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Abstract 

Predicting customer purchase behavior remains a significant challenge in e-commerce and marketing analytics due 

to its complex and nonlinear patterns. This study introduces a machine learning framework that integrates ensemble 

learning models with Particle Swarm Optimization (PSO) for hyperparameter tuning to improve classification 

accuracy and class discrimination. Several ensemble algorithms, including CatBoost, XGBoost, LightGBM, 

AdaBoost, and Gradient Boosting, were compared against a baseline Logistic Regression model, both with default 

and PSO-optimized configurations. Experiments on a real-world e-commerce dataset containing behavioral and 

demographic variables showed that ensemble methods substantially outperformed traditional models across accuracy, 

F1-score, and ROC AUC metrics. Notably, the PSO-tuned Gradient Boosting model achieved the highest ROC AUC 

of 0.9547, improving the AUC by approximately 0.0076 compared to its default configuration, while CatBoost 

obtained the highest overall accuracy and F1-score. PSO optimization was especially effective in enhancing simpler 

models such as Logistic Regression but showed marginal gains and some convergence instability in more complex 

ensemble models. Feature importance analyses consistently identified variables such as time spent on the website, 

discounts availed, age, and income as key drivers of purchase intent. These findings demonstrate the benefit of 

combining ensemble learning with metaheuristic optimization, offering actionable insights for developing robust, 

data-driven marketing strategies.  
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1. INTRODUCTION 

The introductory content generally only covers 10-20% of the entire paper. Don't forget to include 

the objectives of the research conducted in this paper. 

In the era of digital transformation, businesses are increasingly leveraging data analytics to 

understand customer behavior, particularly purchase intentions, to improve marketing effectiveness, 

customer engagement, and profitability. The ability to predict whether a customer will make a purchase 

based on demographic and behavioral data is crucial in shaping personalized marketing strategies, 

optimizing inventory levels, and allocating promotional resources more efficiently. With the 

proliferation of e-commerce platforms and digital customer footprints, companies now have access to a 

vast array of consumer data, including browsing time, purchasing frequency, discounts availed, and 

demographic profiles [1][2]. 

However, modeling consumer purchase behavior presents significant challenges due to its non-

linear, multifactorial nature. Traditional statistical approaches like logistic regression and decision trees 

often fall short in capturing these intricate relationships, leading to suboptimal predictions. In response, 

ensemble learning techniques have gained traction for their robustness and higher predictive power 

[3][4]. Algorithms such as Gradient Boosting, XGBoost, LightGBM, CatBoost, and AdaBoost integrate 
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multiple weak learners to form a strong classifier, effectively reducing variance and bias. These models 

have demonstrated superior performance in diverse domains including financial risk modeling, 

healthcare diagnostics, and retail forecasting [5][6][7]. 

Despite their effectiveness, the performance of ensemble models is highly sensitive to the 

configuration of their hyperparameters. Choosing the right values for parameters such as learning rate, 

number of estimators, and tree depth significantly impacts accuracy, generalization, and training 

efficiency. Grid search and random search are commonly used for hyperparameter tuning but are 

computationally intensive and often inefficient in high-dimensional search spaces [8]. Consequently, 

researchers have explored bio-inspired optimization algorithms such as Particle Swarm Optimization 

(PSO) for more effective and scalable tuning [9][10]. 

PSO is a stochastic optimization method inspired by the social behavior of bird flocks or fish 

schools. It optimizes a problem iteratively by updating a population of candidate solutions based on 

individual and global best experiences. When applied to machine learning, PSO enables automatic 

hyperparameter tuning, resulting in improved model performance with reduced manual intervention. It 

has been successfully utilized in domains like credit risk scoring [11], software defect prediction [12], 

customer behavior prediction [13], heart disease diagnosis [14], and even image segmentation [15]. 

In the context of retail analytics, PSO has been shown to significantly improve classification 

models. One study reported a performance improvement of over 10% in purchase prediction accuracy 

by optimizing decision tree parameters using PSO [16]. Another approach involved a PSO-tuned neural 

network to predict online customer behavior in digital marketing campaigns, resulting in a 4.2% increase 

in accuracy compared to traditional methods [17]. Additional research has applied PSO in combination 

with ensemble methods for tasks such as software change prediction [18], crop disease detection [19], 

and customer sentiment summarization [20], demonstrating the versatility and effectiveness of PSO 

across various domains. 

The integration of ensemble learning with PSO-based optimization has also received considerable 

attention in recent studies. A fuzzy clustering PSO-optimized ensemble model has been proposed for 

credit risk classification, showing improvements in F1-score and AUC ranging from 10% to 50% across 

several datasets [21]. In software engineering, weighted-voting ensemble classifiers enhanced with PSO 

and diverse fitness functions have been developed to improve prediction accuracy [12][18]. In the field 

of marketing, evolutionary-optimized ensemble models using stacking and voting techniques have 

significantly improved AUC and F1-score across multiple customer behavior datasets [22]. Similarly, 

PSO has been employed to optimize SVM kernel parameters for predicting online consumer purchase 

intent, yielding a notable boost in classification performance [23]. 

Despite these advancements, there is a research gap in applying PSO-optimized ensemble 

learning specifically to predict customer purchase behavior using real-world behavioral and 

demographic datasets. Most prior studies focus either on single algorithms or on unrelated domains such 

as weather forecasting or medical diagnosis. Furthermore, few studies have provided a comprehensive 

evaluation of multiple ensemble models under both default and PSO-tuned configurations, including 

detailed comparisons of ROC AUC, F1-score, and confusion matrices. 

This research aims to develop a PSO-tuned ensemble learning framework to predict customer 

purchase behavior. The study utilizes a comprehensive dataset containing demographic and behavioral 

features such as age, annual income, number of purchases, time spent on the website, discount 

utilization, product category, and loyalty program status. Several machine learning models are evaluated 

including Logistic Regression, Gradient Boosting, XGBoost, LightGBM, CatBoost, and AdaBoost—

both in default and PSO-optimized configurations. Performance is assessed using standard classification 

metrics: accuracy, precision, recall, F1-score, and ROC AUC. 
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PSO is applied to optimize key hyperparameters for selected models, with the aim of enhancing 

performance while maintaining generalizability. The methodology includes data preprocessing, model 

training, PSO-based optimization, and comparative analysis using cross-validation. Additionally, 

feature importance and confusion matrix analyses are conducted to gain deeper insights into model 

behavior and predictive factors. 

This research contributes a novel framework by systematically evaluating multiple ensemble 

machine learning algorithms combined with PSO-based hyperparameter tuning to predict customer 

purchase behavior using real-world behavioral and demographic data. Unlike prior studies that focus on 

a single algorithm or domain, this work comprehensively compares default and optimized configurations 

across diverse ensemble models, providing both theoretical and practical insights for improving 

predictive marketing strategies. This contribution extends the state-of-the-art by validating PSO-

enhanced ensemble learning on an e-commerce dataset, which has not been comprehensively explored 

in previous literature [24][25]. 

2. METHOD 

Figure 1 illustrates the overall methodological framework employed in this study for predicting 

customer purchase behavior using ensemble learning models optimized with Particle Swarm 

Optimization (PSO). The workflow begins with data acquisition, cleaning, and feature engineering, 

followed by preprocessing through standardized pipelines. The process continues with model 

construction and baseline evaluation, after which PSO is used to tune hyperparameters for selected 

models. The optimized models are then retrained and re-evaluated to assess performance improvements 

over the default configurations. 

 

 
Figure 1. Research flow 

2.1. Problem Formulation 

The objective of this study is to build an accurate and optimized predictive model for customer 

purchase behavior by combining ensemble learning algorithms with Particle Swarm Optimization (PSO) 

for hyperparameter tuning. Let X∈ ℝ n×d denote the input feature matrix representing 𝑛 customers with 

d attributes each, and let y∈{0,1}n be the corresponding target labels, where 1 indicates a successful 

purchase. The learning objective is to find a function calculated use eq. (1). 

𝑓𝜃: ℝ𝑑 → {0,1}  (1) 
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that maps customer features to purchase outcomes, parameterized by a set of hyperparameters θ. 

The goal is to minimize the classification loss L, defined here as the negative cross-validated accuracy 

in eq. (2). 

𝐿(𝑓𝜃(𝑋), 𝑦) = −𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑣(𝑓𝜃)𝜃
𝑚𝑖𝑛  (2) 

 𝑓𝜃 is the predictive model and L is the objective function evaluated via K-fold cross-validation. 

2.2. Data Preparation and Feature Engineering 

Table 1 presents a descriptive summary of the features used in the predictive modeling process. 

The dataset consists of a combination of numerical and categorical variables related to customer 

demographics, behavior, and segmentation. Among the numerical features, the average customer age is 

approximately 44.3 years with a standard deviation of 15.54, spanning from 18 to 70 years. The 

AnnualIncome attribute exhibits substantial variance, with a mean of around $84,249 and a range from 

approximately $20,000 to $149,785, indicating a wide socioeconomic spectrum among the customers. 

The number of purchases made (NumberOfPurchases) averages 10.42 transactions per customer, with 

a maximum of 20. Customers spent an average of 30.47 minutes on the website, while the 

DiscountsAvailed feature shows moderate engagement with promotional offers, averaging 2.56. 

 

Table 1. Dataset Description 

Feature Data Type Mean Std Dev Min Max 
Unique 

Values 

Most 

Frequent 

Age Numerical 44.30 15.54 18.00 70.00 – – 

AnnualIncome Numerical 84,249.16 37,629.49 20,001.51 149,785.18 – – 

NumberOfPurchases Numerical 10.42 5.89 0.00 20.00 – – 

TimeSpentOnWebsite Numerical 30.47 16.98 1.04 59.99 – – 

DiscountsAvailed Numerical 2.56 1.71 0.00 5.00 – – 

Gender Categorical – – – – 2 1 

ProductCategory Categorical – – – – 5 1 

LoyaltyProgram Categorical – – – – 2 0 

Spender_Segment Categorical – – – – 3 Medium 

Age_Group Categorical – – – – 4 31–45 

 

The categorical features include Gender, ProductCategory, and LoyaltyProgram, alongside two 

engineered variables: Spender_Segment and Age_Group. Gender and LoyaltyProgram each have two 

unique values, whereas ProductCategory spans five categories. The Spender_Segment variable 

classifies customers into three levels based on purchasing frequency, with Medium being the most 

frequent category. The Age_Group feature, derived through binning of the Age variable, shows that the 

31–45 age group represents the largest portion of customers. 

This combination of diverse numerical and categorical variables provides a rich feature space for 

training ensemble machine learning models. The engineered features are particularly valuable for 

capturing behavioral patterns not immediately apparent in the raw attributes. 

The dataset used consists of structured records including both demographic variables (such as 

Age, Gender, Annual Income) and behavioral indicators (such as Number of Purchases, Time Spent on 

Website, and Discounts Availed). Additional contextual attributes include Product Category and Loyalty 

Program participation. 

To improve the discriminative capacity of the model, two new features were engineered. The first, 

Spender_Segment, was derived by applying quantile-based binning on NumberOfPurchases, 
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segmenting customers into Low, Medium, and High spender groups. The second, Age_Group, was 

created by discretizing the continuous Age variable into four ranges: 18–30, 31–45, 46–60, and 61–70. 

Numerical features were standardized using StandardScaler to ensure zero mean and unit 

variance. Categorical features were encoded using One-Hot Encoding and scaled using MaxAbsScaler 

to preserve sparsity and ensure compatibility with linear and non-linear classifiers. The entire 

preprocessing flow was encapsulated using ColumnTransformer from scikit-learn to ensure modularity 

and reproducibility. 

2.3. Model Development 

Six classifiers were developed using ensemble and boosting techniques: Logistic Regression 

(baseline), Gradient Boosting, AdaBoost, XGBoost, LightGBM, and CatBoost. These models were 

selected based on their robustness and proven performance in classification tasks involving tabular 

customer data. 

Each model was implemented in a unified pipeline that includes preprocessing and classification 

steps. The dataset was partitioned using a stratified 70:30 train-test split to preserve the proportion of 

class labels. Initial performance evaluations were conducted using the default hyperparameters of each 

model. The primary evaluation metrics used were Accuracy, Precision, Recall, F1-Score, and ROC 

AUC, computed on the holdout test set. 

2.4. Hyperparameter Optimization Using Particle Swarm Optimization (PSO) 

To improve the predictive performance of the base models, Particle Swarm Optimization was 

applied to search for the optimal set of hyperparameters. PSO is a population-based stochastic 

optimization technique inspired by the collective behavior of natural swarms such as birds and fish [26], 

[27]. Each particle in the swarm represents a candidate hyperparameter vector 𝑋𝑖
𝑡, and its velocity 𝑉𝑖

𝑡 

governs the update of its position in the search space. At each iteration ttt, particles update their velocity 

and position based on their personal best 𝑝𝑖 and the global best 𝑔 found by the swarm [28], [29]. The 

updates follow in eq. (3) and (4) 

𝑉𝑖
𝑡+1 = 𝜔𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝑋𝑖
𝑡) + 𝑐2𝑟2(𝑔 − 𝑋𝑖

𝑡)(3) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (4) 

𝑟1, 𝑟2~𝑈(0,1) are random coefficients, and 𝜔, 𝑐1, 𝑐2 are hyperparameters controlling inertia, 

cognitive, and social learning rates respectively. The fitness function 𝑓(𝑥𝑖) to be minimized is defined 

as eq. (5). 

𝑓(𝑥𝑖) = −𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑣(𝑓𝜃) (5) 

This corresponds to the negative of the cross-validated accuracy obtained from 3-fold cross-

validation. The search is performed over a predefined hyperparameter space [30]. For Logistic 

Regression: C∈[0.01,105], solver type ∈{lbfgs,liblinear}, and max iterations ∈[100,1000]. For Gradient 

Boosting: number of estimators ∈[50,200], learning rate ∈[0.01,0.1], max depth ∈[3,10], and minimum 

split and leaf sizes. The PSO algorithm was run for 30 iterations with 20 particles per run, and 

convergence behavior was visualized using a convergence plot. 

Only Logistic Regression and Gradient Boosting were selected for PSO optimization in this study 

due to their relative simplicity and interpretability, as well as computational constraints in running 

complex metaheuristics on models with high internal parameter space such as CatBoost or XGBoost. 
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Pseudocode. Particle Swarm Optimization for Hyperparameter Tuning 

Let 𝑁 be the number of particles, 𝑇 the maximum iterations. 

Initialization: 

Randomly initialize 𝑋𝑖
0 and 𝑉𝑖

0 for each particle 𝑖 ∈ {1, . . . , 𝑁}  

Set 𝑓(𝑝𝑖) = 𝑋𝑖
0 

Evaluate 𝑓(𝑝𝑖) for each particle 

Determine global best: 𝑔 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑓(𝑝𝑖) 

Repeat for 𝑡 = 1 to 𝑇: 

𝑉𝑖
𝑡+1 = 𝜔𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝑋𝑖
𝑡) + 𝑐2𝑟2(𝑔 − 𝑋𝑖

𝑡)  

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 

Evaluate 𝑓(𝑋𝑖
𝑡) 

// Fitness evaluated using 3-fold cross-validation 

If 𝑓(𝑋𝑖
𝑡) < 𝑓(𝑝𝑖), update 𝑝𝑖 =𝑋𝑖

𝑡 

If 𝑓(𝑝𝑖) < 𝑓(𝑔), update 𝑔 = 𝑝𝑖  

Return 𝑔 as the optimal hyperparameter configuration 

 

2.5. Model Evaluation and Comparison 

After tuning, the optimized models were retrained using the best parameter configurations found 

by PSO. These models were then evaluated on the test set and compared with their default versions. 

Performance metrics (Accuracy, F1-Score, ROC AUC) were computed. Confusion matrices and ROC 

curves were plotted to analyze classification quality, while feature importance plots were used to 

interpret model decisions. The improvement in performance confirms the effectiveness of the PSO-

tuned ensemble approach in customer purchase prediction. Although confidence intervals were not 

explicitly calculated, the variance across cross-validation folds was below 0.02 for all evaluation 

metrics, indicating stable model performance. 

3. RESULT 

This section presents the comparative analysis of various ensemble learning algorithms and the 

impact of Particle Swarm Optimization (PSO) on model performance for customer purchase behavior 

prediction. 

3.1. Model Performance (Default Settings) 

To establish a reliable performance baseline, six widely-used classification algorithms were 

evaluated using their default hyperparameter settings. These models include Logistic Regression, 

Gradient Boosting, LightGBM, CatBoost, AdaBoost, and XGBoost. The main objective was to assess 

their effectiveness in predicting customer purchase behavior based on a range of demographic and 

behavioral features. 

Figure 2 displays the Receiver Operating Characteristic (ROC) curves for each model. The ROC 

AUC (Area Under the Curve) is a key indicator of a model’s ability to discriminate between customers 

who are likely to make a purchase and those who are not. As shown in the figure, all ensemble-based 

models significantly outperform Logistic Regression, which achieves a ROC AUC of 0.901. In contrast, 

the ensemble models exhibit AUC values above 0.94, suggesting they are much more effective at 

capturing complex purchase patterns. The ROC curve for Logistic Regression rises more gradually and 

plateaus lower compared to the other models, indicating weaker performance in distinguishing positive 

from negative classes. On the other hand, ensemble models like XGBoost and CatBoost show steep 

initial rises and high plateaus, reflecting better sensitivity and specificity across classification thresholds. 
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Figure 2. ROC curve comparison 

 

In these figures, the X-axis represents the False Positive Rate (FPR) and the Y-axis represents the 

True Positive Rate (TPR), with consistent font sizes to improve clarity. These visual insights are 

supported by the quantitative evaluation in table 2. The table presents five key metrics: Accuracy, 

Precision, Recall, F1-Score, and ROC AUC. Accuracy measures the overall correctness of the model’s 

predictions. Precision evaluates the proportion of correctly identified purchasers among those predicted 

to purchase, which is important in minimizing false positives in marketing efforts. Recall assesses the 

ability of the model to capture actual purchasers, which is crucial for customer retention strategies. The 

F1-Score provides a balanced measure of precision and recall, especially relevant when class 

distribution is imbalanced. ROC AUC reflects the overall diagnostic ability of the model. 

Among all models tested, CatBoost demonstrates the highest overall performance, achieving an 

accuracy of 94.7%, a precision of 0.967, a recall of 0.907, and the highest F1-Score of 0.936. This 

exceptional performance is attributed to CatBoost's strength in handling categorical features natively 

and its robust gradient boosting algorithm. XGBoost and Gradient Boosting also perform exceptionally 

well, with high accuracy and F1-Score values slightly below CatBoost, indicating consistent predictive 

strength. LightGBM shows strong precision, reaching 0.960, although its recall is slightly lower 

compared to CatBoost and XGBoost. This suggests that while LightGBM is conservative in predicting 

purchasers, the ones it does identify are very likely to be accurate. 

 

Table 2. Model Evaluation Results 

Model Accuracy Precision Recall F1-Score ROC AUC 

LightGBM 0.933 0.960 0.881 0.919 0.952 

XGBoost 0.942 0.966 0.896 0.930 0.951 

CatBoost 0.947 0.967 0.907 0.936 0.950 

Gradient Boosting 0.940 0.961 0.896 0.928 0.947 

AdaBoost 0.942 0.956 0.907 0.931 0.944 

Logistic Regression 0.847 0.856 0.772 0.812 0.901 

 

AdaBoost also performs competitively, with high precision and recall, though its overall metrics 

slightly trail behind the top three ensemble models. Logistic Regression, on the other hand, lags 

significantly across all metrics. It records the lowest accuracy at 84.7%, the lowest recall at 0.772, and 

the weakest F1-Score at 0.812. These results highlight the limitations of linear models in capturing the 

non-linear interactions inherent in complex customer behavior data. 
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The comparative results clearly indicate that ensemble methods, particularly CatBoost, XGBoost, 

and Gradient Boosting, provide superior predictive performance over traditional models. This suggests 

that for applications requiring high sensitivity and precision—such as targeting likely purchasers or 

designing promotional campaigns—ensemble models are better suited to deliver robust and actionable 

predictions. 

3.2. Impact of PSO-Tuned Hyperparameters 

To further improve the predictive capabilities of the baseline models, Particle Swarm 

Optimization (PSO) was applied as a global optimization strategy to fine-tune key hyperparameters. 

PSO is a population-based stochastic optimization technique inspired by the social behavior of birds, 

and it has demonstrated success in avoiding local minima in complex search spaces. In this study, PSO 

was employed to tune hyperparameters for two models: Logistic Regression and Gradient Boosting. 

Figure 3 provides a visual comparison of Accuracy, F1-Score, and ROC AUC for both default 

and PSO-optimized versions of these models. The results show that Logistic Regression experiences 

modest but consistent performance improvements after tuning. Accuracy rises from 0.8467 to 0.8533, 

while F1-Score improves from 0.8120 to 0.8207. Although the ROC AUC slightly decreases from 

0.9011 to 0.9005, the overall stability of classification improves, particularly in recall and F1-score, 

suggesting a better balance between false positives and false negatives. 

In contrast, Gradient Boosting demonstrates a nuanced trade-off. After hyperparameter tuning, 

the ROC AUC increases from 0.9471 to 0.9547, indicating enhanced discriminative ability. However, 

accuracy drops slightly from 0.9400 to 0.9333, and F1-Score also shows a minor decrease. This suggests 

that while the model becomes more capable of ranking positive cases ahead of negative ones, it sacrifices 

a small amount of calibration accuracy. Such trade-offs are common in optimization, especially when 

the objective function emphasizes different aspects of model performance. 

 

 
Figure 3. Comparison of Model Metrics (Default vs PSO) 

 

To understand how these results were achieved, Table 3 presents the optimal hyperparameters 

identified through PSO for both models. For Logistic Regression, PSO determined an extremely high 

regularization constant (C ≈ 49429.71), paired with the ‘lbfgs’ solver and 407 maximum iterations, 

indicating that a very low regularization penalty was ideal for this dataset. For Gradient Boosting, PSO 

selected 126 estimators, a learning rate of 0.0408, a tree depth of 6, and moderately constrained values 

for minimum samples split and leaf size. These values reflect a more conservative learning configuration 

that prioritizes generalization and smoother convergence. 
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Table 3. Optimized Hyperparameters and Cross-Validated Accuracy 
Model C Solver Max 

Iter 

Accuracy 

(CV) 

n_estimators learning_rate max_depth min_samples_split min_samples_leaf 

Logistic 

Regression 

(PSO) 

49429.71 lbfgs 407 0.8171 NaN NaN NaN NaN NaN 

Gradient 

Boosting (PSO) 

NaN NaN NaN 0.9257 126.0 0.0408 6.0 9.0 4.0 

 

Table 4 provides a direct comparison of the default and PSO-tuned models on the test set. For 

Logistic Regression, the improvements in accuracy and F1-Score are preserved in the final evaluation, 

validating the impact of tuning. For Gradient Boosting, while the ROC AUC improvement remains 

consistent, the small decline in accuracy indicates that the new configuration may have slightly underfit 

some high-confidence predictions. This result highlights the need to balance optimization objectives 

carefully—especially in real-world settings where business costs for false negatives or positives vary. 

 

Table 4. Comparison of Default vs PSO-Tuned Models 

Model Accuracy F1-Score ROC AUC 

Gradient Boosting (PSO) 0.9333 0.9189 0.9547 

Gradient Boosting (Default) 0.9400 0.9276 0.9471 

Logistic Regression (Default) 0.8467 0.8120 0.9011 

Logistic Regression (PSO) 0.8533 0.8207 0.9005 

 

PSO tuning proved to be beneficial for Logistic Regression, which lacks internal complexity and 

is more sensitive to parameter changes. For Gradient Boosting, while ROC AUC improved, the tuning 

led to a subtle decline in accuracy, emphasizing the importance of interpreting optimization outcomes 

beyond a single metric. Overall, the results affirm that metaheuristic optimization like PSO can be an 

effective enhancement technique when applied with careful consideration of model characteristics and 

performance trade-offs. 

3.3. Model Ranking 

To assess the overall effectiveness of each model in distinguishing purchasing behavior, a 

comparative ranking was performed using ROC AUC as the primary evaluation metric. Table 5 presents 

the complete ranking of all evaluated models, both in their default and PSO-optimized forms. 

 

Table 5. Model Ranking by ROC AUC 

Rank Model Accuracy F1-Score ROC AUC Notes 

1 Gradient Boosting (PSO) 0.9333 0.9189 0.9547 PSO 

2 LightGBM 0.9330 0.9190 0.9520 Default 

3 XGBoost 0.9420 0.9300 0.9510 Default 

4 CatBoost 0.9470 0.9360 0.9500 Default 

5 Gradient Boosting (Default) 0.9400 0.9280 0.9470 Default 

6 AdaBoost 0.9420 0.9310 0.9440 Default 

7 Logistic Regression (Default) 0.8470 0.8120 0.9010 Default 

8 Logistic Regression (PSO) 0.8533 0.8207 0.9005 PSO 

 

The PSO-tuned version of Gradient Boosting achieves the highest ROC AUC value of 0.9547, 

surpassing all other models. This result confirms that the hyperparameter configuration identified 

through Particle Swarm Optimization improved the model's ability to discriminate between classes. 

Although the tuned model exhibits a slight decrease in overall accuracy compared to its default 
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counterpart, its enhanced AUC score suggests better ranking capability, which is often more relevant in 

real-world decision-making scenarios such as lead scoring or targeting high-value customers. 

LightGBM and XGBoost follow closely, with ROC AUC values of 0.9520 and 0.9510 

respectively. Interestingly, while CatBoost records the highest accuracy and F1-score among all models, 

its AUC is slightly lower at 0.9500. This indicates that although CatBoost is very precise and balanced 

in its predictions, its ability to rank examples across the probability spectrum is marginally less optimal 

than the PSO-tuned Gradient Boosting and LightGBM. 

The default version of Gradient Boosting ranks fifth overall, validating its strong baseline 

performance even without optimization. AdaBoost also performs respectably, though it trails the other 

ensemble techniques in terms of AUC. Logistic Regression, both in its default and PSO-tuned versions, 

ranks lowest. The PSO-tuned Logistic Regression performs marginally better in terms of accuracy and 

F1-score, but its AUC decreases slightly, reinforcing the model’s limited capacity to handle complex, 

non-linear feature interactions. 

These rankings emphasize the superiority of ensemble learning methods over linear classifiers in 

capturing customer purchase behavior. Furthermore, they highlight that while PSO tuning can 

meaningfully improve model discrimination, the impact varies by algorithm and must be interpreted in 

the context of trade-offs across different metrics. Overall, the ranking supports the conclusion that 

ensemble methods—especially when properly tuned—offer significant advantages in predicting and 

prioritizing customer purchase behavior in marketing analytics contexts. Table 6 summarizes the 

estimated training times required for each evaluated model. 

 

Table 6. Estimated Training Time per Model 

Model Average Training Time (s) 

Logistic Regression (Default) 5 

Logistic Regression (PSO) 180 

Gradient Boosting (Default) 40 

Gradient Boosting (PSO) 750 

CatBoost 60 

XGBoost 55 

LightGBM 50 

AdaBoost 35 

 

As shown, Logistic Regression in its default configuration required minimal training time of 

approximately 5 seconds, while its PSO-tuned variant increased substantially to around 180 seconds due 

to the additional hyperparameter search. Gradient Boosting models also exhibited a notable increase in 

computational cost when optimized with PSO, rising from 40 seconds to 750 seconds on average. 

Ensemble methods such as CatBoost, XGBoost, LightGBM, and AdaBoost demonstrated reasonable 

training times between 35 and 60 seconds, reflecting their efficient implementations and inherent 

optimizations. Overall, these results highlight the trade-off between model performance improvements 

gained through PSO-based tuning and the associated computational resources required for running such 

optimization processes. 

3.4. Confusion Matrix Analysis 

To gain deeper insight into the types of classification errors made by each model, confusion 

matrices were analyzed for both default and PSO-tuned configurations. Figure 4 illustrates the confusion 

matrices for the top-performing ensemble models, while Figure 5 focuses on a direct comparison 

between default and optimized versions of Logistic Regression and Gradient Boosting. 
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The confusion matrices for CatBoost and XGBoost, shown in Figure 4, indicate strong 

classification performance with low rates of both false positives and false negatives. These models 

demonstrate excellent balance, correctly identifying the majority of positive cases (actual purchasers) 

while maintaining a low incidence of misclassifying non-purchasers as purchasers. This is particularly 

advantageous in marketing contexts, where false positives could result in wasted promotional costs and 

false negatives may lead to missed revenue opportunities. 

 

 
Figure 4. Confusion Matrices of Top Models 

 

Note: The X-axis represents the False Positive Rate (FPR) and the Y-axis represents the True Positive Rate (TPR), with consistent font sizes 
to improve clarity. 

 

In the case of Logistic Regression, the confusion matrix reveals a less favorable pattern. The 

default model exhibits a higher rate of false negatives, meaning that many actual purchasers are 

incorrectly classified as non-purchasers. This shortcoming reflects the model’s limited ability to capture 

the complex decision boundaries in the data. However, after tuning with PSO, the Logistic Regression 

model shows a modest improvement. The number of false negatives decreases slightly, suggesting that 

the optimized regularization parameter has improved sensitivity without sacrificing too much 

specificity. Nevertheless, its error distribution remains broader compared to ensemble models. 

Figure 5 offers a side-by-side visualization of confusion matrices before and after optimization. 

For Gradient Boosting, the PSO-tuned version maintains strong performance with only slight variation 

in misclassification patterns. This confirms the robustness of the algorithm, as the adjustments made by 

PSO optimize discrimination while keeping classification balance relatively stable. 

 

 
Figure 5. Confusion Matrices – Default vs PSO-Tuned Models 

 
Note: The X-axis represents the False Positive Rate (FPR) and the Y-axis represents the True Positive Rate (TPR), with consistent font sizes 

to improve clarity. 

 

Overall, the confusion matrix analysis reinforces the earlier findings from ROC and F1-score 

evaluations. Ensemble methods not only excel in overall predictive metrics but also demonstrate 

superior reliability in minimizing critical classification errors. While PSO contributes to marginal 
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improvements in simpler models like Logistic Regression, ensemble models inherently manage complex 

boundary definitions more effectively and with fewer trade-offs. 

3.5. PSO Convergence Analysis 

To evaluate the behavior and effectiveness of the Particle Swarm Optimization process during 

hyperparameter tuning, the convergence curve over 30 iterations was analyzed. Figure 6 displays the 

trajectory of the global best solution value found at each iteration, offering insight into how the algorithm 

explores and exploits the hyperparameter search space. 

 

 
Figure 6. PSO Convergence Plot 

 

The convergence plot reveals noticeable fluctuations rather than a smooth downward trend, which 

typically characterizes successful convergence to a global or strong local optimum. Instead of steadily 

decreasing, the curve oscillates across iterations, suggesting that the optimization process may have 

encountered a complex or noisy objective landscape. This behavior is often indicative of the presence 

of multiple shallow local minima, or a cost surface that lacks smooth gradients, both of which can hinder 

the optimizer’s ability to make consistent improvements. 

Such fluctuation may also be the result of random initialization and stochastic evaluation, 

especially in models like Gradient Boosting that are sensitive to small changes in hyperparameter values. 

While PSO is generally robust in high-dimensional search spaces, it can become inefficient when 

applied to problems where the objective function is non-convex and irregular, as is often the case in 

machine learning model validation tasks. 

Despite this, the convergence behavior observed does not negate the value of PSO in this context. 

As shown in previous sections, PSO was still able to discover configurations that enhanced certain 

metrics, particularly the ROC AUC for Gradient Boosting. However, the instability of the convergence 

pattern suggests that further refinement—such as using hybrid or adaptive PSO variants, or 

incorporating early stopping criteria—may be needed to achieve more consistent optimization 

outcomes. 

Figure 6 provides important diagnostic feedback. It demonstrates that while PSO contributes 

positively to model performance, its application in this case is subject to the typical limitations of 

population-based optimization under noisy and rugged objective functions. These insights can inform 

future work aiming to enhance the stability and efficiency of hyperparameter optimization in ensemble 

learning contexts. Additionally, the convergence behavior was analyzed by recording the average 

computational time for each PSO trial (approximately 12 minutes) and the standard deviation of the best 

fitness value over 30 iterations (about 0.0031), indicating moderate convergence stability. 

3.6. Feature Importance Analysis 

To understand which input variables most strongly influence the prediction of customer purchase 

behavior, feature importance was analyzed across four ensemble models: CatBoost, XGBoost, Gradient 
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Boosting, and LightGBM. Figures 4a through 4d visualize the top 15 most influential features for each 

model, ranked according to their relative contribution to the model’s decision-making process. 

Across all models, a consistent pattern emerges. Variables such as DiscountsAvailed, 

TimeSpentOnWebsite, Age, and AnnualIncome appear prominently among the top features, suggesting 

they are key drivers in shaping customer purchase decisions. The prominence of DiscountsAvailed 

aligns with marketing intuition, as customers who have access to more discounts are more likely to 

complete purchases. Similarly, TimeSpentOnWebsite likely reflects a measure of engagement or intent, 

where longer interaction durations are correlated with higher purchase likelihood. 

The variable Age also features prominently, which may reflect generational differences in 

purchasing power, online behavior, or brand preferences. Meanwhile, AnnualIncome appears to be an 

important predictor, likely because it reflects spending capacity and eligibility for certain products or 

promotional tiers. Together, these features paint a coherent picture: behavioral and demographic factors 

jointly contribute to purchase intent, and ensemble models are able to effectively leverage their 

interactions. 

Each model displays subtle differences in how they prioritize these features. For instance, 

CatBoost places slightly greater emphasis on categorical variables like LoyaltyProgram and 

ProductCategory, likely due to its inherent advantage in handling categorical data without the need for 

extensive preprocessing. XGBoost and Gradient Boosting, while similar in behavior, tend to prioritize 

continuous variables more heavily, especially when strong gradients are present in the data. LightGBM 

exhibits a more evenly distributed importance across features, reflecting its tree-splitting mechanism 

which favors leaf-wise growth and balanced feature exploration. 

These variations illustrate not only the relative strengths of each algorithm but also emphasize the 

importance of examining feature relevance from multiple modeling perspectives. Collectively, the 

analysis affirms that no single feature dominates the prediction task entirely. Instead, it is the interaction 

of several informative features—captured and weighted differently by each ensemble model—that 

drives effective and accurate predictions. 

 

  
(a) (b) 

  

(c) (d) 

Figure 4. (a) CatBoost, (b) XGBoost, (c) Gradient Boosting, (d) LightGBM Feature Importances 
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4. DISCUSSION 

The empirical results presented in this study offer several important insights into the effectiveness 

of ensemble learning models and the utility of Particle Swarm Optimization (PSO) in predicting 

customer purchase behavior. Through extensive evaluation of multiple models under both default and 

optimized configurations, several consistent patterns emerge that merit discussion from both theoretical 

and practical perspectives. 

4.1. Performance of Ensemble Models 

Ensemble methods, particularly CatBoost, XGBoost, and Gradient Boosting, consistently 

outperform traditional linear classifiers such as Logistic Regression. This is evident across all evaluation 

metrics, including accuracy, F1-score, and ROC AUC. CatBoost may achieve slightly superior results 

due to its ability to handle categorical features natively with minimal preprocessing and to use symmetric 

tree structures that improve generalization. These strengths explain its best overall accuracy and F1-

score. These findings align with previous studies in the literature, such as Kumar et al. (2025), who 

reported similar gains using optimized LightGBM for retail analytics, and Chen et al. (2024), who 

demonstrated improved explainability in tree-based ensembles for marketing classification. The 

consistent performance of ensemble models reinforces that these techniques are well-suited for high-

dimensional and heterogeneous customer data commonly found in e-commerce and marketing domains. 

4.2. Effectiveness of PSO Optimization 

The application of PSO yielded mixed results. For Logistic Regression—a relatively simple and 

convex model—PSO provided meaningful gains, improving both accuracy and F1-score. However, in 

the case of Gradient Boosting, PSO produced only marginal improvements in ROC AUC while slightly 

decreasing accuracy and F1-score. This illustrates a trade-off where maximizing class ranking (ROC 

AUC) can reduce raw classification accuracy, an important consideration for practitioners when 

prioritizing model performance goals. The convergence plot supported this interpretation, showing a 

non-monotonic pattern that may reflect instability due to noisy objective functions or suboptimal 

parameter initialization. It emphasizes that optimization routines must be carefully designed, especially 

for models with many interdependent hyperparameters. 

4.3. Feature Importance and Predictive Drivers 

Another key takeaway is the importance of behavioral and demographic variables in shaping 

customer purchase predictions. Features such as time spent on the website, discount utilization, age, and 

income consistently emerged as dominant predictors across all models, demonstrating robust 

explanatory power. These findings highlight the need for future predictive systems to prioritize 

capturing and engineering behavioral features to maximize forecast accuracy. 

4.4. Practical Implications 

From a business perspective, the confusion matrix results demonstrate that ensemble models 

manage classification errors more effectively, maintaining a low rate of false negatives — crucial for 

minimizing missed opportunities to target potential buyers. Moreover, the proposed framework has 

strong potential to be integrated into real-time recommendation systems, where continuously updated 

customer data can dynamically adapt marketing strategies and improve personalization. This offers 

actionable insights for personalized marketing and customer targeting in modern e-commerce platforms. 
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4.5. Limitations and Future Research 

While the framework performed well overall, the PSO optimization showed signs of convergence 

instability, and computational cost increased considerably for more complex models. Future research 

could explore hybrid or adaptive optimization algorithms, as well as extensions toward online or 

incremental learning scenarios that match the fast-paced nature of e-commerce customer behavior. 

5. CONCLUSION 

This study proposed and evaluated a novel PSO-tuned ensemble learning framework to predict 

customer purchase behavior in an e-commerce context. By comparing default configurations with PSO-

optimized variants across multiple machine learning models, including Gradient Boosting, CatBoost, 

XGBoost, LightGBM, AdaBoost, and Logistic Regression, this research offered a comprehensive 

assessment of both predictive performance and the impact of hyperparameter optimization. The results 

demonstrate that ensemble learning algorithms consistently outperform traditional classifiers, with 

CatBoost achieving the best accuracy and F1-score, and PSO-optimized Gradient Boosting achieving 

the highest ROC AUC, indicating strong class discrimination. Although PSO substantially improved 

Logistic Regression, its gains for more complex ensemble models were modest and incurred higher 

computational costs, highlighting the importance of tailoring optimization strategies to model 

complexity and convergence behavior. 

The analysis also underscored the critical role of behavioral and demographic variables — such 

as time spent on the website, discounts availed, age, and income — as consistent predictors of purchase 

intent. These insights confirm the value of investing in high-quality, behavior-driven data collection to 

maximize forecasting accuracy. Overall, this study supports the adoption of ensemble learning as a 

robust foundation for predictive marketing, complemented by hyperparameter tuning where appropriate. 

The proposed framework could be extended into real-time recommendation systems to dynamically 

adapt offers and enhance personalized marketing in e-commerce platforms. Future research may 

investigate hybrid optimization algorithms, online learning methods, and more diverse behavioral 

features to further improve adaptability and performance in fast-evolving digital environments. 
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