset 

No. Indonesian Name English Name Arabic Script Number of Images 

1 Alif ALEF  )287 أ )ألف 

2 Ba’ BEH  )307 ب )باء 

3 Ta’ TEH  )226 ت )تاء 

4 Tsa’ THEH  )305 ث )ثاء 

5 Jim JEEM  )210 ج )جيم 

6 Ha HAH  )246 ح )حاء 

7 Kha KHAH  )250 خ )خاء 

8 Dal DAL  )235 د )دال 

9 Dzal THAL  )202 ذ )ذال 

10 Ra’ REH  )227 ر )راء 

11 Zain ZAIN  )201 ز )زاي 

12 Sin SEEN )266 س )سين 

13 Syin SHEEN )278 ش )شين 

14 Shad SAD  )270 ص )صاد 

15 Dhad DAD  )266 ض )ضاد 

16 Tha’ TAH  )227 ط )طاء 

17 Zha ZAH  )232 ظ )ظاء 

18 ‘Ain AIN )244 ع )عين 

19 Ghain GHAIN )231 غ )غين 

20 Fa’ FEH  )255 ف )فاء 

21 Qaf QAF  )219 ق )قاف 

22 Kaf KAF  )264 ك )كاف 

23 Lam LAM  )260 ل )لام 

24 Mim MEEM  )253 م )ميم 

25 Nun NOON  )237 ن )نون 

26 Ha HEH  )253 هـ )هاء 

27 Waw WAW  )249 و )واو 

28 Ya’ YEH  )272 ي )ياء 

29 Ta’ Marbuthah TEH MARBUTA  )257 ة )تاء مربوطة 

30 Alim Lam AL  276 ال 

31 Lam Alif LAA 268 لا 

 

3.1. Performance Evaluation of the Model 

The performance evaluation of the VGG16-based Arabic Alphabet Sign Language (ArSL) 

classifier is primarily centered on assessing its learning dynamics during the training and validation 

phases. Figure 4 presents the learning curves for both training and validation, measured in terms of 

accuracy and loss across 30 epochs. These curves provide valuable insights into how well the model 

adapts to the training data and generalizes to unseen validation data. From the outset, the model 

demonstrates a rapid reduction in both training and validation loss, indicating effective learning from 

the input data during the early epochs. This steep decline is particularly evident within the first 10 
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epochs, suggesting that the pretrained VGG16 architecture with frozen early layers facilitates the fast 

acquisition of foundational visual features relevant to ArSL gestures. 

 

 
(a) (b) 

Figure 4. (a) Training and Validation Loss Curves and (b) Training and Validation Accuracy Curves 

of the VGG16-Based Arabic Alphabet Sign Language Classifier. 

 

The trajectory of the training loss reveals a sharp descent from an initial value of approximately 

3.0 to below 0.5 within the first five epochs. This rapid convergence continues steadily, with the training 

loss reducing to as low as 0.0334 by epoch 28. Meanwhile, the validation loss exhibits a similar 

decreasing trend, dropping from 2.4 in the first epoch to approximately 0.146 by epoch 28. These results 

reflect a highly stable optimization process where both the training and validation losses converge 

without significant divergence, indicating a well-regularized model. The close alignment between the 

training and validation losses throughout the epochs serves as an essential indicator that the model 

successfully avoids overfitting. 

In parallel, the accuracy curves for both training and validation exhibit a consistent upward trend. 

Beginning from a relatively low baseline (below 20% in the initial epoch), the model achieves 

substantial improvements in accuracy rapidly. By epoch 10, the validation accuracy already surpasses 

90%, while training accuracy follows closely, reaching comparable levels. The consistency between the 

training and validation accuracy suggests that the learned representations are generalizable and not 

merely memorizing the training data. This pattern underscores the effectiveness of the transfer learning 

strategy employed, wherein the pretrained convolutional layers capture universal low-level patterns, 

while the fine-tuned upper layers specialize in the intricacies of ArSL gesture recognition. 

The model continues to refine its performance beyond epoch 10, with training accuracy eventually 

reaching a peak of 99.28% at epoch 29. Concurrently, the highest validation accuracy achieved is 

97.33%, indicating excellent generalization capabilities. Notably, this peak validation accuracy does not 

occur precisely at the final epoch but rather slightly earlier, suggesting that the model achieves optimal 

performance before full convergence. This behavior is common in deep learning models where 

continued training beyond the optimal point may lead to minor oscillations in accuracy due to stochastic 

gradients, albeit without significant signs of overfitting in this case. 

Examining the final epochs provides additional confirmation of the model's robustness. At epoch 

30, the training loss stands at 0.0377, while the validation loss slightly increases to 0.1601. The 

corresponding training and validation accuracies are 98.87% and 97.07%, respectively. Although there 

is a minor increase in validation loss towards the end, this fluctuation remains within an acceptable range 
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and does not indicate a general degradation in performance. Such slight variations are expected in neural 

network training and can be attributed to the stochastic nature of mini-batch gradient descent. 

Another significant observation from the learning curves is the effect of the learning rate 

scheduler (ReduceLROnPlateau). This scheduler effectively mitigates stagnation by adaptively 

lowering the learning rate whenever the validation loss plateaus. As seen in the curves, the periods 

following the reduction of the learning rate correspond to further improvements in validation accuracy 

and stabilization of loss. This adaptive learning rate strategy plays a crucial role in ensuring that the 

model fine-tunes effectively, especially during the second phase of training, where all layers of the 

VGG16 network are unfrozen. 

The performance evaluation indicates that the proposed VGG16-based ArSL classifier exhibits 

outstanding learning behavior, characterized by fast convergence, high accuracy, and a minimal 

generalization gap. The close alignment between training and validation metrics across the epochs 

highlights the model's ability to capture relevant features of the ArSL dataset without overfitting. This 

high level of performance supports the viability of deploying this model in real-world applications aimed 

at improving accessibility for the hearing-impaired community, particularly in enabling Qur'anic 

Tadarus through sign language recognition. 

 

 
(a) (b) 

Figure 5. (a) Loss Curves for Training and Validation, and (b) Accuracy Curves for Training and 

Validation of the Resnet18-Based Arabic Alphabet Sign Language Classifier. 

 

For comparative purposes, the learning curves of the ResNet-18 model from our previous study 

are also examined alongside the proposed VGG16 architecture. Both models were trained on the same 

RGB Arabic Alphabets Sign Language dataset, with identical preprocessing steps, image dimensions, 

and stratified data splitting (70% training, 15% validation, and 15% testing). The training and validation 

loss–accuracy curves for VGG16 are presented in Figure 4(a) and Figure 4(b), while the corresponding 

curves for ResNet-18 are shown in Figure 5(a) and Figure 5(b). 

In terms of loss reduction, both models exhibit a steep decline during the early epochs, indicating 

rapid acquisition of discriminative features. The VGG16 model’s training loss dropped from 

approximately 3.0 to below 0.5 by epoch 5 and reached 0.0334 by epoch 28, with validation loss 

decreasing from 2.4 to around 0.146 in the same period. By comparison, ResNet-18 achieved faster 

convergence, with training loss falling below 0.08 by epoch 6 and validation loss stabilizing within the 

range of 0.10–0.13 after epoch 11, reflecting slightly more consistent generalization in the later training 

stages. 
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The accuracy curves show a similar trend. VGG16’s validation accuracy surpassed 90% by epoch 

10 and peaked at 97.33% before stabilizing at 97.07% by the final epoch. ResNet-18 reached 97.33% as 

early as epoch 6 and achieved a peak validation accuracy of 98.09% at epoch 25. This difference 

suggests that the residual connections in ResNet-18 facilitate more efficient gradient flow, enabling 

faster convergence compared to the sequential convolutional blocks of VGG16. 

Although ResNet-18 yielded slightly higher accuracy and more stable loss convergence, the 

proposed VGG16 model remains highly competitive, achieving minimal overfitting and maintaining a 

small gap between training and validation metrics. Considering its simpler architecture and reduced 

computational complexity relative to ResNet-18, VGG16 offers a viable alternative for deployment in 

resource-constrained environments without sacrificing substantial accuracy. 

3.2. Confusion Matrix Analysis 

The confusion matrix, as illustrated in Figure 3, plays a crucial role in offering a comprehensive 

evaluation of the VGG16-based Arabic Alphabet Sign Language (ArSL) classifier's performance. It 

provides a detailed breakdown of correct and incorrect predictions for each of the 31 classes, enabling 

a deeper understanding of how well the model differentiates between similar gestures. The confusion 

matrix highlights not only the overall predictive accuracy but also reveals specific patterns of 

misclassification, which are instrumental in diagnosing weaknesses in the model's learning behavior. 

When coupled with the class-wise accuracy statistics presented in Table 1, it provides a holistic view of 

the model's performance across all categories. 

A close inspection of the confusion matrix (Figure 6) reveals a dominant diagonal trend, 

indicating that the vast majority of predictions are correct. This suggests that the model has successfully 

learned to capture the distinguishing features of most ArSL gestures. The corresponding accuracy values 

in Table 1 further support this observation, showing that 17 out of 31 classes achieved a flawless 100% 

accuracy. These classes include Ha, Ain, Alif, Alif_Lam, Dhad, Dzal, Lam, Lam_Alif, Mim, Qaf, Sin, 

Syin, Ta_Marbuta, Tha, Tsa, Wau, and Zay, each demonstrating perfect predictive performance with no 

misclassifications. This consistency between the confusion matrix and the class-wise accuracy table 

confirms the model’s robustness in recognizing gestures that have clear and distinct visual 

characteristics. 

 

 
Figure 6. Confusion Matrix of the Proposed VGG16-based Arabic Alphabet Sign Language Classifier. 
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The model's effectiveness on these perfectly classified classes can be attributed to several factors. 

Firstly, the distinctive hand shapes and orientations associated with these signs are likely highly 

separable in the feature space extracted by the VGG16 convolutional layers. Secondly, the data 

augmentation strategies employed during training, including rotations, cropping, flipping, and color 

jitter, help the model generalize better to unseen examples. Lastly, the transfer learning approach, 

leveraging pre-trained ImageNet weights, provides a strong foundation for recognizing visual features, 

which is then fine-tuned for the specific patterns present in ArSL gestures. 

 

Table 2. Class-Wise Accuracy of the VGG16-Based ArSL Classifier. 

No. Class Accuracy (%) 

1 Ha 100.00 

2 Ain 100.00 

3 Alif 100.00 

4 Alif_Lam 100.00 

5 Ba 93.55 

6 Dal 86.96 

7 Dhad 100.00 

8 Dzal 100.00 

9 Fa 96.15 

10 Ghain 91.30 

11 Ha (Haa) 91.67 

12 Jim 90.48 

13 Kaf 96.15 

14 Kha 96.00 

15 Lam 100.00 

16 Lam_Alif 100.00 

17 Mim 100.00 

18 Nun 95.83 

19 Qaf 100.00 

20 Ra 95.65 

21 Shad 96.30 

22 Sin 100.00 

23 Syin 100.00 

24 Ta 96.77 

25 Ta_Marbuta 100.00 

26 Tha 100.00 

27 Tsa 96.77 

28 Wau 100.00 

29 Ya 96.30 

30 Zay 100.00 

31 Zha 86.96 

 

Despite the strong overall performance, the confusion matrix and Table 1 collectively highlight a 

small subset of classes where the model struggles. The most notable is the Dal class, which achieves an 

accuracy of 86.96%, as shown in Table 2. The confusion matrix indicates that Dal is frequently 

misclassified as Dzal and Zha, both of which are phonetically and visually similar in Arabic Sign 
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Language. This pattern suggests that the current feature representations may not be sufficiently sensitive 

to the subtle differences in finger positioning or hand orientation that distinguish these letters. 

Similarly, the Ghain class demonstrates a reduced accuracy of 91.30%, with the confusion matrix 

showing multiple misclassifications into the Ain class. This confusion is linguistically and visually 

plausible, given that Ain and Ghain are articulated from the same pharyngeal region in spoken Arabic 

and may be represented with analogous hand configurations in sign language. The overlap in gesture 

features likely contributes to the observed model confusion, signaling a need for enhanced 

discriminative capabilities either through more specialized data or architectural improvements. 

The Jim class, with an accuracy of 90.48%, presents another case where confusion occurs, 

particularly with the Kaf class. The confusion matrix reflects this, showing misclassification events 

between these two classes. This suggests that both gestures may share common visual traits, such as 

finger curvature or palm orientation, that are challenging for the model to disentangle. Likewise, the 

Nun class, which records an accuracy of 95.83%, is occasionally confused with Mim and Qaf. These 

gestures likely share morphological similarities in hand closure and finger placement, leading to 

sporadic misclassification. 

Cross-class confusion is also observed between Kaf and Kha, both achieving accuracies above 

96%, yet each with at least one misclassification toward the other. The confusion matrix corroborates 

this, implying that these gestures share structural hand features that are not always distinctly captured 

by the convolutional filters of VGG16. While these misclassifications are minor relative to the total 

sample size, they highlight the limitations of static image recognition in fully capturing the nuances of 

three-dimensional gestures. 

Perhaps the most significant underperformance is observed in the Zha class, which, along with 

Dal, holds the lowest accuracy at 86.96%, as reported in Table 1. The confusion matrix shows dispersed 

predictions for Zha, potentially into related classes like Dzal and Dal. This is indicative of inherent 

visual similarities or ambiguities in the dataset that the current model architecture finds challenging to 

resolve. Such findings underscore the need for either higher-resolution imagery, more diverse data 

collection, or advanced model components like spatial attention mechanisms to focus on subtle 

discriminative regions of the hand. 

Despite these localized issues, it is important to note that the overall distribution of correct versus 

incorrect predictions in the confusion matrix overwhelmingly favors correct classifications. This is 

further supported by the fact that the majority of classes maintain accuracies well above 95%, as 

indicated in Table 2. The few errors that occur are not randomly distributed but are systematically 

associated with visually or linguistically similar classes, suggesting that the model has effectively 

learned the dominant structure of the data but still struggles with edge cases involving high inter-class 

similarity. 

The analysis of the confusion matrix, reinforced by the detailed class-wise accuracy provided in 

Table 2, confirms that the VGG16-based ArSL classifier demonstrates exceptional performance in 

recognizing Arabic alphabet gestures. The findings reveal a model that is highly reliable across most 

categories while also identifying specific gesture pairs where confusion persists. Addressing these 

limitations in future work may involve augmenting the dataset with more diverse samples, incorporating 

depth or motion cues, or integrating advanced deep learning techniques such as attention mechanisms. 

These enhancements are expected to further improve the classifier's capability, particularly in real-world 

applications aimed at supporting Qur'anic Tadarus accessibility for the deaf and hard-of-hearing 

community. 

For comparative purposes, Figure 7 illustrates the confusion matrix of the ResNet-18 model 

reported in our previous work, trained and evaluated on the same RGB Arabic Alphabets Sign Language 
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dataset. Similar to the VGG16 confusion matrix shown in Figure 6, the ResNet-18 matrix exhibits a 

strong diagonal dominance, indicating that the majority of predictions fall into the correct class. 

A closer inspection reveals that ResNet-18 achieves fewer misclassifications for certain 

challenging classes. For example, in the VGG16 results (Figure 6), the Dal class is often confused with 

Dzal and Zha, and Zha shows scattered misclassifications into related classes. In contrast, the ResNet-

18 matrix reduces these errors, correctly classifying all but one sample for both Dal and Zha. This 

suggests that the residual connections in ResNet-18 may enhance its ability to capture fine-grained 

spatial differences between visually similar hand gestures. 

Nevertheless, both models share similar confusion patterns for other gesture pairs, such as Ghain 

versus Ain and Jim versus Kaf, which remain difficult to separate in a purely static image recognition 

context. This indicates that certain ambiguities are more likely caused by inherent visual similarities in 

the gestures rather than architectural limitations. 

Overall, while ResNet-18 offers a modest improvement in disambiguating some visually similar 

classes, the VGG16-based classifier still demonstrates competitive performance across most categories 

with a simpler architecture, making it suitable for deployment scenarios where computational resources 

are limited. 

 

 
Figure 7. Confusion Matrix Illustrating ResNet-18 Model Performance on the 31-Class Arabic Sign 

Language Dataset. 

3.3. Classification Report and Indicator Analysis 

The classification report provides an essential quantitative summary of the model's performance, 

offering detailed insights into the precision, recall, and F1-score for each of the 31 Arabic alphabet sign 

language classes. As presented in Table 3, the classifier achieves an impressive overall test accuracy of 

97.07% with a low test loss of 0.1135, underscoring the model's robustness and ability to generalize 

well to unseen data. These metrics are complemented by macro-averaged and weighted-averaged 

precision, recall, and F1 Scores, all of which equal 0.97, indicating balanced performance across both 

high-frequency and low-frequency classes within the dataset. 

A closer inspection of Table 3 reveals that the majority of classes achieve exceptionally high 

performance, with precision, recall, and F1-scores nearing or equal to 1.00. Specifically, classes such as 

Ha, Ain, Dhad, Dzal, Lam_Alif, Qaf, Sin, Syin, Wau, and Zay demonstrate perfect scores across all three 

metrics. This level of accuracy reflects the model's capacity to perfectly capture the discriminative 
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features of these signs, suggesting that these particular gestures exhibit highly distinct visual patterns in 

terms of hand shape, orientation, and positioning, which are well captured by the VGG16-based 

convolutional feature extractor. 

Additionally, classes such as Alif_Lam, Ta_Marbuta, Ta, Mim, and Lam also maintain excellent 

performance with F1-scores ranging from 0.98 to 1.00, further indicating that the model effectively 

learns the characteristic representations of these gestures. This high degree of accuracy can be attributed 

to several factors, including effective data preprocessing, normalization aligned with ImageNet 

standards, and comprehensive data augmentation that simulates realistic variability in hand gestures. 

The transfer learning strategy further enhances this by allowing the model to utilize generalized low-

level features while learning specific patterns relevant to the Arabic Sign Language (ArSL) dataset. 

 

Table 3. Precision, Recall, and F1-Score for 31 ArSL Classes. 

No. Class Precision Recall F1-Score Support 

1 Ha 1.00 1.00 1.00 25 

2 Ain 1.00 1.00 1.00 24 

3 Alif 0.94 1.00 0.97 29 

4 Alif_Lam 0.97 1.00 0.98 28 

5 Ba 1.00 0.94 0.97 31 

6 Dal 1.00 0.87 0.93 23 

7 Dhad 1.00 1.00 1.00 26 

8 Dzal 1.00 1.00 1.00 20 

9 Fa 0.93 0.96 0.94 26 

10 Ghain 0.91 0.91 0.91 23 

11 Ha (Haa) 0.96 0.92 0.94 24 

12 Jim 0.90 0.90 0.90 21 

13 Kaf 1.00 0.96 0.98 26 

14 Kha 0.96 0.96 0.96 25 

15 Lam 0.96 1.00 0.98 26 

16 Lam_Alif 1.00 1.00 1.00 27 

17 Mim 0.96 1.00 0.98 26 

18 Nun 0.96 0.96 0.96 24 

19 Qaf 1.00 1.00 1.00 22 

20 Ra 0.96 0.96 0.96 23 

21 Shad 0.93 0.96 0.95 27 

22 Sin 1.00 1.00 1.00 26 

23 Syin 1.00 1.00 1.00 28 

24 Ta 1.00 0.97 0.98 31 

25 Ta_Marbuta 0.96 1.00 0.98 26 

26 Tha 0.88 1.00 0.94 23 

27 Tsa 0.97 0.97 0.97 31 

28 Wau 1.00 1.00 1.00 25 

29 Ya 1.00 0.96 0.98 27 

30 Zay 1.00 1.00 1.00 20 

31 Zha 0.95 0.87 0.91 23  
Overall Accuracy 

  
0.97 786  

Macro Average 0.97 0.97 0.97 786  
Weighted Average 0.97 0.97 0.97 786 
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The performance evaluation metrics, namely Accuracy, Precision, Recall, and F1-Score, were 

computed as described in Equations (1)–(4) in the Method section. To illustrate the calculation, consider 

the Dal class in the VGG16 confusion matrix (Figure 6). The classifier correctly predicted 20 samples 

as Dal (TP = 20), misclassified 3 samples of Dal into other classes (FN = 3), and made no incorrect 

predictions of other classes as Dal (FP = 0). Based on Equations (2)–(4), the precision for Dal is  
20

20+0
=

1.00, the recall is 
20

20+3
≈ 0.87, and the F1-score is 2 ∗ (

1.00∗0.87

1.00+0.87
) ≈ 0.93. These results match the 

values reported in Table 3. 

Despite the overall strong performance, the classification report also highlights certain classes 

where the model's predictive ability is relatively lower. Notably, the Dal class exhibits a recall of 0.87, 

resulting in an F1-score of 0.93. This indicates that while the model predicts Dal correctly in most cases, 

it fails to correctly identify approximately 13% of Dal instances, often confusing them with phonetically 

and visually similar classes such as Dzal or Zha. This trend aligns with the confusion matrix analysis 

discussed previously, which indicates systematic challenges in distinguishing between these closely 

related gestures. 

Similarly, the Zha class presents a comparable challenge, with a recall of 0.87 and an F1-score of 

0.91, signifying that the model tends to miss a small but consistent proportion of Zha instances. Given 

that Dal and Zha both share phonological and gestural similarities in Arabic sign articulation, these 

findings suggest that the model's feature representations may not yet be sufficiently sensitive to the 

subtle differences that distinguish these classes. This limitation could be attributed to factors such as 

limited variation in the dataset or insufficient gesture diversity for these particular signs. 

The Ghain class also exhibits slightly reduced performance, with both precision and recall at 0.91, 

leading to an F1-score of 0.91. This pattern of errors likely stems from confusion with the Ain class, as 

both gestures may involve visually similar hand configurations associated with pharyngeal sounds in 

spoken Arabic. Such errors point to the inherent difficulty in disambiguating signs that are similar not 

only in visual appearance but also in their phonetic articulation roots, especially in a static image 

recognition context that lacks temporal cues. 

The Jim class further illustrates this challenge, achieving an F1-score of 0.90, the lowest among 

all classes. The confusion matrix suggests that Jim is often misclassified as Kaf, likely due to overlapping 

hand shapes or orientations. While these errors are not widespread, they are consistent and indicate that 

specific gesture pairs require more refined feature extraction, potentially beyond what is provided by a 

VGG16-based static image model alone. 

An interesting observation arises from the analysis of the Tha class. This class achieves a recall 

of 1.00, meaning that all Tha instances are correctly identified, yet it records a precision of 0.88, resulting 

in an F1-score of 0.94. This imbalance suggests that while the model is susceptible to identifying Tha, 

it suffers from false positives, namely mistakenly classifying other gestures as Tha. Such a pattern 

indicates overprediction towards this class, potentially due to overlapping features with other signs or a 

bias introduced by data imbalance during training. 

From a macro-level perspective, the equality between the macro average and weighted average 

metrics (both precision, recall, and F1-score at 0.97) demonstrates that the model effectively handles 

class imbalance. This balance indicates that the classifier does not disproportionately favor classes with 

higher support (i.e., number of instances) over those with fewer samples. It reflects the effectiveness of 

stratified dataset splitting, as well as the impact of augmentation techniques in mitigating class 

imbalance challenges during training. 

The classification report, as detailed in Table 2, corroborates the findings from the confusion 

matrix and class-wise accuracy analysis. It confirms that the VGG16-based model performs 

exceptionally well across the majority of Arabic alphabet sign gestures, with most classes achieving 
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near-perfect performance. The few courses with relatively lower precision or recall are consistently 

those that exhibit high visual or phonetic similarity, suggesting that future improvements could focus 

on enhancing feature granularity, employing multimodal data (e.g., depth or temporal sequences), or 

adopting advanced neural architectures with attention mechanisms to capture fine-grained distinctions 

better. These enhancements would be instrumental in further advancing the reliability of ArSL 

recognition systems for practical applications, particularly in enabling Qur'anic Tadarus accessibility for 

the deaf and hard-of-hearing community. 

4. DISCUSSIONS 

The experimental results underscore the robustness of the VGG16-based deep learning approach 

for Arabic Alphabet Sign Language (ArSL) recognition, particularly in enhancing Qur'anic Tadarus 

accessibility for the deaf and hard-of-hearing community. Achieving an overall test accuracy of 97.07%, 

alongside consistently high precision, recall, and F1-scores for most classes, the model demonstrates 

strong generalization capabilities. This performance validates the effectiveness of employing transfer 

learning with the VGG16 architecture, where freezing early convolutional layers while fine-tuning 

deeper layers enables the model to leverage pretrained general visual features while adapting to the 

specific characteristics of ArSL gestures. 

The analysis of learning dynamics, as visualized in the learning curves, indicates stable 

convergence without overfitting. Both training and validation losses decline steeply during the initial 

epochs and stabilize in later stages, while accuracy consistently improves. This trajectory reflects 

effective learning facilitated by data augmentation, an appropriate learning rate schedule, and a two-

phase fine-tuning strategy. The absence of divergence between training and validation metrics indicates 

the model's ability to strike a balance between memorizing training data and generalizing to unseen 

instances. 

To place these findings in context, we compare the proposed VGG16 model with our previously 

reported ResNet-18 baseline trained and evaluated under the same 31-class ArSLA protocol. The 

ResNet-18 model achieved a peak validation accuracy of 98.09% and an overall accuracy of 98%, with 

macro- and weighted-averaged precision, recall, and F1-scores of 0.98. In comparison, the VGG16 

model in this study attained a peak validation accuracy of 97.33% and stabilized at 97.07% by the final 

epoch, with macro- and weighted-averaged precision, recall, and F1-scores of 0.97. These results 

indicate a modest absolute gain (≈1%) for ResNet-18 and slightly faster convergence, while VGG16 

remains competitive with a simpler backbone—an attractive trade-off for deployment on resource-

constrained devices. (See Figure 4(a)–(b) for VGG16 curves and Figure 5(a)–(b) for ResNet-18; 

optional summary in Table 2) 

Further insights emerge from the confusion matrix, which reveals a generally high classification 

accuracy with certain exceptions. Specific classes such as Dal, Zha, Ghain, and Jim exhibit 

comparatively higher misclassification rates. This pattern suggests inherent visual ambiguities between 

certain signs, where subtle differences in hand posture, finger articulation, or orientation challenge the 

model's ability to differentiate them using static images alone. Notably, confusion often occurs between 

phonologically or visually related pairs, such as Dal and Zha, reflecting intrinsic challenges in gesture 

recognition tasks. 

A cross-model inspection of confusion matrices further clarifies the performance gap. Both 

models exhibit strong diagonal dominance, but ResNet-18 reduces several misclassifications on difficult 

pairs (e.g., Dal vs. Zha; Ghain vs. Ain), aligning with its higher aggregate scores. At the same time, 

overlapping error patterns across both backbones suggest that some ambiguities are intrinsic to static 

imagery and may ultimately require temporal or multimodal cues to resolve reliably. (Refer to Figure 6 

for the VGG16 confusion matrix and Figure 7 for ResNet-18.) 
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The classification report substantiates these findings, showing strong overall macro and weighted 

F1-scores of 0.97, yet revealing marginally lower scores for classes with overlapping visual features. 

For instance, Jim exhibits an F1-score of 0.90, while Zha scores 0.91, indicating persistent classification 

difficulties despite overall high performance. These results align with broader challenges reported in 

sign language recognition research, where gestures differentiated by minor spatial variations often 

require more sophisticated spatial representation capabilities than standard CNNs provide. 

Methodologically, three design choices appear central to the observed stability and accuracy: (i) 

a two-phase fine-tuning regimen (freezing early layers before unfreezing the full VGG16 network) 

enabling rapid adaptation followed by task-specific refinement; (ii) an adaptive learning-rate scheduler 

(ReduceLROnPlateau) that sustains progress after validation-loss plateaus; and (iii) rich data 

augmentation (rotation, cropping, flipping, perspective transformation, Gaussian blur, and color jitter) 

to improve invariance and mitigate overfitting. Together with the relatively balanced per-class 

distribution, these choices explain the tight alignment between training and validation metrics and the 

strong terminal performance. 

A key contributing factor to these limitations lies in the static nature of the dataset. Despite 

extensive augmentation to simulate variability, the dataset lacks temporal dynamics, signer diversity, 

and contextual transitions between gestures. In practical applications, users present signs dynamically, 

with variations in speed, orientation, and signer-specific styles. Consequently, while the model performs 

excellently on isolated static gestures, its adaptability to continuous or natural signing remains an open 

question, highlighting a critical avenue for further exploration. 

Additionally, while VGG16 serves as an effective backbone for this task, it is computationally 

intensive compared to modern architectures, such as MobileNet, EfficientNet, or Vision Transformers 

(ViT). Exploring these architectures could yield models that offer comparable or improved accuracy 

with significantly lower computational demands, enabling real-time deployment on mobile devices or 

embedded systems, which is a crucial consideration for assistive technologies intended for daily use in 

educational or religious contexts. 

An alternative strategy for overcoming current limitations involves incorporating temporal 

modeling. Techniques such as 3D Convolutional Neural Networks (3D-CNN), CNN-LSTM hybrids, or 

Transformer-based video models can capture temporal dependencies inherent in sign language, allowing 

the system to discern gesture transitions and motion-based cues. Implementing such models would 

extend the current system from static alphabet recognition toward more comprehensive dynamic word 

or phrase-level recognition, significantly broadening its real-world applicability. 

While the proposed VGG16-based ArSL classifier demonstrates high effectiveness for static 

gesture recognition, the analysis highlights critical areas for future enhancement. Addressing challenges 

related to gesture ambiguity, signer variability, and temporal dynamics will be essential for transitioning 

from isolated alphabet recognition toward robust, real-world-ready sign language communication 

systems. Such advancements are pivotal for fostering inclusivity in Qur'anic learning and broader 

accessibility initiatives for the deaf and hard-of-hearing community. 

5. LIMITATION AND FUTURE WORKS 

Despite the strong performance achieved by the VGG16-based Arabic Alphabet Sign Language 

(ArSL) classifier, several limitations must be acknowledged. First, the model is designed to recognize 

static hand gestures rather than dynamic sign sequences. Sign languages, including ArSL, inherently 

involve temporal components, such as movement trajectories, speed variations, and transitions between 

gestures [42], [43]. The reliance on static image input restricts the system's ability to capture these 

dynamic features, limiting its applicability to isolated alphabet recognition rather than full-word or 

sentence-level communication. 
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Another significant limitation stems from the dataset's scope and diversity. Although the dataset 

effectively represents 31 Arabic alphabet signs, it is composed of controlled, static images with limited 

variation in signer demographics, backgrounds, and lighting conditions. This constraint raises concerns 

about the model's generalizability to real-world environments, where users present diverse hand shapes, 

skin tones, camera angles, and occlusions. The absence of signer diversity could lead to biased 

performance when deployed across broader user populations. 

Furthermore, the confusion observed between specific gesture pairs, such as Dal and Zha or 

Ghain and Ain, underscores the inherent challenges of distinguishing visually similar signs in a static 

context. This issue suggests that the current architecture may not sufficiently capture fine-grained spatial 

nuances or contextual cues required for disambiguation. While data augmentation mitigates some 

variability, it cannot fully replicate the complexity of real-world gesture articulation. 

From a computational perspective, the use of VGG16, while effective, involves considerable 

computational overhead. The architecture contains a high number of parameters, resulting in longer 

training times and higher memory requirements. Although suitable for research and proof-of-concept 

development, this complexity may hinder deployment on edge devices or mobile platforms commonly 

used by the deaf and hard-of-hearing community for accessibility tools. 

Addressing these limitations presents several promising avenues for future work. First, integrating 

temporal modeling techniques, such as 3D Convolutional Neural Networks (3D-CNN), Convolutional 

LSTM (ConvLSTM), or Transformer-based video models, would enable the system to capture the 

motion dynamics and temporal dependencies inherent in sign language communication. Such models 

could transition the classifier from static alphabet recognition toward continuous sign recognition, 

significantly expanding its practical utility. 

Second, expanding the dataset to include a broader range of signers, environments, and gesture 

variations is essential for enhancing the model's robustness. Crowdsourcing data from diverse users or 

collaborating with sign language communities can help create a more comprehensive and representative 

dataset. Additionally, introducing multi-angle recordings or depth information could help address issues 

related to gesture ambiguity and occlusion. 

Another direction involves exploring lightweight yet robust architectures such as MobileNetV3, 

EfficientNetV2, or Vision Transformers (ViTs). These models offer a favorable balance between 

computational efficiency and classification accuracy, making them suitable for deployment on portable 

devices. Implementing such models would not only reduce computational costs but also facilitate real-

time inference, a critical requirement for assistive technologies. 

The system could be further enhanced by adopting multimodal learning strategies. Integrating 

visual gesture recognition with additional modalities, such as hand skeletal tracking, depth sensing, or 

electromyography (EMG) signals, has the potential to substantially improve classification accuracy, 

especially when dealing with ambiguous gestures or partial occlusions. Multimodal approaches offer 

greater robustness against environmental variability and differences among signers, making the system 

more adaptable to real-world conditions. 

The current VGG16-based ArSL classifier demonstrates strong performance in recognizing static 

representations of Arabic alphabet signs. However, expanding its capabilities to handle dynamic, 

continuous sign communication remains an essential challenge. Overcoming the limitations identified 

in this research—through improvements in dataset diversity, model architecture, and the incorporation 

of temporal or multimodal learning techniques—will be crucial for advancing the system toward more 

comprehensive accessibility solutions. This progress is particularly significant for enhancing Qur'anic 

Tadarus experiences and promoting educational inclusivity for deaf and hard-of-hearing communities. 
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6. CONCLUSION 

This study presents the development and evaluation of a VGG16-based deep learning model for 

Arabic Alphabet Sign Language (ArSL) recognition, designed to enhance accessibility to Qur'anic 

Tadarus for the deaf and hard-of-hearing community. Leveraging transfer learning with a pretrained 

VGG16 architecture, the proposed model achieves a high level of accuracy, reaching 97.07% on the test 

dataset. The results demonstrate strong generalization capabilities, with high precision, recall, and F1-

scores across the majority of the 31 Arabic alphabet classes. 

The findings indicate that the combination of effective data preprocessing, data augmentation, 

and a fine-tuning strategy enables the model to distinguish complex hand gestures in static image 

settings accurately. Analysis of the confusion matrix and classification report reveals that while the 

model performs exceptionally well overall, specific gesture pairs—particularly those with subtle visual 

similarities—remain prone to misclassification. These challenges align with the known limitations in 

static image-based sign language recognition. For context, compared with our ResNet-18 baseline 

trained under the same 31-class protocol, the proposed VGG16 model remains competitive despite a 

modest (~1%) gap in peak validation accuracy, offering a simpler backbone that is attractive for 

resource-constrained deployments. 

Despite these achievements, the study also identifies several critical limitations. The reliance on 

static image inputs restricts the model's ability to capture the dynamic nature of real-world sign language 

communication. Additionally, the dataset's limited diversity in terms of signer demographics and 

environmental conditions poses challenges to broader generalizability. The computational demands of 

the VGG16 architecture, although manageable for research purposes, may limit its practicality for 

deployment on resource-constrained devices. 

Future research directions should focus on addressing these limitations by incorporating temporal 

modeling techniques, expanding the dataset with more diverse and realistic samples, and exploring more 

efficient model architectures such as MobileNet, EfficientNet, or Transformer-based approaches. 

Furthermore, integrating multimodal data—combining visual inputs with depth information, skeletal 

tracking, or electromyography (EMG)—offers a promising approach to enhance robustness, particularly 

in handling ambiguous or occluded signs. 

The results of this research contribute a meaningful advancement toward the development of 

accessible sign language recognition systems tailored for Qur'anic Tadarus and broader educational 

contexts. By continuing to refine the model and expand its capabilities, this work has the potential to 

significantly improve communication accessibility and foster greater inclusion for the deaf and hard-of-

hearing community within religious and educational settings. 
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